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Collider Physics

The issues of perturbation theory in quantum field theory are central to

particle physics. Entire month of the 2004 KITP collider physics

workshop was devoted to the issues of pushing QCD cross-section

calculations to higher order.

Enormous resources devoted to these experiments
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N = 4 Super-Yang-Mills

See also talks by Beisart and Staudacher

In 1974 ’t Hooft suggested that we could solve QCD in the planar limit.

This is too hard. We should look instead at a simpler theory.

N = 4 super-Yang-Mills is by far the simplest D = 4 gauge theory.

N = 4 theory is a cousin of QCD, but with specially arranged matter.

1 gluon, 4 real fermions and 6 scalars.

• N = 4 super-Yang-Mills is a conformal field theory (CFT). UV finite.

• It is the CFT appearing in Maldacena’s AdS/CFT correspondence.

• Maldacena conjecture suggests a magical simplicity, especially in the
planar limit with strong coupling – dual to weakly coupled gravity.

Can we solve N = 4 super-Yang-Mills theory?

This is an important question not just in string theory community.
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Anomalous Dimensions and Scattering Amplitudes

Two branches of recent study:

• Anomalous dimensions
• Scattering amplitudes
Can we relate these? There is at least one way to do so:

Splitting amplitudes:
b

a

a || b
b

a

a+b

Splitting amplitudes −→ DGLAP splitting functions −→ Anomalous

dimensions of leading twist operators.

In QCD Gross and Wilczek, and Georgi and Politzer determined DGLAP

evolution by computing these anomalous dimensions.

In the N = 4 theory obtained to three-loop order using the QCD

calculation of Moch, Vermaseren, and Vogt
A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko, and V.N. Velizhanin
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Helicity
Xu, Zhang and Chang

F.A.Berends, R.Kleiss, P.De Causmaecker

R. Gastmans and T. T. Wu

J.F. Gunion and Z. Kunszt

& many others

Vector polarizations

ε+µ (k; q) =

〈
q−

∣∣ γµ
∣∣k−

〉
√

2 〈q k〉
, ε−

µ (k, q) =

〈
q+

∣∣ γµ
∣∣k+

〉
√

2 [k q]

More sophisticated version of circular polarization: ε±µ = (0, 1,±i, 0)
All required properties of polarization vectors satisfied:

ε2i = 0 , k · ε(k, q) = 0 , ε+ · ε− = −1

Notation εabλjaλlb←→ 〈j l〉 = 〈kj−|kl+〉 =
√

2kj · kl eiφ

εȧḃλ̃
ȧ
j λ̃

ḃ
l ←→ [j l] = 〈kj+|kl−〉 = −

√
2kj · kl e−iφ

Changes in reference momentum q are equivalent to gauge

transformations.
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Twistor Space and Topological String Theory

Discussed already in Freddy Cachazo’s talk

In a beautiful paper Ed Witten demonstrated that “twistor space” can

reveal hidden structures of scattering amplitudes. Precursor from Nair.

Link to string theory is for N = 4 super-Yang-Mills theory, but at tree

level it might as well be QCD.

Twistor space given by Fourier transform with respect to plus helicity

spinors.

Ã(λi, µi) =

∫ ∏

i

d2λ̃i

(2π)2
exp

(
∑

j

µ
ȧ
j λ̃jȧ

)
A(λi, λ̃i)
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Tree-level QCD scattering amplitudes ↔ ‘Twistor-space’ ↔ Topological String Theory

E. Witten; Roiban, Spradlin, and Volovich

Witten observed that in twistor space external points lie on certain

curves. Very constraining. Non-trivial Duality
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MHV Vertices

Described already in Freddy Cachazo’s talk

Motivated by twistor space structure Cachazo, Svrcek and Witten define
an off-shell “MHV vertex” based on Parke-Taylor amplitudes

V (1−, 2−, 3+, . . . , n+, P+) =
〈1 2〉4

〈1 2〉 · · · 〈n− 1, n〉 〈nP 〉 〈P 1〉 P

1
2
3

n

..
.

Continue spinor off-shell (P 2 6= 0): 〈i P 〉 = η
∑n

j=1

〈
i−
∣∣ /kj

∣∣q−
〉

where P = k1 + k2 + · · · kn and q auxiliary, satisfying q2 = 0.

Non-MHV amplitudes obtained by sewing together MHV vertices.

PHolds generally for any massless gauge theory,

including QCD. Georgiou and Khoze

7



Applications to QCD Phenomenology

Feynman diagrams are extremely inefficient; factorial growth.

gg → 8g : 10, 525, 900 diagrams, gg → 10g : 5, 348, 843, 500 diagrams;

Efficient methods has been used in QCD for many years. In particular,

recursive methods. Berends and Giele; Caravaglios, Mangano, Moretti and Pittau

CSW diagrams, however, also exhibit exponential growth in complexity

as the number of negative helicity legs increase. Spradlin, Roiban and Volovich

1 1 1 1

1 11

1

1

1

1

1

11 1 11 11+ +1

1

1 1

1

1

1

1 1

1

1

1

1 1 1 + 1

1

+

+

CSW

skeleton diagrams

There should be some way to rearrange CSW diagrams to avoid the

exponential increase.
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Recursive approach to CSW

Bena, Bern and Kosower, hep-th/0406133

Can we rearrange the CSW diagrams in such a way so as to reduce the

exponential growth to polynomial growth?

Idea: Introduce non-MHV vertices. Combines CSW diagrams with

recursive ideas.

Define non-MHV vertices recursively.

2

3

. . .

 d(  −1) 

54

. . .+ + + 1 2 d/2d/2d −1 d −2

=

=4

d =

12

13 2+ 2

2 = 1 1

= 1 + 24 3

3

54

+ 

= 14 23+ 

Extremely efficient calculational method.

non-MHV vertices have a very interesting twistor space interpretation in

terms of various degree curves. Gukov, Motl and Neitzke
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Loop Amplitudes
Bern, Dixon and Kosower, hep-ph/9306240

Bern, Dixon, Dunbar, Kosower

hep-ph/9403226,9409265

Bern and Morgan, hep-ph/9511336

Summary of our early papers on the subject:

• Key Theorem: Any amplitude in any massless theory is fully

determined from D-dimensional tree amplitudes to all loop orders.

Off-shell formulations unnecessary. Unitarity is all that is necessary.

• Four-dimensional cut constructibility: At one-loop, any amplitude in a
massless susy gauge theory is full constructible from four-dimensional

tree amplitudes (even in the presence of IR and UV singularities).

• Basis of integrals: Any dimensionally regularized one-loop gauge
theory amplitude is expressible in terms of basis of scalar integrals. For

the N = 4 theory only scalar box integrals appear.

• Simplicity: The one-loop N = 4 amplitudes are much much simpler

than they ought to be. Twistor space and toplogical string theory

finally points to the origin of this simplicity.
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Generalized Cuts
Bern, Dixon and Kosower, hep-ph/9708239

hep-ph/0404293

Two-particle cuts: intermediate legs on shell
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Three-particle cuts:

�
� 	
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Generalized double two-particle cut:
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This does not mean “imaginary part of imaginary part”. It should be

interpreted as demanding that cut propagators do not cancel.

The unitarity method is a potent tool for state-of-the-art calculations.

As Freddy Cachazo explained, it very effectively combines with twistor

methods. Tree-level properties induce loop-level properties.
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Arbitrary Number of Legs at One Loop

Consider cuts of maximally helicity violating one-loop amplitudes.
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m 1

m 2

l1

m 2 +1

−1m 1

l2

Bern, Dixon
Dunbar and Kosower

The tree-level Parke-Taylor amplitudes for n gluons have a remarkable

property:
A

tree
(`

+
1 ,m

+
1 , · · · , k

−
, · · · , j

−
, · · · ,m

+
2 , `

+
2 ) =

〈k j〉
4

〈`1m1〉 〈m1, m1 + 1〉 · · · 〈m2 − 1, m2〉 〈m2 `2〉 〈`1 `2〉

Only 2 denominators in each tree have non-trivial dependence on loop

momentum.

Together with 2 cut propagators the 4 denominators from the trees give

at worst a hexagon integral (which simplifies in susy cases).
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Bern, Dixon, Dunbar and Kosower

Examples of amplitudes obtained with unitarity sewing method:

• All MHV amplitudes in maximal N = 4 super-Yang-Mills theory.

• All MHV amplitudes in N = 1 super-Yang-Mills

• All helicities for N = 4 super-Yang-Mills six-points amplitudes.

A
1-loop
5 = A

tree
5

[
−
1

ε2

5∑

i=1

(
µ2

−si,i+1

)ε

+

5∑

i=1

ln

(
−si,i+1

si−2,i−1

)
ln

(
−si+2,i+3

si−2,i−1

)
+

5π2

6

]
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These amplitudes are the one-loop analogs of the

Parke-Taylor tree-level amplitudes.

The amplitudes are much much simpler than

they ought to be.
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Twistor space and loop level

In a very elegant paper Brandhuber, Spence and Travaglini

demonstrated that CSW formalism applies also to loop level.

_
P

+
+

_ +
_

+

+

+

L 2

L 1

_

L

Reproduces our earlier MHV results.

IR divergences isolated to a few diagrams.
Bena, Bern, Kosower, Roiban.

Although CSW diagrams are rather different than unitarity cuts, BST
were able to map them into the cuts.
∫

d4L1

L2
1

d4L2

L2
2

δ(4)(L2−L2+PL) = −4

∫
dz1
z1

dz2
z2

dLIPS(l2,−l1, PL;z), PL;z = PL − zη

Loop integrals converted into phase-space × dispersion integrals.
Two recent papers confirm that MHV vertices also work for one-loop

N = 1 MHV amplitudes. Brandhuber, Spence and Travaglini; Quigley and Rozali

Little doubt that MHV vertices will work for any D = 4 cut constructible

loop amplitude.
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Holomorphic Anomaly See Cachazo’s talk

The BST results imply a simple twistor space interpretation of loop

amplitudes – much simpler than previously appreciated. Cachazo, Svrcek and Witten

Twistor space collinearity operator: Witten

εIJKLZ
I
1Z

J
2 Z

K
3 = 0 −→

[
〈λ1, λ2〉

∂

∂λ̃3

+ 〈λ2, λ3〉
∂

∂λ̃1

+ 〈λ3, λ1〉
∂

∂λ̃2

]
An = 0

The holomorphic anomaly: ∂z̄z
−1 = 2πδ(2)(z):

Cachazo, Svrcek and Witten

η̃ȧ
∂

∂λ̃ȧ1

1

〈λ1, λl1〉
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3

l

1l

2

The anomaly delta functions freeze the phase space integrals:
Bena, Bern, Kosower, Roiban; Cachazo

l1 = ak1, l2 = K1···j −
K2

1···j

2k1 ·K1···j
k1 a =

K2
1···j

2k1 ·K1···j
,

Also a jacobian which is easy to evaluate. K1...j = k1 + · · · kj
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As shown by Cachazo the holomorphic anomaly can then be used to
determine the unitarity cuts.

F123A
1-loop

∣∣∣∣
cut

= F123

∑

i

ciBi

∣∣∣∣
cut

=
∑

i

ciF123Bi

∣∣∣∣
cut

In the NMHV case F123 must annihilate the ci, otherwise logarithms

would appear in the integrated anomaly, which can’t happen. Cachazo

Powerful way to evaluate the unitarity cuts: obtain algebraic equations.

In the N = 1 super-Yang-Mills case, for NMHV amplitudes one obtains

differential instead of algebraic equations. Bidder, Bjerrum-Bohr, Dixon and Dunbar
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N = 4 next-to-MHV Amplitudes

Using the holomorphic anomaly with the unitarity method Britto,

Cachazo and Feng computed A7(1
−, 2−, 3−, 4+, 5+, 6+, 7+).

Shortly thereafter we posted our results for all remaining one-loop

7-point amplitudes. Equivalent to 227,585 Feynman loop diagrams.
Bern, Del Duca, Dixon and Kosower

A1-loop
7 =

∑
i ciBi

The Bi are known scalar box functions given in terms of polylogs.
Coefficients for all NMHV 7-point amplitudes are listed in our paper
hep-th/0410224. Example: (−+−+−+ +) (1 + 2) ≡ /k1 + /k2

c136 =

(〈
7+
∣∣∣ (2 + 4)

∣∣∣3+
〉
〈5 4〉+

〈
7+
∣∣∣ 6
∣∣∣5+

〉
〈3 4〉

)4

〈2 3〉 〈3 4〉 〈4 5〉 〈5 6〉 [7 1]
〈
1+
∣∣ (2 + 3)

∣∣4+
〉 〈

7+
∣∣ (5 + 6)

∣∣4+
〉 〈

4−
∣∣ (5 + 6)(7 + 1)

∣∣2+
〉 〈

4−
∣∣ (2 + 3)(7 + 1)

∣∣6+
〉
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Our key result: Beautiful twistor-space picture for terms in integral

function coefficients:

Last week two proofs of the general coplanarity of NMHV integral

coefficients appeared. Bern, Del Duca, Dixon and Kosower; Britto, Cachazo and Feng

Points to further twistor space marvels awaiting discovery and

exploitation.

A full understanding of the twistor space structure of loop amplitudes

will surely lead to new computational advances.
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Two loops in terms of one loop

The four-point one-loop D = 4, N = 4 amplitude:

A1-loop
4 (s, t) = −stAtree

4 I1-loop(s, t)

I1-loop(s, t) ∼ 1

st

[
2

ε2

(
(−s)−ε + (−t)−ε

)
− ln2

(
t

s

)
− π2

]
+O(ε)

We also have the leading color planar two-loop amplitude
Bern, Rozowsky and Yan

A2-loop
4 (1−, 2−, 3+, 4+) = −stAtree

4 (1−, 2−, 3+, 4+)
(
s I2-loop

4 (s, t) + t I2-loop
4 (t, s)

)
� �

� ��� �� �
	 � � �

�
��

� �
�

�
�

Near D = 4 the double box integral is a rather complicated object

involving up to 4th order polylogarithms. Smirnov
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Nevertheless, the planar two-loop amplitude undergoes an amazing

simplification: Anastasiou, Bern, Dixon, Kosower

M2-loop
4 (s, t) =

1

2

(
M1-loop

4 (s, t)

)2

+ f(ε)M1-loop
4 (s, t)

∣∣∣∣
ε→2ε

− 5

4
ζ4

where

M loop
4 = Aloop

4 /Atree
4 , f(ε) = −ζ2 − ζ3 ε− ζ4 ε

2

f(ε) is a universal IR function.

Thus, we have succeeded to express the two-loop amplitude as an

iteration of the one loop amplitude together with a universal IR function.

Non-trivial polylogarithm and Nielsen function identities needed to

demonstrate the above.
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Generalization to n-Points
Anastasiou, Bern, Dixon, Kosower

Not yet possible to explicitly evaluate n > 4 point two-loop integrals

But we have tools for obtaining results: Collinear behavior

b

a

a || b
b

a

a+b

Have calculated the two-loop splitting amplitudes which determine the

behavior of amplitudes as momenta become collinear.
Following ansatz satisfies all collinear constraints:

M2-loop
n (s, t) =

1

2

(
M1-loop
n (s, t)

)2

+ f(ε)M1-loop
n (s, t)

∣∣∣∣
ε→2ε

− 5

4
ζ4

where M loop
n = Aloop

n /Atree
n , f(ε) = −ζ2 − ζ3 ε− ζ4 ε

2

Interesting quantity is finite remainder after subtracting IR divergences.

The conjecture is likely true for MHV amplitudes. Less clear for

non-MHV.
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Multi-loop Generalization

The above structure suggests a multi-loop generalization:

Mn-loop
4 (s, t) =

1

n!

(
M1-loop

4 (s, t)
)n

+ lower powers of M1-loop
4 (s, t)

Key part of conjecture: The only dependence on s/t is through

M1-loop
4 (s, t).

It should be possible to apply the new twistor space developments to

check this.
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Some Key Issues for the Future

Trees:

• Find a closed form solution to non-MHV vertex recursion relations.
One loop:

• Applications of twistor methods to QCD.
Key difficulty: In susy theories we can effectively ignore the distinction

between D = 4 and D 6= 4, needed for dim. reg. In QCD this is not true.
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Multi-loop:

• Can one prove iteration of the N = 4 S-matrix?

Resummation?

String Theory:

• Can one find a string theory dual with conformal supergravity projected
out? Topological B model is polluted by conformal gravity. Berkovits and Witten
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Summary
1. Motivation.

(a) LHC demands QCD loop calculations – new tricks necessary

(b) Can we solve N = 4 super-Yang-Mills theory?

2. Efficient recursive reformulation of CSW diagrams.

3. Generalized unitarity cuts: Obtain loop amplitudes from tree

amplitudes. Loop amplitude properties inherited from tree amplitudes.

4. Important new twistor space tools. Holomorphic anomaly.

5. Calculation of all one-loop 7-point helicity amplitudes. Very intriguing

twistor space structure.

6. Presented non-trivial evidence that the N = 4 super-Yang-Mills

S-matrix iterates to all loop orders.

7. There are a variety of exciting avenues for further exploration.
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