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Recipe for localized, sustained activity (bumps)

E

I

IDEA:
Bumps can also
occur w/o E-E!

e.g. Wilson/Cowan/Amari: ut(x, t) = h− σu(x, y) +
∫ ∞
−∞w(x− y)f(u(y, t))dy

−4 −2 0 2 4

−0.2

0

0.2

0.4

0.6

x

w



w(x) > 0 on (−x̄, x̄)

w(−x̄) = w(x̄) = 0

w(x) < 0 on (−∞,−x̄)∪ (x̄,∞)
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Bumps without E-E connections

• head direction system (mammals): anterior dorsal thalamic nuclei [Taube et al.]

• localized activity in thalamic slices from rat and mouse

[Sohal, Huntsman & Huguenard, 2000]

• basal ganglia: STN = E, GPe = I

• hippocampal CA1: pyramidal cells = E, interneurons = I

Questions

1. Can an E-I network w/o E-E connections sustain localized activity
on its own?

TC

RE

GABAB
AMPA

GABAA

GABAA

2. If so, under what conditions?

3. In general, what architectures allow sustained, localized activity?
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Thalamic network

TC =thalamocortical relay cells GABAA = fast inhibition
RE =thalamic reticular cells GABAB = slow tickler

inhibition

TC

RE

GABAB
AMPA

GABAA

GABAA

TC:
v′ = −IT (v, y)− IL(v)− IA− IB − Ictx
y′ = φ(y∞(v)− y)/τy(v)

RE:
w′ = −IT ′(w,z)− IL′(w)− IA′ − IE − Ictx′
z′ = ψ(z∞(w)− z)/τz(w)
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Sustained localized activity occurs
[Rubin, Terman & Chow, JCNS, 2001]
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Sustained Activity and Block of Propagation

� activity is sustained by post-inhibitory rebound (PIR)

� GABAB from ticklers builds up and blocks TC cell rebound

v

y
y’ = 0

v’ = 0

y

v

v’ = 0

y’ = 0

GABAA

no input

A B

GABAB

GABA   + GABA

PIR

PIR
blocked

6



Continuum limit

Synaptic currents become

IK(x, t) = gK(v(x, t)− vth)
∫∫∫∞
−∞wK(x, y)sK(y, t)dy

where K = A,B,E,A′ respectively.

Let σA = GABAA inhibition, σL = GABAB inhibition from bump
of size L ⇒ consistency condition:
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E-I network without E-E connections
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Analysis

• consider ut(x, t) = −u(x, t) +
∫∞
−∞w(x− y)H(u(y, t))dy+ h

• follow Amari:

→ let W (x) =
∫ x
0 w(t)dt

→ for a stationary bump on (0, a),

u(x) =
∫ a
0 w(x− y)dy+ h = W (x)−W (x− a) + h

→ u(0) = u(a) = 0 ⇒ (∗) W (a) + h = 0

• assume

(E1) h ≤ 0, (E2) W (x) + h > 0 for an x ∈ IR+ & lim
x→∞W (x) < −h
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Nonexistence results

x

W(x)

a1 2

x
ax1

0
−h
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(*) W(a)+h = 0

• a1 does not give a bump (in particular u′1(0) < 0)

• a2 does not necessarily give a bump (in particular, if 0 < a2−a1 <
A, then u2(a1) < 0)

• Small |h| ⇒ large a2. If a2 is too large, then no bump.
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Existence results

• Assume also: (E3) w(a2± x0) < w(0); i.e., a2 ∈ valley of w(x).

• Theorem: Assume w(x) as above and fix h such that (E1)− (E3)
hold and a2/2 > x1. Then the function u2(x) defined by (∗) with
a = a2 is a bump solution, with u2(x) > 0 if and only if x ∈ (0, a2).

• Theorem: If a2/2 ∈ (x1, x∗], then u′2(x) has one zero on (0, a2), at a
global maximum at x = a2/2. If a2/2 > x∗, then u′2(x) has at least
three zeros on (0, a2), including a local minimum at x = a2/2.
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• Additional hyp. on w or h⇒ u2(x) is a valid bump for a2/2 ≤ x1.
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Numerical examples: tooth
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Proposition: If a2/2 > a1, u2(x) > 0 on (0, a2), then u2(a2/2) > −h.
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Birth and death mechanisms

• can show bumps only exist for a finite interval of a (or h) values

• no saddle-nodes; bump amplitude/width do not go to 0

• two mechanisms:

internal tangency: u(x) = u′(x) = 0 at some point in (0, a), else
u(x) > 0

boundary tangency: u(0) = u′(0) = 0, u(a) = u′(a) = 0

• as |h| ↓, birth is always internal tangency; death may be either

Numerical example: birth
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Numerical example: growth and death (movie)
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Spatial variation in coupling


ut(x, t) = −u(x, t) +

∫∫∫∞
−∞w(x− y)p(y)H(u(y, t))dy+ h

p(x) = 1 + ε(1 + cos(ρx+ φ)) ; w.l.o.g.ρ = 1

First, consider bumps on (0, a) with φ = 0:

• u(0) = u(a) = 0 now gives two equations

0 =
∫∫∫ a

0w(η)p(η)dη+ h, 0 =
∫∫∫ a

0w(a− η)p(η)dη+ h

• subtract to obtain

g(a) :=
∫∫∫ a

0w(a− η)p(η)dη−
∫∫∫ a

0w(η)p(η)dη

• look for zeros of g (e.g. 2nπ); then check whether these satisfy
u(a) = 0 for h ≤ 0 and a = a2
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Bump pinning

• zeros of g are independent of
ε > 0:
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• only a subset gives valid bumps; each a in subset has correspond-
ing h ≤ 0
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Bumps on (b1, b2) with arbitrary phase shift φ

• similar analysis ⇒ g(b1, b2)

• can show g = g(z1, δ) where z1 = b1− φ and δ = bump length

• for our choice of p(x), we find numerically that for each choice of
φ and starting position b1,

- a small, discrete set of bump sizes can occur, and

- one particular size (not 2nπ) always belongs to this set:
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Summary

• off-center coupling can yield a single linearly stable bump, if the
long-range inhibition dominates the local inhibition

open: how does this apply in more biological models? two layers?

• this mechanism favors “wide” bumps, which may have interior
local minima

• these bumps form/disappear via tangencies, not shrinkage

open: multi-bumps? time-dependent solutions? interactions?

• spatial variation in coupling induces pinning, such that bumps can
only exist for discrete background activity levels

open: invariant bump length? other inhomogeneities? significance
of pinning?
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What about other architectures?

• Q: How does a pattern of synchrony restrict the possi-
ble architectures in a network? [w/Golubitsky & Josic]

• Consider:

E

I

⇔
I

E

I

• Golubitsky & Stewart: A clustered solution, with ro-
bust synchrony within clusters, can exist iff there is a
balanced coloring corresponding to that solution.

• Above: #{ connections from cells of A to cells of B }
is a constant c(A,B) for A,B ∈ {red, blue, white,
yellow}.
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• Problem: For given k, l,NE,NI, find a nontrivial
balanced coloring (with min number of connections).

• Example (one population; N = 9, k = 3):

2 white,
0 blue

1 white,
1 blue

4 white,
2 blue

4 white,
2 blue

• Note: Which k are selected is arbitrary – connections
are homogeneous.

• Idea: abstract mathematical approach ⇒ architectural
possibilities precisely specified; activity pattern observed
thus gives information about synaptic architecture
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Change gears

• Consider a network of recurrently connected excitatory
cells (E-E connections only).

• Focus on details of intrinsic and synaptic dynamics.

• Result: A reminder that these details can strongly
shape pattern formation.
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Case I: Hodgkin-Huxley neurons with all-to-all coupling
[Drover, Rubin, Su, & Ermentrout]



CdVdt = f(V,h)− gsyns(V − Vsyn)
dh
dt = αh(V )(1− h)− βh(V )h
ds
dt = α(V )(1− s)− s/τsyn

where

f(V,h) = I0− gNah(V − VNa)m3
∞(V )

−gK(V − VK)n4(h)− gL(V − VL)
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Numerics

Type I: oscillations
emerge with zero
frequency; excita-
tion desynchronizes
(Ermentrout, 1996)

Type II: oscillations emerge
with nonzero frequency;
excitation synchronizes
(Somers & Kopell, 1993;
Hansel et al., 1995)
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What causes the slowing? (movie)
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bd(A(s))
v

N  (x,s) <−> dv/dt=0f

dw/dt = 0h

A(s) = {(v, h) : dhdt (v, h) <
dNf
ds (v, s)dsdt}

fix s:
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Delay estimation

z1 = v− v̂(s)

z2 = w− ŵ(s)
⇒

dz

ds
= −

τsyn

s
f(z)

linearize about (0,0) and solve:

z(s) = z(s0) exp(−τsyn
∫∫∫ s
s0
fz(0,0)dw)

s
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Case II: Eliminate all-to-all coupling ⇒ sustained,
localized activity with E-E coupling only! [w/ A. Bose]

works with Type I as above (numerics in Drover and
Ermentrout, SIAP, 2003) or Type II:
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Equations (movie)


v′i = −ICa − IK − IL − ḡsyn[vi − Esyn]
cosi + Σ

j=3
j=1cj[si−j + si+j]


w′i = [w∞(vi)− wi]/τw(vi)

s′i = α[1− si]H∞(vi − vθ)− βsi (si = 0 for i < 1, i > N)

=


−βsi for vi < vθ

0 for vi > vθ, with si = 1
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Geometry


v′i = f(vi,wi)− ḡsynSi
w′i = g(vi,wi)

S′i = −βSi

v’=0, s=0

w=w
RK

go curve

w’=0, s=0

W  (v ,w )s

 s>0
v’=0.

m m
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Geometry 2
v’=0, s=0

w=w
RK

go curve

w’=0, s=0

W  (v ,w )s

 s>0
v’=0.

m m

l 2

(v  , w  )
l

w=w

w

v

1

v

2

1P

(v  , 0) (v   , 0)
l mc

l

S

S=0

S=S

S=S

S=0
S=S
S=S

−0.5 −0.4 −0.3 −0.2 −0.1 0

0.01

0.02

0.03

0.04

0.05

0.06

V

S

GO = Ws

w fixed:

29



Implications
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Properties of solutions

• can get bumps of any size

• size selected is sensitive to parameters of initial shock

• details of bumps are sensitive

• also get propagation with recruitment after variable
delays – short delays follow long delays
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SUMMARY

• Intrinsic and synaptic dynamics can give unexpected
results.

• Geometric viewpoint is useful for understanding obser-
vations.

• OPEN: Are these figments of models or do neurons
operate in these regimes?
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