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Recipe for localized, sustained activity (bumps)
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e.g. Wilson/Cowan/Amari: ui(x,t) = h — ocu(x,y) + /_o;w(w —vy)f(u(y,t)) dy
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Bumps without E-E connections

e head direction system (mammals): anterior dorsal thalamic nuclei [Taube et al.]

e localized activity in thalamic slices from rat and mouse
[Sohal, Huntsman & Huguenard, 2000]

e basal ganglia: STN = E, GPe =1

e hippocampal CA1l: pyramidal cells = E, interneurons = 1

Questions

1. Can an E-I network w/o E-E connections sustain localized activity
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2. If so, under what conditions?

3. In general, what architectures allow sustained, localized activity?



Thalamic network

TC =thalamocortical relay cells GABA = fast inhibition
RE =thalamic reticular cells GABApg = slow tickler

inhibition
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TC:
v/ = —Ir(v,y) —Ip(v) —I4—Ip — I,

Y = ¢(Yo(v) —y)/7y(v)

RE:
w = —Ip(w,z) —Ip(w) — Iy —Ig—1,,

z' = P(2eo(w) — 2) /72 (w)



Sustained localized activity occurs

[Rubin, Terman & Chow, JCNS, 2001]
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Sustained Activity and Block of Propagation

¢ activity is sustained by post-inhibitory rebound (PIR)
¢ GABAg from ticklers builds up and blocks TC cell rebound

GABA ,

/ / Nno input

PIR

GABA g

PIR
blockec




Continuum limit

Synaptic currents become
IK(wa t) — gK(’U(CU, t) — vth) /iooo wK(wa y)sK(y, t) dy

where K = A, B, E, A’ respectively.

Let 04 = GABA 4 inhibition, o = GABA g inhibition from bump
of size L = consistency condition:
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E-1 network without E-E connections
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off-center coupling



Analysis

e consider u(x,t) = —u(z,t) + [ w(z — y)H (u(y,t))dy + h
e follow Amari:
—  let W(z) = [jw(t)dt
—  for a stationary bump on (0, a),
u(z) = fwx—y)dy+h=W(xz)—W(x—a)+h
—  u(0)=u(a)=0 = (x) W(a)+h=0
® assume

(E1) h <0, (E2) W(xz)+h >0 for an x € RT & lim W(z) < —h
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Nonexistence results

(*) W(a)+h =0

e a; does not give a bump (in particular u}(0) < 0)

e a; does not necessarily give a bump (in particular, if 0 < as —a; <
A, then us(a;) < 0)

e Small |h| = large a». If as is too large, then no bump.



Existence results

e Assume also: (E3) w(as &+ xp) < w(0); i.e., ax € valley of w(x).

e Theorem: Assume w(x) as above and fix h such that (E1) — (E3)
hold and a»/2 > x;. Then the function us(x) defined by (x) with
a = ay is a bump solution, with us(x) > 0 if and only if x € (0, as).

e Theorem: If as/2 € (x1,x,], then u(x) has one zero on (0, a3), at a
global maximum at x = ay/2. If az/2 > x,, then u(x) has at least
three zeros on (0, az), including a local minimum at x = a2/2.
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e Additional hyp. on w or h = us(x) is a valid bump for a,/2 < x;.




Numerical examples: tooth
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Proposition: If a3/2 > ai, uz(x) > 0 on (0, az), then us(az/2) > —h.



Birth and death mechanisms

e can show bumps only exist for a finite interval of a (or h) values
e no saddle-nodes; bump amplitude/width do not go to 0
e two mechanisms:

internal tangency: u(x) = v/(x) = 0 at some point in (0,a), else
u(x) >0
boundary tangency: u(0) = u’(0) =0, u(a) =u'(a) =0

e as |h| |, birth is always internal tangency; death may be either

Numerical example: birth
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Numerical example: growth and death (movie)
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Spatial variation in coupling

u(x,t) = —u(x,t) + X w(x — y)p(y)H(u(y,t))dy + h
p(x) =1+ €(1 4+ cos(px+ ¢)); w.lo.g.p=1

First, consider bumps on (0,a) with ¢ = 0:

e u(0) = u(a) = 0 now gives two equations

0= [sw(n)p(n)dn+h, 0= [fw(a—n)p(n)dn+h

e subtract to obtain

g(a) := [jw(a —n)p(n)dn — [;w(n)p(n)dny

e look for zeros of g (e.g. 2nm); then check whether these satisfy
u(a) =0 for h <0 and a = a,



Bump pinning
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e zeros of g are independent of o

e > 0: 0.4
g(a)
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e only a subset gives valid bumps; each a in subset has correspond-
ing h <0
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Bumps on (b1, by) with arbitrary phase shift ¢

e similar analysis = g(by, b2)
e can show g = g(z1,6) where z; = by — ¢ and § = bump length

e for our choice of p(x), we find numerically that for each choice of
¢ and starting position bq,

- a small, discrete set of bump sizes can occur, and
- one particular size (not 2nm) always belongs to this set:

4
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Summary

e off-center coupling can yield a single linearly stable bump, if the
long-range inhibition dominates the local inhibition

open: how does this apply in more biological models? two layers?

29

e this mechanism favors “wide” bumps, which may have interior

local minima

e these bumps form/disappear via tangencies, not shrinkage

open: multi-bumps? time-dependent solutions? interactions?

e spatial variation in coupling induces pinning, such that bumps can
only exist for discrete background activity levels

open: invariant bump length? other inhomogeneities? significance
of pinning?

w(X) W(x)




What about other architectures?

e Q: How does a pattern of synchrony restrict the possi-
ble architectures in a network? [w/Golubitsky & Josic]

e Consider:
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e Golubitsky & Stewart: A clustered solution, with ro-
bust synchrony within clusters, can exist iff there is a
balanced coloring corresponding to that solution.

e Above: #{ connections from cells of A to cells of B}
is a constant c(A,B) for A,B € {red, blue, white,
yellow }.



e Problem: For given k,l, Ng, Ny, find a nontrivial
balanced coloring (with min number of connections).

e Example (one population; N = 9,k = 3):
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e Note: Which k are selected is arbitrary — connections
are homogeneous.

e Idea: abstract mathematical approach =- architectural
possibilities precisely specified; activity pattern observed
thus gives information about synaptic architecture



Change gears

e Consider a network of recurrently connected excitatory
cells (E-E connections only).

e Focus on details of intrinsic and synaptic dynamics.

e Result: A reminder that these details can strongly
shape pattern formation.



Case I: Hodgkin-Huxley neurons with all-to-all coupling
[Drover, Rubin, Su, & Ermentrout]

C‘ﬁX = f(V,h) — gsyns(V — Vsyn)
dh = ap(V)(1 — h) — Bp(V)h

a5 — a(V)(1 — 8) — 8/Tsyn

where
F(Vih) = I — gnoh(V — Vg )mi (V)
—gx(V — Vi )n*(h) — gr(V — Vi)



Numerics
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Type 1I: oscillations
emerge with Zero
frequency:; excita-
tion desynchronizes
(Ermentrout, 1996)

Mi.A9
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Type II: oscillations emerge
with nonzero frequency;
excitation synchronizes
(Somers & Kopell, 1993;
Hansel et al., 1995)



What causes the slowing? (movie)
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Delay estimation

z1 =v — 0(s) dz _ Tsyn

zog = w — W(s) ds

linearize about (0,0) and solve:

2(s) = 2(s0) exp(—Tayn /3, £2(0, 0) dw)
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Case II: Eliminate all-to-all coupling = sustained,
localized activity with E-E coupling only! [w/ A. Bose]

works with Type I as above (numerics in Drover and
Ermentrout, STAP, 2003) or Type II:
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Equations (movie)

Ufg = —log —1Ig — I, — gsyn[”i — Esyn] {C()Sz Z]_lc] [Sz —jt SZ—I—]H
wi = [Woo(v;) — wz]/Tw(Uz>
si = all — s;|Hoo(v; —vg) — Bs; (s, =0fori < 1,i > N)

—(s; for v; < vy

0 for v; > vy, with s; =1
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Geometry

v; = f(viw;) — Gsyn'S;
w; = g(v, w;)
S! = —3S;

w’ =0, s=(

go curve



Geometry 2

w’ =0, s=(C
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Implications
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Properties of solutions

e can get bumps of any size
e size selected is sensitive to parameters of initial shock
e details of bumps are sensitive

e also get propagation with recruitment after variable
delays — short delays follow long delays
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SUMMARY

e Intrinsic and synaptic dynamics can give unexpected
results.

e Geometric viewpoint is useful for understanding obser-
vations.

e OPEN: Are these figments of models or do neurons
operate in these regimes?



