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Questions

Clouds:
How to model low (planetary boundary layer) clouds?
How to think about the probability distribution of cloud types, and how might it shift with climate change?
How to model the fraction of cloud cover and what are better parameterizations? Total cloud albedo is amazingly constant -- why?
How to combine models with a good vertical resolution with an account of micro and macro-turbulence?
Can cloud cover be viewed as a problem of optimization? Maximum entropy ideas?
To what degree are precipitation extremes controlled by properties of clouds?
Aerosols and cloud nucleation processes?

Ecosystems:
Are in-situ experiments that modify temperature, CO2, and/or moisture realistic simulations of a changing climate?

How can carbon-cycle models be verified? Over what time and spatial scales?

What is the best model of the biosphere that we can realistically hope for?

Measurements of CO2 in a vertical column are needed (large diurnal oscillations in surface CO2 concentrations due to plant photosynthesis / respiration).
Do we need to worry about species instead of just plant functional types?

* Pressing need to model ice flow over surfaces (ie. the Greenland and Antarctic ice sheets). How can this be done?

Macroturbulence:
Do statistical closures exist that reproduce, at least qualitatively, the main features of extratropical circulation? Quantitatively?
What is the basic mechanism of Madden-Julian oscillations that determines their period and the speed of propagation?
Origin of power law scaling in mesoscale turbulence.
Moisture: Effect of water vapor and latent heat on large-scale eddies.
Simple models of the monsoon -- can they be constructed? What are the basic drivers?

Models:
* Hierarchy of important processes -- how to organize? How to calculate?
» Tipping points? Do they exist? If so, how to detect? Are toy models useful?

Oceans:
» Are there locations where the formation of deep water could keep CO2 away from the atmosphere for > 100 years?
+ To what degree is mixing a function of climate? What sets rate of vertical mixing rates? What controls heat transport?



http://amsglossary.allenpress.com/glossary/search?id=atmospheric-boundary-layer1
http://amsglossary.allenpress.com/glossary/search?id=atmospheric-boundary-layer1
http://en.wikipedia.org/wiki/Madden-Julian_Oscillation
http://en.wikipedia.org/wiki/Madden-Julian_Oscillation
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Sunlight = Infrared Radiation

\\ albedo (a)/

o= 2% — 567 541078 W/m2K*
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Terrestrial Planets
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Water Vapour: 65% Carbon Dioxide: 21%




Vast Reservoirs of Carbon & Enormous Fluxes
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D. Liithi et al. Nature 453, 379 (2008)

Holocene

MIS 2
34 14 16

13 18.7 15.5 17

O
-2
P
)
£
O
c
o
@
pa—
-
+—
(O
p -,
®
Q.
=
@®
|_

1

|
and.
nNo

100 200 300 400 500 800
Age (kyr BP)




Home Activities In5|de KITP Dlrectory Talks Visit Info Help Community UCSB May 26, 2008
KITP Conference: Frontiers of Climate Science (May 6-10, 2008)
Sponsored, in part, by BP.
Coordinators: Paul Kushner, Brad Marston, Chris Still

Scientific Advisors: Jean Carlson, Gregory Falkovich, John Harte,
Ray Pierrehumbert

Overview | talks | Podcastifid | Public Forum | Program Page | Register | Conference Schedule

Speakers: Please see us about file upload for your slides.

Tuesday, May 06, 2008

Overview

Wikispace .

_schedule Ecosystems and Climate I

This Week Morning Session Chair: Matthew Huber (Purdue)
Next Week [Perspective talks are 45 min + 15 min discussion]

Talks Online [Regular talks are 30 min + 15 min discussion]
...newest

Podcastiil 8:50am David Gross Welcome [Podcast][Aud][Cam]

--help? (KITP Director)
Conference >

Pyrogeography 9:00am John Harte Problems and Prospects at the Intersection

iCi (UC Berkeley) of Ecology and Climate
Pa{:ggi,ants [Slides][Podcast][Aud][Cam]

...by date 10:00am David Noone Exchanges at the Interface Between
...photos (Univ. Colorado, ATOQC) Terrestrial Ecosystems, the Water Cycle and
Climate [Podcast][Aud][Cam]

MORNING BREAK

KITP
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Variations of the Earth’s surface temperature: years 1000 to 2100

Departures in temperature in °C (from the 1990 value)
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An estimate of the contribution to g from Vostok core data:

Torn and Harte, GRL33,
L10703 (2006)
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But where is the carbon
coming from?




Inez Fung (Berkeley)

(2) What?

Growth, mortality, decay 120 PgClyr

Population: {ages}

Photosynthesis (climate, LY AU E
CO,, soil H,0, resource &EAJi&
limitation) 2

Decay (T, soil H,0,..) i 1200 PgC
t~101-102yr




Diurnal Temperature Range:
coupling of energy-water-carbon fluxes
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Evidence for slowing NH land
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How would CO, and climate co-vary?

Suppose there is warming...

' Atm CO, would increase | |Atm CO, would decrease
because: | because:

« Warming may enhance « warming may enhance
decomposition photosynthesis

Increased ocean « Enhanced marine

stratification = more -
roductivity and export
carbon in mixed layer - P y P

reduced air-to-sea flux

In model, three flavors of CO2: Vodel ts:
« CO2_tracer(x,y,z,t) i el

. CO2_bgc=CO2 tracer(x,y,lowest layer,ty BGC coupling,
« CO2_rad=CO2_tracer(x,y,column,t) Radiative coupling




Matthew Huber (Purdue & KITP)

early Eocene temperature proxy records

SST AnomaI) |

courtesy of J. Zachos
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temperature change for 5
doublings
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Data Assimilation for Wildland Fires

Ensemble Kalman filters in coupled atmosphere-surface models

Jan Mandel, Jonathan D. Beezley, Janice L. Coen, and Minjeong Kim

Abstract

Two wildland fire models are described, one based on reaction-diffusion-convection partial
differential equations, and one based on empirical fire spread by the level let method. The level set
method model is coupled with the Weather Research and Forecasting (WRF) atmospheric model. The
regularized and the morphing ensemble Kalman filter are used for data assimilation.

Index Terms

Weather Research and Forecasting model, WREF, wildfire modeling, wildland fire, level set method,
reaction-diffusion systems, ensemble Kalman filter, morphing, registration, data assimilation, position
correction, regularization, data assimilation, parallel computing

A wildland fire i1s a complex multiscale process affected by nonlinear scale-dependent
interactions with other Earth processes. Physical processes contributing to the fire occur over a
wide range of scales. While weather processes with characteristic scales ranging over 5 orders
of magnitude from the several-hundred-km scale of large weather systems to the m-scale of
small-scale effects and eddies, the chemical reactions associated with the thermal decomposition
of fuel and combustion occur at scales of centimeters or less to produce flamelengths up to 60-m
tall. Firelines travel with average speeds on the order of a fraction of a meter per second, while
producing bursts of flame that travel at 50 meters per second, and chemical reactions occuy on the
order of seconds or less. The wind and buoyancy produced by the fire are among the extremes
of atmospheric phenomena. Weather is the major factor that affects fire behavior, and two way
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