Synaptic architecture and intrinsic dynamics in neuronal network activity patterns

Jonathan Rubin
Department of Mathematics, University of Pittsburgh rubin@math.pitt.edu

KITP - October 16, 2003

Recipe for localized, sustained activity (bumps)

e.g. Wilson/Cowan/Amari: $u_{t}(x, t)=h-\sigma u(x, y)+\int_{-\infty}^{\infty} w(x-y) f(u(y, t)) d y$

$$
\left\{\begin{array}{l}
w(x)>0 \text { on }(-\bar{x}, \bar{x}) \\
w(-\bar{x})=w(\bar{x})=0 \\
w(x)<0 \text { on }(-\infty,-\bar{x}) \cup(\bar{x}, \infty)
\end{array}\right.
$$

IDEA:
 Bumps can also occur w/o E-E!

Bumps without E-E connections

- head direction system (mammals): anterior dorsal thalamic nuclei [Taube et al.]
- localized activity in thalamic slices from rat and mouse
[Sohal, Huntsman \& Huguenard, 2000]
- basal ganglia: $\mathrm{STN}=\mathrm{E}, \mathrm{GPe}=\mathrm{I}$
- hippocampal CA1: pyramidal cells $=\mathrm{E}$, interneurons $=\mathrm{I}$

Questions

1. Can an E-I network w/o E-E connections sustain localized activity on its own?

2. If so, under what conditions?
3. In general, what architectures allow sustained, localized activity?

Thalamic network
TC = thalamocortical relay cells \quad GABA $_{A}=$ fast inhibition $\mathrm{RE}=$ thalamic reticular cells $\quad \mathrm{GABA}_{\mathrm{B}}=$ slow tickler inhibition

TC:

$$
\begin{aligned}
v^{\prime} & =-I_{T}(v, y)-I_{L}(v)-I_{A}-I_{B}-I_{c t x} \\
y^{\prime} & =\phi\left(y_{\infty}(v)-y\right) / \tau_{y}(v)
\end{aligned}
$$

RE:

$$
\begin{aligned}
w^{\prime} & =-I_{T^{\prime}}(w, z)-I_{L^{\prime}}(w)-I_{A^{\prime}}-I_{E}-I_{c t x^{\prime}} \\
z^{\prime} & =\psi\left(z_{\infty}(w)-z\right) / \tau_{z}(w)
\end{aligned}
$$

Sustained localized activity occurs
[Rubin, Terman \& Chow, JCNS, 2001]

Sustained Activity and Block of Propagation

\diamond activity is sustained by post-inhibitory rebound (PIR)
$\diamond \mathrm{GABA}_{\mathrm{B}}$ from ticklers builds up and blocks TC cell rebound

Continuum limit

Synaptic currents become

$$
I_{K}(x, t)=g_{K}\left(v(x, t)-v_{t h}\right) \int_{-\infty}^{\infty} w_{K}(x, y) s_{K}(y, t) d y
$$

where $K=A, B, E, A^{\prime}$ respectively.
Let $\sigma_{A}=\mathrm{GABA}_{A}$ inhibition, $\sigma_{L}=\mathrm{GABA}_{B}$ inhibition from bump of size $L \Rightarrow$ consistency condition:

E-I network without E-E connections

Analysis

- consider $u_{t}(x, t)=-u(x, t)+\int_{-\infty}^{\infty} w(x-y) H(u(y, t)) d y+h$
- follow Amari:
$\rightarrow \quad$ let $W(x)=\int_{0}^{x} w(t) d t$
\rightarrow for a stationary bump on ($0, a$),

$$
\begin{aligned}
& u(x)=\int_{0}^{a} w(x-y) d y+h=W(x)-W(x-a)+h \\
\rightarrow \quad & u(0)=u(a)=0 \Rightarrow(*) W(a)+h=0
\end{aligned}
$$

- assume
$(E 1) h \leq 0,(E 2) W(x)+h>0$ for an $x \in \mathbb{R}^{+} \& \lim _{x \rightarrow \infty} W(x)<-h$

- a_{1} does not give a bump (in particular $u_{1}^{\prime}(0)<0$)
- a_{2} does not necessarily give a bump (in particular, if $0<a_{2}-a_{1}<$ A, then $u_{2}\left(a_{1}\right)<0$)
\bullet Small $|h| \Rightarrow$ large a_{2}. If a_{2} is too large, then no bump.

Existence results

- Assume also: $(E 3) w\left(a_{2} \pm x_{0}\right)<w(0)$; i.e., $a_{2} \in$ valley of $w(x)$.
- Theorem: Assume $w(x)$ as above and fix h such that $(E 1)-(E 3)$ hold and $a_{2} / 2>x_{1}$. Then the function $u_{2}(x)$ defined by $(*)$ with $a=a_{2}$ is a bump solution, with $u_{2}(x)>0$ if and only if $x \in\left(0, a_{2}\right)$.
- Theorem: If $a_{2} / 2 \in\left(x_{1}, x_{*}\right]$, then $u_{2}^{\prime}(x)$ has one zero on $\left(0, a_{2}\right)$, at a global maximum at $x=a_{2} / 2$. If $a_{2} / 2>x_{*}$, then $u_{2}^{\prime}(x)$ has at least three zeros on ($0, a_{2}$), including a local minimum at $x=a_{2} / 2$.
a)

b)

c)

d)

- Additional hyp. on w or $h \Rightarrow u_{2}(x)$ is a valid bump for $a_{2} / 2 \leq x_{1}$.

Numerical examples: tooth

Proposition: If $a_{2} / 2>a_{1}, u_{2}(x)>0$ on $\left(0, a_{2}\right)$, then $u_{2}\left(a_{2} / 2\right)>-h$.

Birth and death mechanisms

- can show bumps only exist for a finite interval of a (or h) values
- no saddle-nodes; bump amplitude/width do not go to 0
- two mechanisms:
internal tangency: $u(x)=u^{\prime}(x)=0$ at some point in $(0, a)$, else $u(x)>0$
boundary tangency: $u(0)=u^{\prime}(0)=0, u(a)=u^{\prime}(a)=0$
- as $|h| \downarrow$, birth is always internal tangency; death may be either

Numerical example: birth

Numerical example: growth and death (movie)

Spatial variation in coupling

$$
\left\{\begin{array}{c}
u_{t}(x, t)=-u(x, t)+\int_{-\infty}^{\infty} w(x-y) p(y) H(u(y, t)) d y+h \\
p(x)=1+\epsilon(1+\cos (\rho x+\phi)) ; \text { w.l.o.g. } \rho=1
\end{array}\right.
$$

First, consider bumps on $(0, a)$ with $\phi=0$:

- $u(0)=u(a)=0$ now gives two equations

$$
0=\int_{0}^{a} w(\eta) p(\eta) d \eta+h, 0=\int_{0}^{a} w(a-\eta) p(\eta) d \eta+h
$$

- subtract to obtain

$$
g(a):=\int_{0}^{a} w(a-\eta) p(\eta) d \eta-\int_{0}^{a} w(\eta) p(\eta) d \eta
$$

- look for zeros of g (e.g. $2 n \pi$); then check whether these satisfy $u(a)=0$ for $h \leq 0$ and $a=a_{2}$

Bump pinning

- zeros of g are independent of $\epsilon>0$:

- only a subset gives valid bumps; each a in subset has corresponding $h \leq 0$

$$
a \approx 7.25, \epsilon=0.1
$$

$$
a=4 \pi
$$

Bumps on (b_{1}, b_{2}) with arbitrary phase shift ϕ

- similar analysis $\Rightarrow g\left(b_{1}, b_{2}\right)$
- can show $g=g\left(z_{1}, \delta\right)$ where $z_{1}=b_{1}-\phi$ and $\delta=$ bump length
- for our choice of $\boldsymbol{p}(\boldsymbol{x})$, we find numerically that for each choice of ϕ and starting position b_{1},
- a small, discrete set of bump sizes can occur, and
- one particular size (not $2 n \pi$) always belongs to this set:

Summary

- off-center coupling can yield a single linearly stable bump, if the long-range inhibition dominates the local inhibition
open: how does this apply in more biological models? two layers?
- this mechanism favors "wide" bumps, which may have interior local minima
- these bumps form/disappear via tangencies, not shrinkage open: multi-bumps? time-dependent solutions? interactions?
- spatial variation in coupling induces pinning, such that bumps can only exist for discrete background activity levels
open: invariant bump length? other inhomogeneities? significance of pinning?

What about other architectures?

- Q: How does a pattern of synchrony restrict the possible architectures in a network? [w/Golubitsky \& Josic]
- Consider:

- Golubitsky \& Stewart: A clustered solution, with robust synchrony within clusters, can exist iff there is a balanced coloring corresponding to that solution.
- Above: $\#\{$ connections from cells of A to cells of $B\}$ is a constant $c(A, B)$ for $A, B \in\{r e d$, blue, white, yellow $\}$.
- Problem: For given k, l, N_{E}, N_{I}, find a nontrivial balanced coloring (with min number of connections).
- Example (one population; $N=9, k=3$):

- Note: Which k are selected is arbitrary - connections are homogeneous.
- Idea: abstract mathematical approach \Rightarrow architectural possibilities precisely specified; activity pattern observed thus gives information about synaptic architecture

Change gears

- Consider a network of recurrently connected excitatory cells ($\boldsymbol{E}-\boldsymbol{E}$ connections only).
- Focus on details of intrinsic and synaptic dynamics.
- Result: A reminder that these details can strongly shape pattern formation.

Case I: Hodgkin-Huxley neurons with all-to-all coupling [Drover, Rubin, Su, \& Ermentrout]

$$
\left\{\begin{array}{l}
C \frac{d V}{d t}=f(V, h)-g_{s y n} s\left(V-V_{s y n}\right) \\
\frac{d h}{d t}=\alpha_{h}(V)(1-h)-\beta_{h}(V) h \\
\frac{d s}{d t}=\alpha(V)(1-s)-s / \tau_{s y n}
\end{array}\right.
$$

where

$$
\begin{aligned}
& f(V, h)=I_{0}-g_{N a} h\left(V-V_{N a}\right) m_{\infty}^{3}(V) \\
& \quad-g_{K}\left(V-V_{K}\right) n^{4}(h)-g_{L}\left(V-V_{L}\right)
\end{aligned}
$$

Numerics

Type I: oscillations emerge with zero frequency; excitation desynchronizes (Ermentrout, 1996)

Type II: oscillations emerge with nonzero frequency; excitation synchronizes (Somers \& Kopell, 1993; Hansel et al., 1995)

What causes the slowing? (movie)

fix s :

$$
A(s)=\left\{(v, h): \frac{d h}{d t}(v, h)<\frac{d N_{f}}{d s}(v, s) \frac{d s}{d t}\right\}
$$

Delay estimation

$$
\begin{aligned}
& z_{1}=v-\hat{v}(s) \\
& z_{2}=w-\hat{w}(s)
\end{aligned} \Rightarrow \frac{d z}{d s}=-\frac{\tau_{s y n}}{s} f(z)
$$

linearize about $(0,0)$ and solve:

$$
z(s)=z\left(s_{0}\right) \exp \left(-\tau_{s y n} \int_{s_{0}}^{s} f_{z}(0,0) d w\right)
$$

Case II: Eliminate all-to-all coupling \Rightarrow sustained, localized activity with E-E coupling only! [w/ A. Bose] works with Type I as above (numerics in Drover and Ermentrout, SIAP, 2003) or Type II:

Equations (movie)

$$
\left\{\begin{aligned}
v_{i}^{\prime} & =-I_{C a}-I_{K}-I_{L}-\bar{g}_{\text {syn }}\left[v_{i}-E_{s y n}\right]\left[c_{o} s_{i}+\Sigma_{j=1}^{j=3} c_{j}\left[s_{i-j}+s_{i+j}\right]\right] \\
w_{i}^{\prime} & =\left[w_{\infty}\left(v_{i}\right)-w_{i}\right] / \tau_{w}\left(v_{i}\right) \\
s_{i}^{\prime} & =\alpha\left[1-s_{i}\right] H_{\infty}\left(v_{i}-v_{\theta}\right)-\beta s_{i}\left(s_{i}=0 \text { for } i<1, i>N\right) \\
& =\left\{\begin{array}{c}
-\beta s_{i} \text { for } v_{i}<v_{\theta} \\
0 \text { for } v_{i}>v_{\theta}, \text { with } s_{i}=1
\end{array}\right.
\end{aligned}\right.
$$

SNIC

Geometry

$$
\left\{\begin{aligned}
v_{i}^{\prime} & =f\left(v_{i}, w_{i}\right)-\bar{g}_{s y n} S_{i} \\
w_{i}^{\prime} & =g\left(v_{i}, w_{i}\right) \\
S_{i}^{\prime} & =-\beta S_{i}
\end{aligned}\right.
$$

Geometry 2

$$
\begin{aligned}
& w=w_{l} \\
& \left(v_{l}, w_{l}\right.
\end{aligned}
$$

$$
\begin{aligned}
& S=S_{2} \\
& S=S_{1} \\
& S=0
\end{aligned}
$$

$$
\left(v_{l}, 0\right) \quad\left(v_{c_{m}}, 0\right)
$$

w fixed:

Implications

Properties of solutions

- can get bumps of any size
- size selected is sensitive to parameters of initial shock
- details of bumps are sensitive
- also get propagation with recruitment after variable delays - short delays follow long delays

SUMMARY

- Intrinsic and synaptic dynamics can give unexpected results.
- Geometric viewpoint is useful for understanding observations.
- OPEN: Are these figments of models or do neurons operate in these regimes?

