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representation these radiatively induced distortions creating TIIE 5 as discussed abowve lead
to bord sofieming wvia laser-induced avoided crossing of molecular potentials [26-27F]. At =such
intensities, one needs to consider further 1icomization and the remaining molecular 1on potentials
becorme TLIMWE = 11 the presence of intense laser pulses. The molecular 1ons, bound or
dissociative can also undergoe Abowe Threshold Dissociation, AT, [20], [26-27].

Schwinger limit ~ 10**29 W/cm2)



electric field E(t) / E, and its envelope

x % cos(ot)

time (cycles)

time (cycles)

1 cycle =2.66 fs
for A= 800 nm

E(t)=¢,(t) cos(awt + D)

F Krausz, Science 305,1267(2004
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Fig. 2.2 The complete set of eight diagrams for the eight terms in p®(w = &, + w,).
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Complex integration steps in decomposition of quantum
exponential evolution operators
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Absiract

We generalize previous high-order exponential split operator methods for solving time-dependent Schroedinger equations [A.D. Ban-
drauk, H. Shen, Chem. Phys_Lett. 176(1991) 428] by introducing complex integration steps (a + 1b) with real positive part a. We show that
this new procedure avoids real negative steps which occur generally in high-order split operator methods. New highly accurate splitting

schemes are thus derived and the efficiency of these is demonstrated in the calculation of the eigenstates of the one-electron molecular ion H .
@ 2005 Elsevier B.V. All rights reserved.




The 1-D electron TDSE 1n atomic umts, auw (e=h =
m=1) 1s wrilten as

Our(x, i e .
W) [ 18yl - urawed, o

where 4 = — I B= }{x). For time independent poten-
t1als, the solution 18

Wt 4 Ar) = 4By (x 1), A= —iAr, (3)
= _S{i}lﬁf{r E}‘.

whereas lor time-dependent F(x,f) one must mtroduce
time-ordering operators [3] A symmetric fourth-order
accurate decomposition of §=exp[id(4 + B)], 5; 1s ob-
tained as a product of three second-order 5> (Eq. (1)) oper-
ators with time steps y4 and (1 — 29)4, [2]
S8 — VB2 grid G1-1)iB[2 o(1-29)14 o (1-1)AB/2 G1id 51382 (4)
Permuting 4 with B gives another [ourth-order operator
§,. Both involve seven exponential operators with three
kinetic energy terms, 4 = T in S but four such terms in
S4. The accuracy ol this decomposition is obtained from
o

§—80 = ;—4[,4 2B, ][4+ B]J(29 + (1 =29)") 4 %
% (39 — 6" + 3y — 1/2)[-24%[4, B]
~ A[4,B]B.. ]+ O(F). (5)
Cancellation of corrections of O(4) and O(4*) occur
simultaneously for real values of y=(2 — 2'”]“'., thus

ensuring lourth-order accuracy. Recently followmg Suzu-
ki's work [9], Chin has also obtained fourth-order accuracy



We note that 5, a seven exponential operator, Eq. (3)
can be written as

Srf z5 E?L?,-'IE;.'.E..-! E;.-'.J_E "Erl—_,.].-u..d .J_E.-'IE*,.'.L-! E;.-.J_B,-'I + D{AE}
.II’ — 1 —_ -]'1 }l rmar. {2 - 2“3}_1. {5}

Based on this observation we construct a new live expo-
nential third-order operator Sf, (exchanging 4 with B gives
57)

Sf == E;.IE_B,-’IE;'.F_A EF_B,-'IE;"F_A E:".‘w"II, {?}
G Nl s 1 o1 i
5 —5; =E{—3? +3r—1) E[H‘H]"EJ_EH" [4,B]] | +O(1").

(8)

The O(4%) error is cancelled by choosing 7 = —{I:i:
i/v3).

Itisto be noted that the new S5, Eq. (7) with y = a £ ib,
a=xb= _»f" can be wrilten ﬂ,luwalenl_ly as the product of
two 83's with complex 7's,

Srf - 'I:E .J_E_-'..E;.-.J_d E:.-.J_E'.-'.. {t“:" AB[2 o A4 " A 1}1 {g}
= 83 (7) = 85 (") + O(4%), (10)

gince y + y* = 1.

Egs. (6) and (10) bring out the central role of the second-
order operators §5 = efet el g — gt "M which
are second-order accurate (O(4)) as in Eq. (1) with y =1
We show next that as suggested by Egs. (7) and (10), com-
binations of these 55's with complex y =a £ 1b, and a > 0,
gives new high-order evolution operators.
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Hy (X'z,%): 1=3x10"*W/cm?, 2.=800nm, T = 6 cycles
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NEW TECHNIQUE: LIED
LASER INDUCED ELECTRON DIFFRACTION

T.Zuo, A.D. Bandrauk, and P.B. Corkum, s L
Chem. Phys. Lett. , 313 (1996). H, ina8- pulse (attosecond) 1as=101®

E(t) = F5(0)

o) = b1, (6 + F)

T B
2008|_(I3 +F) e %]4’1:. (+F)

-ci - o
@D 4 FLR o(p) = 2008[22—] ¢15 (F + p)
e
_ 2mm : _@Cm+hn
axatp = R exh min at p R cos 6
| FR il ~a a
@ F|R o(p) = 2003i_—2‘ (H pc;s ) b1s F + p)

2mn

large p: (FR + pRcos6) — G+
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P. B. Corkum, PRL,
71,1994 (1993).

T. Zuo and A. D. Bandrauk,
PRA, 52, R2511 (1995).




Nucﬂearfuswnfmm explosions
of femtosecond laser-heated
deuterium clusters

L Qitmire' J, Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays
& K. B, Wharton

Laser Program, 1.-477, Lawrence Livermore National Laboratery, Livermore
California 94550, USA

Asaformof matter intermediate between molecules and bulk solids,
atomicclustershave been much studied'. Light-induced processes in
clusters can lead to photo-fragmentation™ and Coulombic fission’,
producing atom and ion fragments with a few electronvolts (cV) of
energy. However, recent studies of the photoionization of atomic

NATURE|VOL 398{8 APRIL 1999 wwwe.nature.con
[____——= s ")

cluster) arc ionized, electrons undergo rapid collisional heating

for the short time (<1 ps) before the cluster disassembles in the laser
field"”, Through various collective and nonlinear processes, the laser
rapidly heats the clectrons to a non-equilibrium state (with mean

Fusion events between
ions from nea:by clusters

gas jet

plasm
)amenl cluslus

\ \
USCG|uS(flﬂ
H h‘"""--..

™ focal spot = 100

; length ~2mm
| Exploding,
. lase, healed
clusters

Laser focal diameter

Figure 1 Layout of the deuternium cluster fusion experiment,
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A.D. Bandrauk and H.S. Nguyen, Phys. Rev. A 66, 031401 (2002)



Step 1: get spectrum
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Sipi - seiect frequency region between @ <0<
Step3: come back to time domain

@3
. i
a(t) = Ia(a))e dw
),
Ao = o, — o, .
1
7 [] —— — attosecond = 3 Angstroms(10**-8cm) / ¢(3x10**10cm/s-1))
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Frequency-up conversion, 1st -->3rd harmonics
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Effect of Nuclear Motion on Molecular High-order Harmonics

and on Generation of Attosecond Pulses in Intense Laser Pulses

André D. Bandrauk, Szczepan Chelkowski, Shinnosuke Kawai, and Huizhong Lu
Département de Chimie, Université de Sherbrooke, Sherbrooke, Qc, JIK 2R1 Canada

Abstract
We calculate harmonic spectra and shapes of attosecond pulse trains using numerical solutions
of Non-Born Oppenheimer time-dependent Shrodinger equation for 1-D Hs molecules in an intense
laser pulse. A very strong signature of nuclear motion is seen in the time profiles of high order
harmonics. In general the miclear motion shortens the part of the attosecond pulse train originating
from the first electron contribution but it may enhance the second electron contribution for longer

pulses. The shape of time profiles of harmonics can thus be used for monitoring the nuclear motion.

PACS mumbers: 42.65.Ky, 42.65.Re, 42.50.Hz, 32.80.Rm

Phys Rev Lett( 2008,)101,153901
J Phys B —to appear 2009



La dynamique de 4-particules: . ‘
ptpte +e décrite par I’éq. de @ A‘_‘@
Schrodinger solutionne€ numé- R Z, D

. P
riquement
pour une molecule H,

éxposee au champ laser intense decrit par : E(t)=¢(t) cos(w,t)

(polarisation linéaire)
aln e=h=m.=1)

(=1, 20, R, 1)
i -

v = [He -+ Hﬂ,‘r + EFI:“]_ Za, f:']i.‘[“'l Z9, R, .” ':J-)
i
218 1 1
¢
H = [__ a0 b ey N f ]+-{F (ﬂ:].'“:-'..:l I::EII
© " 2 022 [z + R2P + V2 [z — R/2)? 4 ]2 i
1 1 o? 1
Viep(71, 72) = - 5 =t (8
) S g N T et Y
Vi(z, 2. 1) = (21 4 22)e(t) cos(wp t) (4)

d(t)=<z,+2,>= [ dz, [ dz, [dR v (V) (z,%2,) y(t)
—00 -00 0



1 cycle=110.32 a.u

25
Hz t=0

static t=1 cycle

-10.0 A moving

N
o
1

t=1.5 cycle

-
a
[l

- 1 -
10-5 / X t=2cycle

\
"
X

7\ )

-11.0 - 1.0

probability (R,t)

-11.5 -

log,, power spectrum

N
N
o

70 80 90 100

N

o
o 4
o

1
—_—
—_—

static

N
N

&
probability (R,t)

log,, power spectrum

moying . i

AN
~

130 135 140 145 150 155

4

harmonic order



harmonic order

Analyse en temps-frequence =d.(t,m) = j dt' G(t,t") exp(-iwt) d(t)
de Gabor (ondelettes): o

n 2
G(t-t') = expl- (;'t) 1, 6,=0.1fs

2
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A numerical Maxwell-Schrédinger model for intense laser—matter interaction and propagation
E. Lorin2 2 - .- ' S. Chelkowskic¢ and A. Bandraukd

aCentre de Recherche en Mathématiques de Montréal, University of Montréal, Canada

bUniversity of Ontario, Institute of Technology, Oshawa, Canada

cUniversité de Sherbrooke, laboratoire de chimie théorique, Canada
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Montréal, Canada Research Chair, Canada
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Coupling of macroscopic Maxwell's equations with many TDSE's.

Lorin, Chelkowski, Bandrauk, Comput. Phys. Comm. vol. 177 (2007)

[ 9:B(r, t) = —V xE(r,t)
O:E(r, t) = V x B(r,t) — 4m0:P(r, t)
V. B(r,t) = 0
V - (E(r, t) + P(r, t)) = 0
{
Plr.t) —n(r] Y 7 Pilr,t) = nlr) Y7 xelr) fsaviry
AW,
i0:i(r, t) == Vi +r' - B + Ve,

| Vie{l,...,m}



The numerical model is the one presented in [19], where the gas domain 1s divided m small
cells of gas denoted by Av (corresponding the (1;’s of Section 2) and in which we solve 1
TDSE, representing the nAv molecules of the cell. In practice 3d Maxwell's equations are
solved in parallel with ~ 140,000 1d TDSE's, see Fig. 5 and [17]. We then represent at
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Figure 5: Numerical geometry



Beyond the paraxial & SVEA approximation

Under the paraxial and SVEA approximation equation on
E(x,y.z. t)=E&[x v.z, t)ei(kz_w”e}, with £ the envelope Bergé et al.
Physica D, 176 (2003), Couairon, Mysyrovicz, Phys. Report 441 (2007).

2 & iko -

B - l % = -8 ™ ¥
(L& — ﬂL:ﬁ =1 1k{}ﬂ2 El"¢ — PC -‘.’_')trr'ﬁ — OK n‘_‘.f‘ZKfjatm
2k 2Ng e

@ K the number of photons in multi-photon ionization,
K =< U;/hwo + 1 > (U; ionization potential of the medium)

@ 0y the coefficient of the multi-photon ionization rate

@ p5tm the neutral atom density

Focusing and defocusing effects clearly identified numerically and
thEGrEtiCa”y for |C}ng pUISES (Bergé, Couairon, Ginibre, Fibich, Sulem, etc) ‘



Numerical data

Numerical data
@ ~ 140,000 1D TDSE's solved in parallel

@ 3D Maxwell's equations

@ ~ 30h on 128 processors of mammouth (RQCHP) vLerin. Bandrauk.
IEEE proceed. (2008) Ve represent at time different times t, the
transversal cut of the pulse at zx such that |Ey(0,0.z, ty)| is
maximal at zx on (Oz). In other words

We represent transversal cuts of the beam

@ At ty fixed, we denote |E, | = max; |E,(0,0,z, tx)| the
maximal value on the (Oz) axis reached in z

@ We draw E,(x.0.zk. tk)|/|Ey|o in order to have normalized
graphs to compare with vacuum



Results | - | ~ 2 x 10"®W-cm~2, ng ~ 3 x 10®°mol-cm™3

Figure: |E,|? - 4.5um after the waist in vacuum and gas
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Improvement of the model | - microscopic approach

Anﬂther apprC}aCh iS prESE‘ntEd in Lorin, Bandrauk, Chelkowski, Num. Methods for Partial
Diff. Eq.. (2008). A method to transmit free electron from a molecule to
another. Based on a particular choice of boundary conditions

(Volkov)

& —&- WF Indomain =
___ WF indomain o
A __ mmswE e
_ _ Inmtal WF i,

WOLKOW B.C. WO B.C.

Figure: Free electron transmission
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Science and technology

Attosecond science

The fast show

Extremely short laser pulses can lluminare elecirons in motion

M THE atomic scale, things maove

mind-hogalingly quickly. Elecirons
jump betweenorhits or escape the nudeuns
altogether in antoseconds—that is, million,
million, millionths of a second. [ndeed,
one attosecond is to one s2cond what one
second is to the age of the tniverse. Seeing
such zcrobatics fakes wit and inpenuity,
bt it is possible. Moreover, if such pro-
cesges could be manipulared—and the
cary signs are that they can be—then it
would have applicaticns in fAelds as far
apartas computing and medicine.

A report just drafted by America’s Na
tional Research Council, “Controlling the
Quantum World", ontlines how scientists
might manipulate the inner warking: of &
modecule. 4 long-term workshop ar the
Kavli Institute ‘or Theozetical Physics, part
of the University of California, Santa Bar-
bara, is also imvestigating how this mignt
be achievec. And, at a conference held re-
cently at the institute, Ferenc Krausz of the
Max Flanck Institute of Quantum Optizy
m Garching, Germany, and Mar: Vrakking
of the FoM Institute for Atomic and Mo-
kecular Physics in Amsterdam described
ong way thetitcould be done.

Lasers wors by creating a chain reac-
tion in which photons of light prompt the
generation of further photons, These pho-
1ons are emitted in bursts, Shorteningeach
burst sufficiently is what makes ato-

tacond science possible. The two research-
ers employed what they call "high har-
monic pulse peneration” to creace pulsesa
few hundred attesecords long, They did
this by using a laser that emits skort pulses
of Light o drive a second laser that then
emits even shorter pulses. In fact, the
pulses are so rapid that they come dose o
the limit imposed by Heisenberg's famous
uncerteinty principle, which states that
the precision of a time measurement is
limaited by the precision of a correspond-
ing cnergy measurcment,

Atto boys

Dr Erausz and Dir Viekking fired their laser
at a molacule of deuterium. Deuterium,
also knownasheavy hydmgen, is asimple
molecule, consistng of two atomic nuclei
and two electrons. The sample under in-
vestigation became positively charged be-
cause zapping it with the laser removed
one of the electrens The rmescarchers
found that the molecule then separated
nto a deuterivm atom, consisting of 4 no-
cleus and an electron, and a deaterium
fon, consisting of a nucleus.

Using comventional laser pulses cuases
atoms and jons to ke ejected to the sighe
and left at random. Using ultrafast laser
pulscs, though, meakes the atoms fly off to
ihe right and the ions to the left, The 1o
searchers were thus abla, in affect, to con-

The Econamist September 2nd 2006
Alsoin tI'Es SE{-'I._'i-I:I_EI — e
72 Megative databoses

72 Supernovas

73 Gena !hﬂl‘!pﬁ' ard cancer

73 The virtues of cider

ol on which of the teee deurerium amnms
e I-.'II‘.I.:IIIIII :r.i:u!u:\ al e end of their ex
periment. That is to say, l]‘!r‘y kad sepa
rated the atoms from the foms.

Exactly how this worle s cl.:nmph-
cated—nol least because all of the aiomse
aré interacting simulaneously swith the ls-
ser anil with each nther. But the research-
ers think thatthe laser pushesthe eleciron,
which initizlly binds the two atoms fo-
gether, back and forth between the two
ions untl, al some point, the distance be-
tween the tao gets too large and it {5 no
lenger able to jump from ong to the other,

The abtlity to manipulate electrons in
this way is important because electron-
sharing 15 essential o chemical bonding,
Ultafast lasers could thus be used
change the cutcome of chemical reactions.
Proponents ponl te possible applicativos
in magnetic information-storage devices,
which would leas tomuch mare powerfal
computers. Other possibilities inchade the
development of compact, portable x-ray
lasers for medical imaging that needs o be
done outside nospital radicdogy depart-
ments, and bright ulrafast x-ray lasers for
usewithin those departments,

The motion of elecirons @ the funda-
mental basis of chemistey, Watching the
stepsin the dance of the electrons will help
chemists work out why some atoms bind
when others do no, why reactions take
the tirne that they do, ard why seme mols-
cules bend one way and nol the other.
Brighter ¥X-ray lasars could also be used 10
revedl the ammic dewails of chemical cacal-
ysis or the way that light enegy i al-
sorbed and stored during phetesynthesis,
according to the Natioral Research Coun-
cil report Knowir g oxacthy how to cupture
sunlight and turn it inte chemizal energy
waulc hea ;|T:i:|~:in|]m~.|:|. [ |
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FIG. 53. (Color) Proposal for inducing attosecond electron
wave-packet dynamics by a 0.8-fs, 115-nm VUV pump pulse in
H," and probing it with a time-delayed 0.1-fs, 20-nm XUV
pulse (Bandrauk ef al., 2004). Both pulses are polarized parallel
to the molecular axis. (a) Contour plot of the electron prob-
ability distribution along the molecular axis for an internuclear
distance of eight atomic units vs pump-probe delay. (b) Asym-
metry factor (P_—P.)/(P_+ P,) vs delay, where P, and P_ rep-
resent the probability of observing the electron liberated by
the XUV probe in the positive or negative direction (along the
molecular axis), respectively. Adapted from Bandrauk ef al,
2004.
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FIG. 54. (Color) Computed ultrafast positive charge (hole) mi-
gration in a tryptophane-terminated tetrapeptide (Remacle
and Levine, 2006a, 2007). {a) The hole density shown in red
indicates that the charge swings across the entire peptide from
the aromatic amino acid on the left to the N end on the right
within less than one femtosecond, following excitation of the
electronic wave packet on an attosecond time scale. This hy-
perfast charge migration is proposed to be probed by measur-
ing the kinetic energy distribution of photoelectrons released
by a time-delayed sub-fs XUV pulse. (b) A series of such
freeze-frame spectra calculated for a 250-as, 95-eV probe pulse
at different pump-probe delavs. From Remacle and lLevine

Rev Mod Phys (feb 2009)



To exploit attosecond technology FP1

Measuring electron wave packets

1. Attosecond pulses are fast enough to observe
electron wave packets.

2. Electron wave packets are resolved
through changes to the photo-
electron spectrum as a function of
pump-probe time delay.

3. The attosecond pulse projects the
momentum distribution into the
continuum.

-08 -06 04 -02 00 02 04 06
(b) P, (a.u.)

Yudin et al, Phys Rev A 72, 51401(R) (2005)

J. Phys. B39, S409 (2006)



Atom: I1s+2p and ¢ Is+* "2p in H,*
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Experimental asymmetries (Garching).
F. Lindner, Ph.D. Thesis.

2=760 nm, 'cp=5 fs .

Theory: Ty ™ 5 fs,

P 1=4.8x10"> W/cm? |
1=3.1x10"% W/cm? (exp.)
A= 800 nm i
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Phys. Rev. A, 70, 013815 (2004)
*Opt. Lett. 29, 1557 (2004)



To exploit attosecond technology FP1

Chirped pulses (formed naturally with attosecond pulse
technology) are as effective as transform limited
pulses of the same bandwidth.

Eis a
A paramete
010 A r

i r; -E| I ] rl .
. ' %oy measurin
008 ;=—ﬁ\(hr.5 )
- Yol gthe
0.06 4 A P EI .
- , 11, chirp)

1 E' - ?}\?\‘<h. ":" ioai
0.04 " | '

.02

O 15_25

1. With a chirped pulse,
all dynamic
Information is gained
with only a single
pump-probe time
delay

Photoelectron spectrum [ AE 1

0.00 -

Momentum [a. u.]

Yudin et al., Phys. Rev. Lett. 96, 063002 (2006)



Attosecond photoionization of a coherent
superposition of bound and dissociative
molecular states: effect of nuclear motion

André D. Bandrauk,

with S.Chelkowski, G.L. Yudin,

P.B. Corkum (Ottawa),
J. Manz (Berlin)
to appear J Phys B 2009
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We solved the TDSE for a series of delays: t;,=0.5fs +k T,/8,
k=0,1,.. T1=27t/o)p . We calculated the forward and backward)
PRA 57 1176( 13&8toelectron spectra S(p) T1/8=0.46 {s



normalized asymmetry
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probabilities

V=0 on Wave packet motion induced
% probabilities for H,’ by the pump shown below:
11
3 fs
0.1 1
: : : \ :
20 25 30 35 40 45
00 05 10 15 20 25
V=0 on probabilities for T, time (fs)
c
1" We show the initial v=0 vibrational
state and the dissociating packets
on G,
01 Conclusion: at £3 {s (t > 1.51s
we loose the overlap in H," - This

20 25 30 35 40 45  agrees with the attenuation seen

R (a.u.) in the previous slide
Decoherence ?: see Zurek, PRD 47,488(1993)



RECOLLISION OF d° WITH A pnd ATOM INITIATED
BY A SUPER-INTENSE LASER

3 UP Recollision energy=

1.40 MeV
d* y d”
XT =0.9 A

.
>

ELECTRIC FIELD E(t) OF THE LASER

A =800 nm
THUS THE LASER CAN INITIATE

A NUCLEAR REACTION ,e.g: | -3 x10 22 W/cm?

d+d — n (2.45 MeV)+ He (0.82 Mev)
or

d+t — n (14.1 MeV)+*He (3.5 MeV)



POTENTIALS OF d-p—d IN DC ELECTRIC FIELD
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d-u-d molecule dissociating in deuterium returns back !
200 nm, 1=10%* W/cm® laser field >
probability for R<0.25 u un. (1 u un.=0,0026 Angstrom) : E~1/2 MeV
26 X 10 14 m) -

\

| T T T T T T T T T T T /l

= 460 asec:

i = At~1018S
i l‘l il | =attosecond
T ! '
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PRL 93,083602(2004)



Mathematical Problems

. Multiscale time frequency analysis
. Infinite D Optimal Control theory

. Relativistic QM
. Molecular movies

(Dynamic Imaging of Electrons-Nuclei)
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During the last 20 years, biomedical and biomolecular imaging have played an increasing role as it
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ACS MEETING NEWS

Tracking Electrons

Attosecond science opens the door to real-time observation and control of electron
dynamics

Jyllian Kemsley

TEN YEARS AGO, Ahmed H. Zewail won the Nobel Prize for
using femtosecond spectroscopy to study atomic motions during
chemical reactions. Emerging now from Zewail's pioneering work §
Is the abilty to use femtosecond laser pulses to monitor
attosecond-scale electron dynamics, which was the focus of a
Divison of Physical Chemistry symposium on  attosecond
science at the American Chemical Society national meeting in
Salt Lake City last month.

"There's a whole class of processes associated with electron ’
dynamics that occur at a femtosecond timescale or less)” Gary Larson © 2004
Daniel M. Neumark, a chemistry professor at the University of U.ITTRAF‘F‘ETAEWDHE.”DME'“S  Loeued

> : _ Ti:sapphire laser amplifier crystal that is used
California, Berkeley, said at the meeting. "These are electron tg generate high-power femtosecond pulses
dynamics processes that don't require nuclear motion. To probe for attosecond experiments.

them you need attosecond-scale pulses.”




structure and dynamics in the microcosm

microscopy, diffraction
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Quantum mechanics for plants

Graham R. Fleming and Gregory D. Scholes

To what extent do photosynthetic organisms uase quantum mechanics
to optimize the capture and distribution of light? Answers are emerging
from the examination of energy transfer at the submolecular scale.

¢ first law of photosynthetic eco-
I nomics is: “A photon saved is a
photon earned” Research into the
factors behind this principle has been
burgeoning, and has recently culminated in
a paper in Physical Review Letters by lang et
alt in which the authors look at photosyn-
thetic energy transfer at the quantum level.
Plantsuse solar antennae to captare inci-
dent photons and transmit the excitation
energy to reaction centres, where it is used
to initiate the primary electron transfer
reacticns of photosynthesis. These antennae
are one of nature’s supreme examples of
nannscale engineering, and are constructed
from specialized light-har vesting complexes
formed of proteins that bind chlorophylls
and carotenoids. Photon collection imvalves
up to several hundred light-absorbing
molecules, or chromophores. Hundreds of
energy-transter steps over a hierarchy of
time scales and distances, which often ocour
with near-perfect efficiency”, are therefore
required to collect and trap solarenergy.
More than 50 vears ago, Theodore Férster
described a method for calculating the rate of
energy transfer between moleaules from the
overlap of the donor molenale’s fluorescence
spectrum  and  the acceptor molecule’s
absorpton spectrum™®, The theory has had
an enormous impact on biclogy, chemistry
and physics. Callectively, high-resalution
structural models, ultrafast spectroscopyand
quantum chemical caloulations have helped
to expose the complex and, in some cases,
subtle relationships between structure and
light-harvesting in photosmthetic systems.
Indeed, it has turned out that there are onlya

256

few cases in which the energy transfer within
photosynthetic light-harvesting complexes
can be correctly characterized by comven-
tional Frster theory. Moreover, the realiza-
tion that the concepts eluddated during the
study of light-harvesting proteins are general

chromophaori cassemblies,

To understand the dwnamics of light-
harvesting and light-trapping in photosyn-
thesis, certain design features must be taken
into account. For example, the distances
between themolecules are often smaller than
the overall size of each molecule. In this con-
fined geametry, energy transter is governed
b how the donor ‘sees’ the acceptor on the
submalecular scale at which the fine differ-
ences in the shape of the wavetunctions
between the ground and excited states at the
donor—acceptor unction become signifi-
cant (Fig. 1. At this level of spatial confine-
ment, transitions and energy levels that
would beineffective, or even inoperative, in

Figire 1 Designs for energy transter. a, Chromophores in a model of light-harvesting comiplec

{LH) 2 froma the bacterium Bhodepseudemonas acidophila {Fig 23, radius 3.4 nm. BROD
bacteriochlorophyll molecules (bluel are widely spaced and constitute simple donors, but the

BE50 molecules (red) interact strongly and constitute a complex acceptor in a confined geometry
Through such interactions between molecules, photosynthetic organisms employ quantum
mechanics to funnel absorbed photons to the reaction centre. Om time scales of less than

1 picosecond. energy flows fram the B00-nm-absorbing BROD molecules to the B50-nm-absorbing
Ba50 molecules, and fram the carotencids (yvellow) to bath BE00 and BES0. b, & real-space picture of
electronic interactions between molecules on a submolecular scale, as seen in the transition d ensities
of LH2 bacteriochlorophyll (1eft) and carotencid {right) molecules calculated froms ground- and
excited-state wavefunctions The different colowrs represent the sign of the electron density. Instead
of one average separation between donor and acceptor defining the energy transfer rate, as in Farster
theory, there are clearly many length scales { examples arrowed | over which the various parts of the

doner and acceptor electron densities interact.
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, Figure 3. Molecular potentials for (a) Hy*, (b) HD™, and (c) HT*

L a static electric field corresponding to the peak strength Eyy, of a 104

Figure 2. Total field E(f) (eq 3): () Ratio of maximum, Eyuy and W/em? laser radiation. The figures show both ortentations for the field-

minimum Eyy field amplitudes as a function of phase ¢ and relative ﬁligtﬂfdhﬂ%ﬂlfﬂulgﬁ-.l ;EEH ﬂlftgll_ﬁ‘frpﬂg[if;f C%ﬂ?ﬂditllllﬂtﬁﬂ cnt;respnuddt_n ihE

. A o h = — 7 1. — 44 proton being upfield (H.*, DHY, . while the negative coordinates

imlfg;l Elifrimﬂj) F:n% ‘E{r) Ey for phases ¢ = 0 and ¢ = /2, I = 44 show the potentials for the orientation with the proton downfield (Ha™,
Tw " HDT HT.



We enumerate the pairs of integrators with second, third
and fourth-order accuracies for later numerical

COmMPpArison:
G e |
=P’ 1 (0(1Y)), P, (18)
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Fig. 1. Test of convergence for ground state of Hy (Egs. 25 and 26). m
corresponds to number of FFT's, N
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