Optimal Control of Spin and Pseudo-Spin Systems

- N. Khaneja (Harvard)
- N. Nielsen (Aarhus)
- H. Yuan (MIT)
- T. Skinner, N. Gershenzon (Wright State)
- K. Wölk (Missouri)
- C. Wunderlich (Siegen)
- S. Kröll (Lund)
- T. Prisner (Frankfurt)
- W. Bermel (Bruker)

Technische Universität München (TUM)

M. Braun, J. Neves, M. Nimbalkar, N. Pomplun, R. Zeier, I. Chaudhury, X. Yang, R. Marx

T. Schulte-Herbrüggen, A. Spörl, R. Fisher, U. Sander

B. Luy, K. Kobzar

M. Sattler, T. Madl

Funding

EU (QAP, BIO-DNP), DFG, SFB 631, BMBF, DAAD, ENB, FCI

Optimal Control of Spin Systems

physical limits of spin dynamics

spectroscopy

hyperpolarization

local spin manipulation and imaging

Control Parameters u_k (t)

$$H_0 + \sum_{k} u_k(t) H_k$$

Time-Optimal Control of Two-Spin Systems

Strong-Pulse Limit: $H_{rf} >> H_{c}$ (2 time scales)

Cartan Decomposition

Characterization of ALL unitary operators
that can be created in time T

Derivation of - time-optimal transfer function (TOP curve)

- minimum time for maximum transfer

- pulse sequence

Khaneja, Brockett, Glaser (2001) Khaneja, Kramer, Glaser (2005)

TOP (time-optimal pulse) curves for dipolar coupling

Khaneja, Kramer, Glaser (2005)

TOP (time-optimal pulse) curves for dipolar coupling $(\mu_1, \mu_2, \mu_3) = (-1/2, -1/2, 1)$

Khaneja, Kramer, Glaser (2005)

GRAPE (Gradient Ascent Pulse Engineering)

desired transfer: A → C

performance: $\langle C | \rho(T) \rangle$

$$\rho(0) = A$$

$$\lambda(T) = C$$

$$\mathbf{u}_{k}(t) \longrightarrow \mathbf{u}_{k}(t) + \varepsilon \langle \lambda(t) | [-i H_{k}, \rho(t)] \rangle$$

Khaneja, Reiss, Kehlet, Schulte-Herbrüggen, Glaser, J. Magn. Reson. 172, 296-305 (2005)

Numerical OCT-based Algorithm finds theoretical limits

Polarization transfer in homonuclear three spin systems

$$I_{1z} \longrightarrow I_{2z}$$

isotropic (Heisenberg) couplings

$$\sum_{m < n} 2\pi J_{mn} (I_{mx} I_{nx} + I_{my} I_{ny} + I_{mz} I_{nz})$$

Polarization transfer in homonuclear three spin systems

$$I_{1z} \longrightarrow I_{2z}$$

isotropic (Heisenberg) couplings

$$\sum_{m < n} 2\pi J_{mn} (I_{mx} I_{nx} + I_{my} I_{ny} + I_{mz} I_{nz})$$

idealized setting: fast, selective pulses (six control amplitudes)

$$2\pi \sum_{m=1}^{3} \{ u_{mx}(t) I_{mx} + u_{my}(t) I_{my} \}$$

Optimized controls (radio frequency amplitudes)

Transfer efficiency as a function of relative coupling constants J_{13}/J_{12} and J_{23}/J_{12}

Homonuclear three spin model system: ¹³C labelled alanine

frequency dispersion

Pulse duration as a function of offset range

(excitation efficiency: 98%, max. rf amplitude: 10 kHz, no rf inhomogeneity)

Robust broadband excitation pulse

PM-BEBOP

bandwidth: 50 kHz

rf amplitude: 15 kHz

Skinner et al. (2006)

Robust 90° and 180° BEBOP ¹³C pulses applied to HSQC

calibrated, no offset

Robust 90° and 180° BEBOP ¹³C pulses applied to HSQC

miscalibrated by 3dB, 8 kHz offset

Skinner, Kobzar, Luy, Bendall, Bermel, Khaneja, Glaser, JMR 179, 241(2006)

Robust 90° and 180° BEBOP ¹³C pulses applied to HSQC

miscalibrated by 3dB, 16 kHz offset

Skinner, Kobzar, Luy, Bendall, Bermel, Khaneja, Glaser, JMR 179, 241(2006)