Optimal Control of Spin Dynamics

Steffen Glaser, TU München

Nobel Prizes:
1952: Edward Purcell, Felix Bloch (Physics)
1991: Richard Ernst (Chemistry)
2002: Kurt Wüthrich (Chemistry)
2003: Paul Lauterbur, Peter Mansfield (Medicine)

Optimal Control in Spin Systems

physical limits of spin dynamics
spectroscopy
quantum computing

local spin manipulation and imaging

$+4$

Pure state $\quad|\Psi\rangle$
Density operator $\quad \rho=\overline{|\Psi\rangle\langle\Psi|}$

Energy levels

1 spin 1/2
2 spins $1 / 2$
N spins 1/2

2^{N}
 energy levels

How do you measure an NMR signal?

superconducting magnet incl. probe

(with rf coil)

computer for spectrometer control and data processing

H_{0}

Control Parameters $\quad u_{k}(t)$

$\mathrm{H}_{\mathbf{0}}+\sum_{\mathrm{k}} \mathrm{u}_{\mathrm{k}}(\mathrm{t}) \mathrm{H}_{\mathrm{k}}$

Resonance frequencies at 14 Tesla:
${ }^{1} \mathrm{H} \quad 600 \mathrm{MHz}$
$\begin{array}{lr}{ }^{15} \mathrm{~N} & 60 \mathrm{MHz} \\ { }^{13} \mathrm{C} & 150 \mathrm{MHz}\end{array}$

Ribonuclease 40 MHz

M. Saunders et al.
J.Amer.Chem.Soc. 1957, 79, 3289

Lysozyme 900 MHz
frequency dispersion: 10 kHz

Two-dimensional NMR

Performance of conventional composite pulses for broadband (robust) excitation

(excitation efficiency: 98\%, max. rf amplitude: 10 kHz , no rf inhomogeneity)

3D HNCO / HNCA

Relaxation rates k increase with molecular weight

Transfer Efficiency $\quad I_{x} \rightarrow 2 I_{z} S_{y}$

Transformation of the Density Operator

Generation of Unitary Operators

NMR Quantum Computing

INPUT

CALCULATION
OUTPUT
prepare
initial state
apply
quantum-algorithm

Cory, Fahmy, Havel (1996) Gershenfeld, Chuang (1997)

Implemented Test Functions for Thermal Deutsch Jozsa Algorithm

constant function: $\quad f(\vec{x})=0$

$$
f^{\prime}(\vec{x})=f(\vec{x}) \cdot \overline{x_{4}}=0
$$

balanced function: $f(\vec{x})=x_{2} \oplus x_{3} \cdot x_{5}$

$$
f^{\prime}(\vec{x})=f(\vec{x}) \cdot \overline{x_{4}}=x_{2} \cdot \overline{x_{4}} \oplus x_{3} \cdot \overline{x_{4}} \cdot x_{5}
$$

A. F. Fahmy, R. Marx, W. Bermel, S.J.G., Phys. Rev. A 78, 022317 (2008)

Scheme for the implementation of the function

$$
f^{\prime}(\vec{x})=f(\vec{x}) \cdot \overline{x_{4}}=x_{2} \cdot \overline{x_{4}} \oplus x_{3} \cdot \overline{x_{4}} \cdot x_{5}
$$

A. F. Fahmy, R. Marx, W. Bermel, S.J.G., Phys. Rev. A 78, 022317 (2008)

Time-optimal implementation of the quantum Fourier transform ?

Saito et al. (2000) quant-ph/0001113

Blais (2001)
PRA 64, 022312

Steam Engine

Steam Engine

,"The theory of its operation
is rudimentary and attempts to improve its performance are still made in an almost haphazard way."

1824

REFLEXIONS

 SUR la
PUISSANCE MOTRICE

DU FEU

SUR LES MACHINES

PROPRES A DÉVELOPPER CETTE PUISSANCE.

Par S. CaRNOT,
ancien ílìve de l'école polytechnique.

A PARIS,
CHEZ BACHELIER, LIBRAIRE, QUAi des augustins, ${ }^{0} .55$.

$$
1834
$$

Optimal Control of Spin Systems

Optimal Control Theory

Spin Physics

Optimal control in NMR: band-selective excitation and inversion

S. Conolly, D. Nishimura, A. Macovski, Optimal control solutions to the magnetic resonance selective excitation problem, IEEE Trans. Med. Imaging MI-5 (1986) 106-115.
J. Mao, T.H. Mareci, K.N. Scott, E.R. Andrew, Selective inversion radiofrequency pulses by optimal control, J. Magn. Reson. 70 (1986) 310-318.
D. Rosenfeld, Y. Zur, Design of adiabatic selective pulses using optimal control theory, Magn. Reson. Med. 36 (1996) 401-409.

Unitary Quantum Evolution (no Relaxation)

Quantum Evolution in Presence of Relaxation

transfer amplitude a

transfer time $\boldsymbol{\tau}$

Time-Optimal Control of Two-Spin Systems

Strong-Pulse Limit: $\quad H_{r f} \gg H_{C} \quad$ (2 time scales)

Cartan Decomposition
Characterization of ALL unitary operators that can be created in time T

Derivation of - time-optimal transfer function (TOP curve)

- minimum time for maximum transfer
- pulse sequence

Khaneja, Brockett, Glaser (2001)
Khaneja, Kramer, Glaser (2005)

Maximum transfer efficiency $\eta^{*}(t)$ and minimum time $t_{\text {min }}$ for complete transfer

Transfer	$\eta^{*}(t)$	$t_{\text {min }}^{-1}$
$I_{x} \rightarrow S_{x}$	$\sin ^{2}\left(\frac{\pi}{2} C\left(\left\|\mu_{3}\right\|+\left\|\mu_{2}\right\|\right) t\right)$	$C\left(\left\|\mu_{3}\right\|+\left\|\mu_{2}\right\|\right)$
$I^{-} \rightarrow S^{-}$	$\sin (\pi C a) \sin (\pi C b)$	$\frac{2}{3} C\left(\left\|\mu_{3}\right\|+\left\|\mu_{2}\right\|+\left\|\mu_{1}\right\|\right)$
$I_{x} \rightarrow 2 I_{z} S_{x}$	$\sin \left(\pi C\left\|\mu_{3}\right\| t\right)$	$2 C\left\|\mu_{3}\right\|$
$I^{-} \rightarrow 2 I_{z} S^{-}$	$\max _{x} \sin \left(\frac{\pi}{2} C\left\{\left\|\mu_{3}\right\|+\left\|\mu_{2}\right\|-\left\|\mu_{1}\right\|+x\right\} t\right) \cos (\pi C t x)$	$C\left(\left\|\mu_{3}\right\|+\left\|\mu_{2}\right\|-\left\|\mu_{1}\right\|\right)$
$I_{x} S_{\beta} \rightarrow I_{\beta} S_{x}$	$\sin \left(\frac{\pi}{2} C\left(\left\|\mu_{3}\right\|+\left\|\mu_{2}\right\|\right) t\right)$	$C\left(\left\|\mu_{3}\right\|+\left\|\mu_{2}\right\|\right)$
$I^{-} S_{\beta} \rightarrow I_{\beta} S^{-}$	$\sin \left(\frac{\pi}{2} C\left(\left\|\mu_{3}\right\|+\left\|\mu_{2}\right\|\right) t\right)$	$C\left(\left\|\mu_{3}\right\|+\left\|\mu_{2}\right\|\right)$

Note: $I^{-}=I_{x}-\mathrm{i} I_{y}$ and $I_{\beta}=\frac{\mathbf{1}}{2}-I_{z}$. For the transfer $I^{-} \rightarrow S^{-}$, the optimal values of a and b are completely characterized by the two conditions $a+2 b=\left(\left|\mu_{3}\right|+\left|\mu_{2}\right|+\left|\mu_{1}\right|\right) t$ and $\tan (\pi C a)=2 \tan (\pi C b)$.

TOP (time-optimal pulse) curves for dipolar coupling

$$
\left(\mu_{1}, \mu_{2}, \mu_{3}\right)=(-1 / 2,-1 / 2,1)
$$

$$
-I_{x} \rightarrow s_{x}
$$

Khaneja, Kramer, Glaser (2004)

TOP (time-optimal pulse) curves for dipolar coupling

$$
\left(\mu_{1}, \mu_{2}, \mu_{3}\right)=(-1 / 2,-1 / 2,1)
$$

$$
=\begin{array}{ll}
-\mathrm{I}_{\mathrm{x}} & \rightarrow \mathrm{~S}_{\mathrm{x}} \\
\mathrm{I}^{-} & \rightarrow \mathrm{S}^{-} \\
\mathrm{I}_{\mathrm{x}} & \rightarrow 2 \mathrm{I}_{\mathrm{z}} \mathrm{~S}_{\mathrm{x}} \\
\mathrm{I}^{-} & \rightarrow 2 \mathrm{I}_{\mathrm{z}} \mathrm{~S}^{-} \\
\mathrm{I}_{\mathrm{x}} \mathrm{~S}_{\beta} \rightarrow \mathrm{I}_{\beta} \mathrm{S}_{\mathrm{x}}
\end{array}
$$

Khaneja, Kramer, Glaser (2004)

Optimal

sequence
of
effective Hamiltonians

$\left\|\mu_{1}\right\|$	$\left\|\mu_{1}\right\|$	$\left\|\mu_{3}\right\|$	$\left\|\mu_{2}\right\|$	$\left\|\mu_{2}\right\|$	$\mid \mu_{3}$
$\left\|\mu_{2}\right\|$	$\left\|\mu_{3}\right\|$	$\left\|\mu_{1}\right\|$	$\left\|\mu_{1}\right\|$	$\left\|\mu_{3}\right\|$	$\left\|\mu_{2}\right\|$
$\left\|\mu_{3}\right\|$	$\left\|\mu_{2}\right\|$	$\left\|\mu_{2}\right\|$	$\left\|\mu_{3}\right\|$	$\left\|\mu_{1}\right\|$	$\left\|\mu_{1}\right\|$

Pulse sequences
$\mathrm{I}^{-} \rightarrow \mathrm{S}^{-}$

Khaneja, Kramer, Glaser (2004)

Time-Optimal Simulation of Trilinear Coupling Terms

given:

$$
H=2 \pi J\left(l_{1 z} I_{2 z}+l_{2 z} I_{3 z}\right)
$$ desired:

$$
\begin{aligned}
& U=\exp \left\{-i \kappa 2 \pi I_{1 z} I_{2 z} I_{3 z}\right\} \\
& H_{\text {eff }}=2 \pi J_{\text {eff }}\left(l_{1 z} I_{2 z} I_{3 z}\right)
\end{aligned}
$$

Tseng, Somaroo, Sharf, Knill, Laflamme, Havel, Cory, Phys. Rev. A 61, 012302 (2000) Khaneja, Glaser, Brockett, Phys. Rev. A 65, 032301 (2002)

Pulse Sequences ("zzz")

conventional

geodesic

Khaneja, Glaser, Brockett, Phys. Rev. A 65, 032301 (2002)

Geodesics on a sphere

Euklidian metric

$$
(d x)^{2}+(d y)^{2}+(d z)^{2}
$$

"quantum gate design metric"

$$
\frac{(\mathrm{dx})^{2}+(\mathrm{dz})^{2}}{\mathrm{y}^{2}}
$$

Khaneja et al., Phys. Rev. A 75, 012322 (2007).

Pulse sequence for creating $U_{13}=\exp \left\{-i \pi I_{12} I_{3 z}\right\}$

$\theta=180^{\circ}-\alpha=31.4^{\circ}$, weak pulse amplitude: 0.52 J

Khaneja et al., Phys. Rev. A 75, 012322 (2007)

TABLE I. Duration τ_{C} of various implementations of the $\operatorname{CNOT}(1,3)$ gate.

Pulse sequence	$\tau_{C}\left(\right.$ units of $\left.J^{-1}\right)$	Relative duration (\%)
Sequence 1 (C1)	3.5	100
Sequence 2 (C2)	2.5	71.4
Sequence 3 (C3)	2.0	57.1
Sequence 4 (C4)	1.866	53.3
Sequence 5 (C5)	1.253	38.8

D. Collins, K. W. Kim, W. C. Holton, H. Sierzputowska-Gracz, and E. O. Stejskal, Phys. Rev. A 62, 022304 (2000).
(C3, C4, C5) Khaneja et al., Phys. Rev. A 75, 012322 (2007)

Experimental model system

Experimental Demonstration U_{13}

Khaneja et al., Phys. Rev. A 75, 012322 (2007)

$$
\mathcal{U}_{13}=\exp \left\{-i \frac{\pi}{2} 2 I_{1 z} I_{3 z}\right\}
$$

$\rho_{A}=I_{1 x}$

$$
\rho_{B}=2 I_{1 y} I_{3 z}
$$

Khaneja et al., Phys. Rev. A 75, 012322 (2007)

Experimental demonstration of $\operatorname{CNOT}(1,3)$

Khaneja et al., Phys. Rev. A 75, 012322 (2007)

Dipol-Dipol Relaxation in the Spin-Diffusion Limit

$$
\dot{\rho}=\pi J\left[-i 2 I_{z} S_{z}, \rho\right]+\pi \mathrm{k}\left[2 I_{z} S_{z},\left[2 I_{z} S_{z}, \rho\right]\right]
$$

$$
\xi=k / J
$$

$$
\mathrm{I}_{\mathrm{x}} \xrightarrow{?} 2 \mathrm{I}_{\mathrm{y}} \mathrm{~S}_{\mathrm{z}}
$$

Conventional transfer (INEPT)

Morris, Freeman, J. Am. Chem. Soc. 101,760 (1979)

Conventional transfer (INEPT)

$$
\mathrm{I}_{\mathrm{x}} \cdots \stackrel{J}{\mathrm{~J},} 2 \mathrm{l}_{\mathrm{y}} \mathrm{~S}_{\mathrm{z}}
$$

Relaxation-optimized transfer (ROPE)

Khaneja, Reiss, Luy, Glaser, J. Magn. Reson.162, 311 (2003)

ROPE Trajectory

Optimal transfer efficiency $\eta=\sqrt{1+\xi^{2}}-\xi \quad \xi=k / J$

Khaneja et al., J. Magn. Reson.162, 311 (2003)

ROPE Pulse Sequence

Khaneja et al., J. Magn. Reson.162, 311 (2003)

Transfer-Efficiency

Khaneja et al., J. Magn. Reson.162, 311 (2003)

Gain (ROPE/INEPT)

Khaneja et al., J. Magn. Reson.162, 311 (2003)

${ }^{13}$ C-Formiate in $92 \% D_{6}$-Glycerol and $8 \% D_{2} O(T=250 K)$

Khaneja et al., J. Magn. Reson.162, 311 (2003)

Multiplet of Spin I

Polarization Transfer in the Presence of Cross-Correlated Relaxation

Transfer Efficiency η for $k_{c} / k_{a}=0.75$

maximum transfer efficiency:

$$
\eta=\sqrt{1+\xi^{2}}-\xi
$$

formal proof (based on principles of optimum control theory): optimal return function $V\left(r_{1}, r_{2}\right)$

Hamilton-Jacobi-Bellman equation

$$
\max _{u_{1}, u_{2}}\left[\frac{\partial V}{\partial r_{1}} \delta r_{1}+\frac{\partial V}{\partial r_{2}} \delta r_{2}\right]=0
$$

Khaneja, Luy, Glaser,
Proc. Natl. Acad. Sci (2003)

Representing in-phase and antiphase magnetization vectors $\overrightarrow{r_{1}}$ and $\overrightarrow{r_{2}}$ in a common frame of reference

$$
\overrightarrow{r_{1}}=\left(\begin{array}{c}
\left\langle I_{\mathrm{x}}\right\rangle \\
\left\langle\mathrm{I}_{\mathrm{y}}\right\rangle \\
\left\langle I_{\mathrm{z}}\right\rangle
\end{array}\right) \xrightarrow{y}
$$

Optimal trajectory preserves ratio $\frac{l_{2}}{l_{1}}=\eta$ and angle γ

$$
\overrightarrow{r_{1}}=\left(\begin{array}{c}
\left\langle I_{\mathrm{x}}\right\rangle \\
\left\langle I_{\mathrm{y}}\right\rangle \\
\left\langle I_{\mathrm{z}}\right.
\end{array}\right)
$$

Optimal pulse shape for $k_{c} / k_{a}=0.75$

CROP (cross-correlated relaxation optimized pulse)

Experimental Transfer Functions

Relaxation-optimized heteronuclear transfer of polarization and spin order

- in two-spin systems
without cross-correlated relaxation (ROPE)
with cross-correlated relaxation (CROP)
- in spin chains (SPORTS ROPE)
simple case: no cross-correlated relaxation same transverse relaxation rates, no cross-corr. relaxation
- analytical upper limit for spin order transfer
- only one smoth pulse, approx. Gaussian
- more efficient than concatenated INEPT solutions for general chains

Challenges for biological applications

- offset compensation
- experimental imperfections
- homonuclear couplings
- branched coupling networks

desired transfer: $A \longrightarrow C$ performance: $\quad\langle\mathrm{C} \mid \rho(\mathrm{T})\rangle$

$$
\rho(0)=A \quad \lambda(T)=C
$$

$$
\mathbf{u}_{k}(\mathrm{t}) \longrightarrow \mathbf{u}_{\mathrm{k}}(\mathrm{t})+\varepsilon\left\langle\lambda(\mathrm{t}) \mid\left[-\mathrm{i} \mathrm{H}_{\mathrm{k}}, \rho(\mathrm{t})\right]\right\rangle
$$

desired propagator: $\quad U_{F}$ performance: $\quad\left|\left\langle U_{F} \mid U(T)\right\rangle\right|^{2}$
$U(0)=1$

$$
P(T)=U_{F}
$$

$$
\mathrm{u}_{\mathrm{k}}(\mathrm{t}) \longrightarrow \mathrm{u}_{\mathrm{k}}(\mathrm{t})+\varepsilon \operatorname{Re}\left\{\left\langle\mathrm{P}(\mathrm{t}) \mid-\mathrm{i} \mathrm{H}_{\mathrm{k}} \mathrm{U}(\mathrm{t})\right\rangle\langle\mathrm{U}(\mathrm{t}) \mid \mathrm{P}(\mathrm{t})\rangle\right\}
$$

relaxation-optimized coherence transfer

ROPE Pulse Sequence (finite time T)

Khaneja et al., J. Magn. Reson.162, 311 (2003)

ROPE Trajectory (finite time T)

Khaneja, Reiss, Luy, Glaser (2003)

Numerically optimized ROPE sequences

Polarization transfer in homonuclear three spin systems

idealized setting: fast, selective pulses (six control amplitudes)

$$
2 \pi \sum_{\mathrm{m}=1}^{3}\left\{u_{\mathrm{mx}}(\mathrm{t}) I_{\mathrm{mx}}+u_{\mathrm{my}}(\mathrm{t}) I_{\mathrm{my}}\right\}
$$

Optimized controls (radio frequency amplitudes)

y amplitude

spin \#1
spin \#2
spin \#3

Neves et al. (2006)

Transfer efficiency as a function of relative

 coupling constants J_{13} / J_{12} and J_{23} / J_{12}

Transfer efficiency as a function of relative coupling constants J_{13} / J_{12} and J_{23} / J_{12}

Remark:The conventional (so-called TOCSY) experiment is equivalent to the transfer of energy between three coupled pendulums,
see
R. Marx, S. J. Glaser, "Spins Swing Like Pendulums Do: An Exact Classical Model for TOCSY Transfer in Systems of Three Isotropically Coupled Spins 1/2", J. Magn. Reson. 164, 338-342 (2003).

Polarization transfer in homonuclear three spin systems

isotropic (Heisenberg) couplings

$$
\sum_{m<n} 2 \pi J_{m n}\left(I_{m x} I_{n x}+I_{m y} I_{n y}+I_{m z} I_{n z}\right)
$$

idealized control: fast, selective pulses (six control amplitudes)

$$
2 \pi \sum_{\mathrm{m}=1}^{3}\left\{u_{\mathrm{mx}}(\mathrm{t}) I_{\mathrm{mx}}+u_{\mathrm{my}}(\mathrm{t}) I_{\mathrm{my}}\right\}
$$

realistic control: non-selective pulses (two control amplitudes)

$$
\begin{aligned}
& \qquad 2 \pi u_{x}(\mathrm{t}) \sum_{\mathrm{m}=1}^{3} I_{\mathrm{mx}}+2 \pi u_{y}(\mathrm{t}) \sum_{m=1}^{3} I_{m y} \\
& \text { and (constant) offset terms } 2 \pi \sum_{m=1}^{3} v_{m z} I_{\mathrm{mz}}
\end{aligned}
$$

Homonuclear three spin model system: ${ }^{13} \mathrm{C}$ labelled alanine

Conventional TOCSY sequence, e.g. DIPSI-2

Shaka et al. (1988)

Robust phase-modulated polarization transfer sequences:

Neves et al. (2006)

Low power heteronuclear decoupling

$$
\mathcal{H}(t)=\mathcal{H}_{o f f}^{I}+\mathcal{H}_{o f f}^{S}+\mathcal{H}_{J}^{I S}+\mathcal{H}_{r f}^{S}(t)
$$

$$
\begin{aligned}
& \mathcal{H}_{o f f}^{I}=2 \pi \nu_{I} I_{z} \\
& \mathcal{H}_{o f f}^{S}=2 \pi \nu_{S} S_{z} \\
& \mathcal{H}_{J}^{I S}=2 \pi J S_{z} I_{z} \\
& \mathcal{H}_{r f}^{S}(t)=2 \pi \epsilon\left\{u_{x}(t) S_{x}+u_{y}(t) S_{y}\right\}
\end{aligned}
$$

Low power heteronuclear decoupling

$$
s_{k}=\left\langle I_{x}\right\rangle\left(T_{k}\right)
$$

$$
S_{0}\left(\epsilon, \nu_{S}\right)=\frac{1}{N+1} \sum_{k=0}^{N} s_{k}\left(\epsilon, \nu_{S}\right) \quad \Phi=\frac{1}{N_{\epsilon} N_{\nu}} \sum_{p=1}^{N_{\epsilon}} \sum_{q=1}^{N_{\nu}} \phi\left(\epsilon^{(p)}, \nu_{S}^{(q)}\right)
$$

J. L. Neves, B. Heitmann, N. Khaneja, S. J. Glaser, submitted (2009)

Low power heteronuclear decoupling

 nominal rf amplitude: 400 Hz
J. L. Neves, B. Heitmann, N. Khaneja, S. J. Glaser, submitted (2009)

Low power heteronuclear decoupling

 nominal rf amplitude: 400 HzTRACK-1

MLEV-16

Low power heteronuclear decoupling

Simulation

TRACK-1

MLEV-16

Experiment

Low power heteronuclear decoupling

TRACK-1
TRACK-1 MLEV-16

