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How do you measure an NMR signal?
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frequency dispersion: 10 kHz



Two-dimensional NMR
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Performance of conventional composite pulses

for broadband (robust) excitation

(excitation efficiency: 98%, max. rf amplitude: 10 kHz, no rf inhomogeneity)
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Relaxation rates  k   increase with molecular weight 
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Time-optimal implementation of the quantum Fourier transform ?
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„The theory of  its operation 
is rudimentary and attempts 
to improve its performance 
are still made in an almost 
haphazard way.“ 
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Strong-Pulse Limit: Hrf >> Hc (2 time scales)

Khaneja, Brockett, Glaser (2001)

Time-Optimal Control of Two-Spin Systems

Cartan Decomposition

Khaneja, Kramer, Glaser (2005)

Characterization of  ALL unitary operators 

Derivation of - time-optimal transfer function (TOP curve) 

that can be created in time T 

- minimum time for maximum transfer 

- pulse sequence 



Maximum transfer efficiency η∗(t) and minimum time tmin for complete transfer

Transfer η∗(t) t−1
min

Ix → Sx sin2(π
2 C(|µ3| + |µ2|)t) C(|µ3| + |µ2|)

I− → S− sin(πCa) sin(πCb) 2
3C(|µ3| + |µ2| + |µ1|)

Ix → 2IzSx sin(πC|µ3|t) 2C|µ3|

I− → 2IzS− maxx sin(π
2 C{|µ3| + |µ2|− |µ1| + x}t) cos(πCtx) C(|µ3| + |µ2|− |µ1|)

IxSβ → IβSx sin(π
2 C(|µ3|+ |µ2|)t) C(|µ3| + |µ2|)

I−Sβ → IβS− sin(π
2 C(|µ3|+ |µ2|)t) C(|µ3| + |µ2|)

Note: I− = Ix − iIy and Iβ = 1
2

− Iz. For the transfer I− → S−, the optimal values of a and b are

completely characterized by the two conditions a +2b = (|µ3|+ |µ2|+ |µ1|) t and tan(πCa) = 2 tan(πCb).

1

Khaneja, Kramer, Glaser (2005)
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(C1, C2)

(C3, C4, C5)

gate. The implementation, pulse sequence C5, proposed here
is still significantly shorter than this. The implementation
times under various strategies are summarized in Table I.

We now show how efficient implementation of trilinear
propagators can also be used for efficient construction of
other quantum gates like a controlled NOT !Toffoli" gate on
spin 3 conditioned on the state of spin 1 and 2 for the linear
spin chain architecture, cf. Table II. The decomposition given
in #21$ is based on four CNOT gates !requiring 0.5J−1 each"
between directly coupled qubits and two CNOT gates between
indirectly coupled qubits. Hence using a SWAP-based imple-
mentation of the CNOT!1,3" gates !pulse sequence C1", each
of which requires 3.5J−1, the total duration of the Toffoli gate
would be 9J−1 !Toffoli gate pulse sequence T1". With the
most efficient implementation of the CNOT!1,3" !gate pulse
sequence C5", each of which requires 1.253J−1, the decom-
position #21$ has a total duration of about 4.5J−1 !gate pulse
sequence T2". The Sleator-Weinfurter construction #20$ of
the Toffoli gate is based on two CNOT operations between
directly coupled qubits, two unitary operations which are lo-
cally equivalent to the evolution of the coupling between
directly coupled qubits, each of duration 0.25J−1 and one
unitary operator which is locally equivalent to %U13

=exp!−i !
4 2I1zI3z". A naive approach for synthesizing %U13 us-

ing SWAP operations has a duration of 3.25J−1, resulting in a
total duration of the Toffili gate of 4.75J−1 !gate pulse se-
quence T3". Based on the optimal synthesis of trilinear
propagators #9$ %U13 can be implemented in 4+%7

4J =1.66J−1

units of time #see Fig. 3!B"$. The main identity used is
%U13=exp!−i !

2 2I2zI3y"exp!−i !
4 4I1zI2zI3z"exp!i !

2 2I2zI3y". This
reduces the overall duration of the Sleator-Weinfurter con-
struction to 3.16J−1 !gate pulse sequence T4".

Here, we present even shorter implementations of the
Toffoli gate, the propagator of which is given by Utof f

=exp&−i!! 1
21− I1z"! 1

21− I2z"! 1
21+ I3x"'. Neglecting terms in

the Hamiltonian corresponding to multiples of the unit op-
erator 1 and to single spin operations !as these take negli-
gible time to synthesize", the effective Hamiltonian for the
Toffoli gate is locally equivalent to Htof f =

!
4 &2I1zI2z+2I2zI3x

+2I1zI3x+4I1zI2zI3x'. The synthesis of !
4 &2I1zI2z+2I2zI3x' is

achieved by evolution under the direct couplings for !4J"−1

units of time. In #9$, we showed that the time optimal syn-
thesis of the trilinear Hamiltonian !

4 4I1zI2zI3x takes
%7
4J units

of time #also see Eq. !16"$. The term exp!−i !
4 2I1zI3x" is lo-

cally equivalent to %U13=exp!−i !
4 2I1zI3z" which can be syn-

thesized in 4+%7
4J =1.66J−1 units of time, as discussed above

#see Fig. 3!B"$. This decomposition results in an overall time
for a Toffoli gate of 5+2%7

4J =2.573J−1 !gate pulse sequence
T5".

FIG. 4. Simulated !left" and experimental !right" 1H spectra
of the amino moiety of 15N acetamide with J12=−87.3 Hz, J23
=−88.8 Hz, and J13=2.9 Hz. Starting from thermal equilibrium, in
all experiments the state "A= I1x was prepared by saturating spins I2
and I3 and applying a 90y

° pulse to spin I1, where "A is the traceless
part of the density operator #18$. !A" Spectrum corresponding to
"A= I1x, !B" spectrum obtained after applying the propagator U13

=exp&−i !
2 2I1zI3z' to "A, !C" resulting spectrum after applying the

propagator %U13=exp&−i !
4 2I1zI3z' to "A, !D" spectrum after apply-

ing the Toffoli gate to "A.

TABLE I. Duration #C of various implementations of the
CNOT!1,3" gate.

Pulse sequence #C !units of J−1" Relative duration !%"

Sequence 1 !C1" 3.5 100
Sequence 2 !C2" 2.5 71.4
Sequence 3 !C3" 2.0 57.1
Sequence 4 !C4" 1.866 53.3
Sequence 5 !C5" 1.253 38.8

TABLE II. Duration #T of various implementations of the Tof-
foli gate.

Pulse sequence #T !units of J−1" Relative duration !%"

Sequence 1 !T1" 9.0 100
Sequence 2 !T2" 4.5 50
Sequence 3 !T3" 4.75 52.8
Sequence 4 !T4" 3.16 35.1
Sequence 5 !T5" 2.57 28.6
Sequence 6 !T6" 2.16 24.0
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interest are J12=−87.3 Hz!J23=−88.8 Hz!J13=2.9 Hz.
The actual pulse sequences implemented on the spectrometer
and further experimental details are given in the supplemen-
tary material.

The propagators of the constructed pulse sequences were
tested numerically and we also performed a large number of
experimental tests. For example, Fig. 4 shows a series of
simulated and experimental 1H spectra of the amino moiety
of 15N acetamide. In the simulations, the experimentally de-
termined coupling constants and resonance offsets of the
spins were taken into account. The various propagators were
calculated for the actually implemented pulse sequences
"given in the supplementary material# neglecting relaxation
effects. In the simulated spectra, a line broadening of 3.2 Hz
was applied in order to facilitate the comparison with the
experimental spectra. Starting at thermal equilibrium "in the
high-temperature limit#, the state !A= I1x can be conveniently
prepared by saturating spins I2 and I3 "i.e., by creating equal
populations of the states $000%, $001%, $010%, $001% and equal
populations of the states $100%, $101%, $110%, $101%, see Fig. 2#
and applying a 90y

° pulse to spin I1, where !A is the traceless
part of the density operator &18'. The resulting spectrum with
an absorptive in-phase signal of spin I1 is shown in Fig.
4"A#.

Application of the propagator U13=exp(−i "
2 2I1zI3z) to !A

results in the state !B=2I1yI3z. The corresponding spectrum
&18' shows dispersive signal of spin I1 in antiphase with
respect to spin I3, see Fig. 4"B#.

The propagator *U13=exp(−i "
4 2I1zI3z) transforms the pre-

pared state !A into !C= 1
*2 "I1x+2I1yI3z#, resulting in a super-

position of absorptive in-phase and dispersive antiphase sig-
nals of spin I1, see Fig. 4"C#.

The Toffoli gate applied to !A yields

!D =
1
*2

"I1x + 2I1xI2z + 2I1xI3x − 4I1xI2zI3x# . "20#

Only the first two terms in !D give rise to detectable signals.
The corresponding spectrum is a superposition of an absorp-
tive in-phase signal of spin I1 and an absorptive antiphase
signal of spin I1 with respect to spin I2, resulting in the
spectrum shown in Fig. 4"D#.

The effect of the CNOT"1,3# gate can be conveniently
demonstrated by using a two-dimensional experiment &26'.
Figure 5 shows the resulting two-dimensional spectrum of
the 15N multiplet "corresponding to spin I2# which reflects
the expected transformations of the spin states of I1 and I3
under the CNOT"1,3# operation.

V. CONCLUSION

In this paper, we have shown that problems of efficient
synthesis of couplings between indirectly coupled qubits can
be solved by reducing them to problems in geometry. We
have constructed efficient ways of synthesizing quantum
gates on a linear spin chain with Ising couplings including
CNOT and Toffoli operations. We showed significant savings
in time in implementing these quantum gates over state-of-
the-art methods. The mathematical methods presented here
are expected to have applications to broad areas of quantum
information technology. The quantum gate design metric
$dw$2

1−$w$2 defined on a open unit disk in a complex plane
could play an interesting role in the subject of quantum
information.

FIG. 7. "A# Broadband version
of the ideal *U13 sequence shown
in Fig. 3"B#, which is robust
with respect to frequency offsets
of the spins. Positive coupling
constants J12=J23=J#0 "with
J13=0# and hard spin-selective
pulses are assumed. The delay $
is *7/ "16mJ#=0.1654/ "mJ# and
the flip angle % is 3" / "8m# "cor-
responding to 67.5° /m#. "B# Ex-
perimentally implemented pulse
sequence synthesizing *U13 for
the spin system of 15N aceta-
mide with J"1H, 15N#!−88 Hz,
exp(−i"" /2#I1zI3z) for J"1H, 15N#
!−88 Hz with m=2, %=33.75°,
$=*7/ &16m $J"1H, 15N# $ '=939.5
&s, $1=1/ "4$'13#=806.5 &s,
and $2=1/ &2 $J"1H, 15N# $ '=5.68
ms.
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gate. The implementation, pulse sequence C5, proposed here
is still significantly shorter than this. The implementation
times under various strategies are summarized in Table I.

We now show how efficient implementation of trilinear
propagators can also be used for efficient construction of
other quantum gates like a controlled NOT !Toffoli" gate on
spin 3 conditioned on the state of spin 1 and 2 for the linear
spin chain architecture, cf. Table II. The decomposition given
in #21$ is based on four CNOT gates !requiring 0.5J−1 each"
between directly coupled qubits and two CNOT gates between
indirectly coupled qubits. Hence using a SWAP-based imple-
mentation of the CNOT!1,3" gates !pulse sequence C1", each
of which requires 3.5J−1, the total duration of the Toffoli gate
would be 9J−1 !Toffoli gate pulse sequence T1". With the
most efficient implementation of the CNOT!1,3" !gate pulse
sequence C5", each of which requires 1.253J−1, the decom-
position #21$ has a total duration of about 4.5J−1 !gate pulse
sequence T2". The Sleator-Weinfurter construction #20$ of
the Toffoli gate is based on two CNOT operations between
directly coupled qubits, two unitary operations which are lo-
cally equivalent to the evolution of the coupling between
directly coupled qubits, each of duration 0.25J−1 and one
unitary operator which is locally equivalent to %U13

=exp!−i !
4 2I1zI3z". A naive approach for synthesizing %U13 us-

ing SWAP operations has a duration of 3.25J−1, resulting in a
total duration of the Toffili gate of 4.75J−1 !gate pulse se-
quence T3". Based on the optimal synthesis of trilinear
propagators #9$ %U13 can be implemented in 4+%7

4J =1.66J−1

units of time #see Fig. 3!B"$. The main identity used is
%U13=exp!−i !

2 2I2zI3y"exp!−i !
4 4I1zI2zI3z"exp!i !

2 2I2zI3y". This
reduces the overall duration of the Sleator-Weinfurter con-
struction to 3.16J−1 !gate pulse sequence T4".

Here, we present even shorter implementations of the
Toffoli gate, the propagator of which is given by Utof f

=exp&−i!! 1
21− I1z"! 1

21− I2z"! 1
21+ I3x"'. Neglecting terms in

the Hamiltonian corresponding to multiples of the unit op-
erator 1 and to single spin operations !as these take negli-
gible time to synthesize", the effective Hamiltonian for the
Toffoli gate is locally equivalent to Htof f =

!
4 &2I1zI2z+2I2zI3x

+2I1zI3x+4I1zI2zI3x'. The synthesis of !
4 &2I1zI2z+2I2zI3x' is

achieved by evolution under the direct couplings for !4J"−1

units of time. In #9$, we showed that the time optimal syn-
thesis of the trilinear Hamiltonian !

4 4I1zI2zI3x takes
%7
4J units

of time #also see Eq. !16"$. The term exp!−i !
4 2I1zI3x" is lo-

cally equivalent to %U13=exp!−i !
4 2I1zI3z" which can be syn-

thesized in 4+%7
4J =1.66J−1 units of time, as discussed above

#see Fig. 3!B"$. This decomposition results in an overall time
for a Toffoli gate of 5+2%7

4J =2.573J−1 !gate pulse sequence
T5".

FIG. 4. Simulated !left" and experimental !right" 1H spectra
of the amino moiety of 15N acetamide with J12=−87.3 Hz, J23
=−88.8 Hz, and J13=2.9 Hz. Starting from thermal equilibrium, in
all experiments the state "A= I1x was prepared by saturating spins I2
and I3 and applying a 90y

° pulse to spin I1, where "A is the traceless
part of the density operator #18$. !A" Spectrum corresponding to
"A= I1x, !B" spectrum obtained after applying the propagator U13

=exp&−i !
2 2I1zI3z' to "A, !C" resulting spectrum after applying the

propagator %U13=exp&−i !
4 2I1zI3z' to "A, !D" spectrum after apply-

ing the Toffoli gate to "A.

TABLE I. Duration #C of various implementations of the
CNOT!1,3" gate.

Pulse sequence #C !units of J−1" Relative duration !%"

Sequence 1 !C1" 3.5 100
Sequence 2 !C2" 2.5 71.4
Sequence 3 !C3" 2.0 57.1
Sequence 4 !C4" 1.866 53.3
Sequence 5 !C5" 1.253 38.8

TABLE II. Duration #T of various implementations of the Tof-
foli gate.

Pulse sequence #T !units of J−1" Relative duration !%"

Sequence 1 !T1" 9.0 100
Sequence 2 !T2" 4.5 50
Sequence 3 !T3" 4.75 52.8
Sequence 4 !T4" 3.16 35.1
Sequence 5 !T5" 2.57 28.6
Sequence 6 !T6" 2.16 24.0
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gate. The implementation, pulse sequence C5, proposed here
is still significantly shorter than this. The implementation
times under various strategies are summarized in Table I.

We now show how efficient implementation of trilinear
propagators can also be used for efficient construction of
other quantum gates like a controlled NOT !Toffoli" gate on
spin 3 conditioned on the state of spin 1 and 2 for the linear
spin chain architecture, cf. Table II. The decomposition given
in #21$ is based on four CNOT gates !requiring 0.5J−1 each"
between directly coupled qubits and two CNOT gates between
indirectly coupled qubits. Hence using a SWAP-based imple-
mentation of the CNOT!1,3" gates !pulse sequence C1", each
of which requires 3.5J−1, the total duration of the Toffoli gate
would be 9J−1 !Toffoli gate pulse sequence T1". With the
most efficient implementation of the CNOT!1,3" !gate pulse
sequence C5", each of which requires 1.253J−1, the decom-
position #21$ has a total duration of about 4.5J−1 !gate pulse
sequence T2". The Sleator-Weinfurter construction #20$ of
the Toffoli gate is based on two CNOT operations between
directly coupled qubits, two unitary operations which are lo-
cally equivalent to the evolution of the coupling between
directly coupled qubits, each of duration 0.25J−1 and one
unitary operator which is locally equivalent to %U13

=exp!−i !
4 2I1zI3z". A naive approach for synthesizing %U13 us-

ing SWAP operations has a duration of 3.25J−1, resulting in a
total duration of the Toffili gate of 4.75J−1 !gate pulse se-
quence T3". Based on the optimal synthesis of trilinear
propagators #9$ %U13 can be implemented in 4+%7

4J =1.66J−1

units of time #see Fig. 3!B"$. The main identity used is
%U13=exp!−i !

2 2I2zI3y"exp!−i !
4 4I1zI2zI3z"exp!i !

2 2I2zI3y". This
reduces the overall duration of the Sleator-Weinfurter con-
struction to 3.16J−1 !gate pulse sequence T4".

Here, we present even shorter implementations of the
Toffoli gate, the propagator of which is given by Utof f

=exp&−i!! 1
21− I1z"! 1

21− I2z"! 1
21+ I3x"'. Neglecting terms in

the Hamiltonian corresponding to multiples of the unit op-
erator 1 and to single spin operations !as these take negli-
gible time to synthesize", the effective Hamiltonian for the
Toffoli gate is locally equivalent to Htof f =

!
4 &2I1zI2z+2I2zI3x

+2I1zI3x+4I1zI2zI3x'. The synthesis of !
4 &2I1zI2z+2I2zI3x' is

achieved by evolution under the direct couplings for !4J"−1

units of time. In #9$, we showed that the time optimal syn-
thesis of the trilinear Hamiltonian !

4 4I1zI2zI3x takes
%7
4J units

of time #also see Eq. !16"$. The term exp!−i !
4 2I1zI3x" is lo-

cally equivalent to %U13=exp!−i !
4 2I1zI3z" which can be syn-

thesized in 4+%7
4J =1.66J−1 units of time, as discussed above

#see Fig. 3!B"$. This decomposition results in an overall time
for a Toffoli gate of 5+2%7

4J =2.573J−1 !gate pulse sequence
T5".

FIG. 4. Simulated !left" and experimental !right" 1H spectra
of the amino moiety of 15N acetamide with J12=−87.3 Hz, J23
=−88.8 Hz, and J13=2.9 Hz. Starting from thermal equilibrium, in
all experiments the state "A= I1x was prepared by saturating spins I2
and I3 and applying a 90y

° pulse to spin I1, where "A is the traceless
part of the density operator #18$. !A" Spectrum corresponding to
"A= I1x, !B" spectrum obtained after applying the propagator U13

=exp&−i !
2 2I1zI3z' to "A, !C" resulting spectrum after applying the

propagator %U13=exp&−i !
4 2I1zI3z' to "A, !D" spectrum after apply-

ing the Toffoli gate to "A.

TABLE I. Duration #C of various implementations of the
CNOT!1,3" gate.

Pulse sequence #C !units of J−1" Relative duration !%"

Sequence 1 !C1" 3.5 100
Sequence 2 !C2" 2.5 71.4
Sequence 3 !C3" 2.0 57.1
Sequence 4 !C4" 1.866 53.3
Sequence 5 !C5" 1.253 38.8

TABLE II. Duration #T of various implementations of the Tof-
foli gate.

Pulse sequence #T !units of J−1" Relative duration !%"

Sequence 1 !T1" 9.0 100
Sequence 2 !T2" 4.5 50
Sequence 3 !T3" 4.75 52.8
Sequence 4 !T4" 3.16 35.1
Sequence 5 !T5" 2.57 28.6
Sequence 6 !T6" 2.16 24.0
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U13
s = exp!− i

!

2
"I1z + I3z + 2I1zI3z#$ , "4#

which is locally equivalent to the CNOT"1,3# operator but
symmetric in qubits 1 and 3.

For synthesizing U13
s , we seek to engineer a time varying

Hamiltonian that transforms the various quantum states in
the same way as U13

s does. The unitary transformation U13
s

transforms the operators I1" and I3" "with the indices "
! %x ,y&# to −2I1"I3z and −2I1zI3", respectively. Since U13

s

treats the operators I1x,1y and I3x,3y symmetrically, we seek to
construct the propagator U13

s by a time varying Hamiltonian
that only involves the evolution of Hamiltonian Hc and
single qubit operations on the second spin. The advantage of
restricting to only these two control actions is that it is then
sufficient to engineer a pulse sequence for steering just the
initial state I1x to its target operator −2I1xI3z. Other operators
in the space %I1" , I3# ,2I1"I3#& are then constrained to evolve
to their respective targets "as determined by the action of
U13

s #. Our approach can be broken down into the following
steps:

"I# In a first step, the problem of efficient transfer of I1x to
−2I1xI3z in the 63-dimensional operator space of three qubits
is reduced to a problem in the six-dimensional operator space
S, spanned by the set of operators I1x, 2I1yI2z, 2I1yI2x,
4I1yI2yI3z, 4I1yI2zI3z, and 2I1xI3z. "The numerical factors of 2
and 4 simplify the commutation relations among the opera-
tors.# The subspace S is the lowest dimensional subspace in
which the initial state I1x and the target state −2I1xI3z are
coupled by Hc and the single qubit operations on the second
spin.

"II# In a second step, the six-dimensional problem is de-
composed into two independent "but equivalent# four-
dimensional time optimal control problems.

"III# Finally, it is shown that the solution of these time
optimal control problems reduces to computing shortest
paths on a sphere under the modified metric g.

In step "I#, any operator in the six-dimensional subspace S
of the 63-dimensional operator space is represented by the
coordinates x= "x1 ,x2 ,x3 ,x4 ,x5 ,x6#, where the coordinates
are given by the following six expectation values: x1= 'I1x(,
x2= '2I1yI2z(, x3= '2I1yI2x(, x4= '4I1yI2yI3z(, x5= '4I1yI2zI3z(,
and x6=−'2I1xI3z(. In the presence of the coupling Hc, a
rotation of the second qubit around the y axes )affected by a
rf Hamiltonian HA=uA"t#!JI2y* couples the first four com-
ponents xA= "x1 ,x2 ,x3 ,x4#t of the vector x. In the presence of
Hc, a rotation around the x axes )affected by a rf Hamil-
tonian HB=uB"t#!JI2x* mixes the last four components xB
= "x3 ,x4 ,x5 ,x6#t of the vector x. Under x or y pulses applied
to the second qubit in the presence of Hc, the equations of
motion for the column vectors xA and xB have the same form:

dxA,B

dt
= !J+0 − 1 0 0

1 0 − uA,B 0

0 uA,B 0 − 1

0 0 1 0
,xA,B. "5#

Since evolution of xA and xB is equivalent, it motivates the
following sequence of transformations that treats the two

systems symmetrically and steers I1x )corresponding to xA
= "1,0 ,0 ,0#t* to −2I1xI3z )corresponding to xB= "0,0 ,0 ,1#t*:
"i# transformation from "1,0 ,0 ,0# to "0,x2! ,x3! , 1

-2
# in sub-

system A with -x2!
2+x3!

2= 1
-2 ; "ii# transformation from

"0,x2! ,x3! , 1
-2

# to "0,0 , 1
-2 , 1

-2
# in subsystem A )corresponding to

FIG. 3. Efficient pulse sequences based on sub-Riemannian geo-
desics for the implementation of U13=exp%−i !

2 2I1zI3z& "A#, -U13

=exp%−i !
4 2I1zI3z& "B#, simulating coupling evolution by angles !

2
"A# and !

4 "B# between indirectly coupled qubits, and of a Toffoli
gate "C#. Qubits I1, I2, and I3 are assumed to be on-resonance in
their respective rotating frames. Narrow and wide vertical bars cor-
respond to hard pulses with flip angles ! /2 and !, respectively, if
no other flip angle is indicated. Rotations around the z axis are
represented by dashed bars. The unitary operator U13, which is lo-
cally equivalent to the CNOT"1,3# gate, is synthesized by sequence
"A# in a total time TC

* =2$=1.253J−1. The amplitude of the weak
pulses "represented by gray boxes# with a duration of $=0.627J−1 is
%a=uJ /2=0.52J. The hard-pulse flip angles &=31.4° and "=180°
−&=148.6°. Sequence "B# of total duration "4+-7# /4J−1=1.66J−1

synthesizes the propagator -U13. The amplitude of the weak pulse
"gray box# with a duration of -7/4J−1=0.661J−1 is %w=3J /-7
=1.134J. Pulse sequence "C# realizes the Toffoli gate in a total time
"6+-7# /4J−1=2.16J−1. The sequence is based on the sequence for
-U13 and a weak pulse with the same amplitude and duration as in
sequence "B#.
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interest are J12=−87.3 Hz!J23=−88.8 Hz!J13=2.9 Hz.
The actual pulse sequences implemented on the spectrometer
and further experimental details are given in the supplemen-
tary material.

The propagators of the constructed pulse sequences were
tested numerically and we also performed a large number of
experimental tests. For example, Fig. 4 shows a series of
simulated and experimental 1H spectra of the amino moiety
of 15N acetamide. In the simulations, the experimentally de-
termined coupling constants and resonance offsets of the
spins were taken into account. The various propagators were
calculated for the actually implemented pulse sequences
"given in the supplementary material# neglecting relaxation
effects. In the simulated spectra, a line broadening of 3.2 Hz
was applied in order to facilitate the comparison with the
experimental spectra. Starting at thermal equilibrium "in the
high-temperature limit#, the state !A= I1x can be conveniently
prepared by saturating spins I2 and I3 "i.e., by creating equal
populations of the states $000%, $001%, $010%, $001% and equal
populations of the states $100%, $101%, $110%, $101%, see Fig. 2#
and applying a 90y

° pulse to spin I1, where !A is the traceless
part of the density operator &18'. The resulting spectrum with
an absorptive in-phase signal of spin I1 is shown in Fig.
4"A#.

Application of the propagator U13=exp(−i "
2 2I1zI3z) to !A

results in the state !B=2I1yI3z. The corresponding spectrum
&18' shows dispersive signal of spin I1 in antiphase with
respect to spin I3, see Fig. 4"B#.

The propagator *U13=exp(−i "
4 2I1zI3z) transforms the pre-

pared state !A into !C= 1
*2 "I1x+2I1yI3z#, resulting in a super-

position of absorptive in-phase and dispersive antiphase sig-
nals of spin I1, see Fig. 4"C#.

The Toffoli gate applied to !A yields

!D =
1
*2

"I1x + 2I1xI2z + 2I1xI3x − 4I1xI2zI3x# . "20#

Only the first two terms in !D give rise to detectable signals.
The corresponding spectrum is a superposition of an absorp-
tive in-phase signal of spin I1 and an absorptive antiphase
signal of spin I1 with respect to spin I2, resulting in the
spectrum shown in Fig. 4"D#.

The effect of the CNOT"1,3# gate can be conveniently
demonstrated by using a two-dimensional experiment &26'.
Figure 5 shows the resulting two-dimensional spectrum of
the 15N multiplet "corresponding to spin I2# which reflects
the expected transformations of the spin states of I1 and I3
under the CNOT"1,3# operation.

V. CONCLUSION

In this paper, we have shown that problems of efficient
synthesis of couplings between indirectly coupled qubits can
be solved by reducing them to problems in geometry. We
have constructed efficient ways of synthesizing quantum
gates on a linear spin chain with Ising couplings including
CNOT and Toffoli operations. We showed significant savings
in time in implementing these quantum gates over state-of-
the-art methods. The mathematical methods presented here
are expected to have applications to broad areas of quantum
information technology. The quantum gate design metric
$dw$2

1−$w$2 defined on a open unit disk in a complex plane
could play an interesting role in the subject of quantum
information.

FIG. 7. "A# Broadband version
of the ideal *U13 sequence shown
in Fig. 3"B#, which is robust
with respect to frequency offsets
of the spins. Positive coupling
constants J12=J23=J#0 "with
J13=0# and hard spin-selective
pulses are assumed. The delay $
is *7/ "16mJ#=0.1654/ "mJ# and
the flip angle % is 3" / "8m# "cor-
responding to 67.5° /m#. "B# Ex-
perimentally implemented pulse
sequence synthesizing *U13 for
the spin system of 15N aceta-
mide with J"1H, 15N#!−88 Hz,
exp(−i"" /2#I1zI3z) for J"1H, 15N#
!−88 Hz with m=2, %=33.75°,
$=*7/ &16m $J"1H, 15N# $ '=939.5
&s, $1=1/ "4$'13#=806.5 &s,
and $2=1/ &2 $J"1H, 15N# $ '=5.68
ms.
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solutions for general chains



Challenges for biological applications

- offset compensation

- experimental imperfections

- homonuclear couplings

- branched coupling networks

N     C    C    N    C    C

 

        H           H    C    H

H HO OH H
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analytical
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numerical
tools
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u (t)

k

k u (t) + (t)k

GRAPE (Gradient Ascent Pulse Engineering) 

[-i H  , (t)]k

Khaneja, Reiss, Kehlet, Schulte-Herbrüggen, Glaser, J. Magn. Reson. 172, 296-305 (2005)

desired transfer: 

(0) = A

0 T

CA

(T) = C

Cperformance: (T)



GRAPE (Gradient ascent pulse engineering)

Khaneja, Reiss, Schulte-Herbrüggen, Glaser (2005)

Schulte-Herbrüggen, Spörl, Khaneja, Glaser (2006)



theoretical limit

OCT-based numerical
optimization

Numerical OCT-based Algorithm finds theoretical ROPE limits

0 0.2 0.4
T/J

η

0

0.2

0.4

-1

(GRAPE)

relaxation-optimized coherence transfer
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ROPE Pulse Sequence (finite time T)

Khaneja et al., J. Magn. Reson.162, 311 (2003)



Khaneja, Reiss, Luy, Glaser (2003)
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Polarization transfer in homonuclear three spin systems

J
1 2

3

12

J13 J23

isotropic (Heisenberg) couplings

2!J   (I   I   + I   I   + I   I  )mx nx my ny mz nzmn

idealized setting:  fast, selective pulses (six control amplitudes)

u   1x

u   1y

u   2x

u   2y

u   3x u   3y
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Optimized controls (radio frequency amplitudes)

Neves et al. (2006)
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Transfer efficiency as a function of relative 

coupling constants  J   /J     and  J   /J    
13 12 23 12



Transfer efficiency as a function of relative 

coupling constants  J   /J     and  J   /J    
13 12 23 12

OC

TOCSY



Remark: The conventional (so-called TOCSY) experiment is equivalent
to the transfer of energy between three coupled pendulums,

see

R. Marx, S. J. Glaser,
”Spins Swing Like Pendulums Do: An Exact Classical Model for 
TOCSY Transfer in Systems of Three Isotropically Coupled Spins 1/2”, 
J. Magn. Reson. 164, 338-342 (2003).



Polarization transfer in homonuclear three spin systems

isotropic (Heisenberg) couplings

2!J   (I   I   + I   I   + I   I  )mx nx my ny mz nzmn

idealized control:  fast, selective pulses (six control amplitudes)

   {u   (t) I   + u   (t) I    }mx mymx

"
m<n

"
m=1

3

2! my

realistic control:  non-selective pulses (two control amplitudes)

I   + mxu (t) "
m=1

3

2! x I   myu (t) "
m=1

3

2! y

and (constant) offset terms    #   I mzmz"
m=1

3

2! mz



Homonuclear three spin model system:   C labelled alanine

1 2

3

13

-1.6 Hz

33.7 Hz 59.6 Hz

C C’

C!

"

-4.9 kHz 4.9 kHz

-2.8 kHz

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

# [ms]

T12

TOP curve (6 controls)

TOP curve (2 controls)

robust control (simulation)

robust control (experiment)

DIPSI-2

Shaka, Lee, Pines (1988)
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Conventional TOCSY sequence, e.g. DIPSI-2

Robust phase-modulated polarization transfer sequences:
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Shaka et al. (1988)

Neves et al. (2006)
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Low power heteronuclear decoupling

J. L. Neves, B. Heitmann, N. Khaneja, S. J. Glaser, submitted (2009)



J. L. Neves, B. Heitmann, N. Khaneja, S. J. Glaser, submitted (2009)

Low power heteronuclear decoupling
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Fig. 1



Low power heteronuclear decoupling
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J. L. Neves, B. Heitmann, N. Khaneja, S. J. Glaser, submitted (2009)

nominal rf amplitude: 400 Hz



Low power heteronuclear decoupling
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Low power heteronuclear decoupling
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Low power heteronuclear decoupling
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