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One-body reduced density matrix (1-RDM)

•
 

for integer particle number N:

Diagonalization
 

yields the natural orbitals
 
and 

their occupation numbers nj
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Reduced Density Matrix Functional Theory



•
 

Total energy is a unique functional          of the 1-RDM[ ]γE
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Consequence:
 

Any explicit functional
 is an implicit functional of γ
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Central Theorem by Gilbert (1975):  There is a rigorous 1-1 
correspondence   Ψgs
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•
 

Ground-state energy can be calculated by minimizing [ ]γE



Functional Minimization
Constraints

ii  
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( ) ( )* 3

 i j ijd r ,φ φ = δ∫ r r

,1n0 i ≤≤

where N is the number of electrons.

orthonormality
 

constraint.

N-representability
 

constraint, guarantees that γ
 

comes 
from a many-body wavefunction.
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•
 

The first two are enforced through Lagrange multipliers. The quantity to 
minimize becomes:

μ: chemical potential.
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N-representability
 

condition  0 ≤
 

nj
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1 generally leads to border 
minimum. 
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Total-energy functional:
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Three major differences to DFT

•
 

Kinetic-energy functional is known exactly
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Hence             does not contain any kinetic contributions,
and therefore there is no coupling-constant formula.
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There exists no variational
 

equation [ ]
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There exists no
 

Kohn-Sham system reproducing the 
interacting ( )r,r ′γ

GG



Approximations for xc
 

functional
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• Müller
 

functional [1,2]:
 

.( , )i j i jf n n n n=

• Gödecker
 

-
 

Umrigar
 

[3]:                            , explicit removal of 
self-interaction terms.

( , )i j i jf n n n n=

• Hartree-Fock:
 

.( , )i j i jf n n n n=

[1] A. M. K. Müller, Phys. Lett. A 105, 446 (1984).
[2] Buijse, Baerends, Mol. Phys. 100, 401 (2002).
[3] Gödecker, Umrigar, Phys. Rev. Lett. 81, 866 (1998).
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, for ,  weakly occupied,
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• BBC2:  Additionally, omission the square root if both orbitals
 

are
strongly occupied:

• BBC3:   Inclusion of anti-bonding in the list of strongly occupied
orbitals, unless it interacts with bonding. 
Removal of SI terms. 

Hierarchy of corrections to the Müller functional
key idea: Distinction between strongly and weakly occupied orbitals

f• BBC1:  Sign change of   , if  both orbitals
 

are weakly occupied:

, ,  weakly occupied,
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Application to stretched H2
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G2/97 test set of molecules [1]:
148 neutral molecules including 29 radicals, 35 
non-hydrogen systems, 22 hydrocarbons, 47 
substituted hydrocarbons and 15 inorganic
hydrides.

Cartesian 6-31G* Gaussian basis-set

L.A. Curtiss
 

et al., JCP 106, 1063 (1997); ibid. 109, 42 (1998).









Method
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Error in the
 

correlation
 

energies
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with
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methods. 
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The real challenge of Condensed-Matter 
theory: Ab-initio

 
description Mott insulators



Towards strongly correlated systems
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band structure is metallic 

To obtain gap:
 

Σ
 

→∞ for  ω→
 

EF



Fundamental gap of semiconductors and insulators
S. Sharma, J.K. Dewhurst, N.N. Lathiotakis

 

and E.K.U.G., Phys. Rev. B 78

 

(Rapid Comm.), 201103 (2008) 



How about time-dependent RDMFT?

v(r,t)     → Ψ(r1

 

….rN

 

,t)  → γ(r,r’,t)  

γ(r,r’,t)  → ρ(r,t)    →
 

v(r,t)

TDSE

diagonal
r = r’

TDDFT

Hence, for fixed initial state, there is a 1-1 correspondence
between  γ(r,r’,t)  and  v(r,t)
K. Pernal, O. Gritsenko, and E. J. Baerends, Phys Rev A 75, 012506 (2007) 



How about time-dependent RDMFT?

v(r,t)     → Ψ(r1

 

….rN

 

,t)  → γ(r,r’,t)  

γ(r,r’,t)  → ρ(r,t)    →
 

v(r,t)

TDSE

diagonal
r = r’

TDDFT

Hence, for fixed initial state, there is a 1-1 correspondence
between  γ(r,r’,t)  and  v(r,t)
K. Pernal, O. Gritsenko, and E. J. Baerends, Phys Rev A 75, 012506 (2007) 

Note:  There exists no 1-1 correspondence  between  γ(r,r’,t)
and non-local potentials v(r,r’,t) (integral operators)



How about xc
 

functionals
 

in time-dependent RDMFT?

Use the known functionals
 

of ground-state RDMFT 
as  adiabatic approximation, i.e. make nk

 

and  φk

 

(r) in 
the Mueller-type expressions time-dependent. 

Upon time-propagation, all these adiabatic RDMFT 
functionals

 
lead to time-independent

 
occupation numbers 

H. Appel, E.K.U.G. arXiv:0807.2712



e-He+ scattering
(with soft Coulomb
potentials in 1D)
λ

 
=  coupling constant,

ko

 

= 0.3 a.u.

H. Appel, E.K.U.G.
arXiv:0807.2712



H. Appel, E.K.U.G.
arXiv:0807.2712

He in 1D with 
soft Coulomb potentials,

transition from ground
state to lowest excited 
singlet state with 
optimized pulse 





Lecture Notes in Physics 706
(Springer, August 2006)
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