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Klüver: We wish to stress merely one point, namely, that

under diverse conditions the visual system responds in

terms of a limited number of form constants.



Outline

1. Visual Hallucinations

2. Structure of Visual Cortex

(a) Hubel and Wiesel hypercolumns

(b) local and lateral connections

(c) isotropy versus anisotropy

3. Pattern Formation in Planar Systems

(a) Symmetry

(b) Four models

4. Interpretation of Patterns in Retinal Coordinates

(a) threshold patterns

(b) thin line contour patterns

(c) time-periodic patterns
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Visual Hallucinations

• Drug uniformly forces activation of cortical cells

• Leads to spontaneous pattern formation on cortex

• Map from retina to primary visual cortex;
translates pattern on cortex to visual image

• Patterns fall into four form constants (Klüver, 1928):

– tunnels and funnels

– spirals

– lattices includes honeycombs and triangles

– cobwebs

Figure 1: Funnels and spirals (G. Oster, Scientific American, 1970
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Figure 2: Cobweb (Patterson, 1992).

Figure 3: (Left) Phosphene produced by deep binocular pressure on eyeballs;
(Right) Honeycomb generated by marihuana
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Figure 4: Lattice-tunnel generated by marihuana (Hall)
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Orientation Sensitivity of Cells in V1

• Most V1 cells sensitive to orientation of contrast edge

Figure 5: Distribution of orientation preferences in Macaque V1 (Blasdel)

• Hubel and Wiesel, 1974

Each millimeter there is a hypercolumn consisting of
orientation sensitive cells in every direction preference
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Structure of Primary Visual Cortex (V1)

• Optical imaging exhibits pattern of connection

Figure 6: V1 lateral connections: Macaque (left, Blasdel) and Tree Shrew (right, Fitzpatrick)

• Two kinds of coupling: local and lateral

(a) local: cells < 1mm connect with most neighbors

(b) lateral: cells make contact each mm along axons;
connections in direction of cell’s preference

• Lateral coupling small compared to local coupling

Anisotropy in lateral coupling small

Optical imaging suggests spatial anisotropy.
Tree shrew: anisotropy pronounced
Macaque: most anisotropy due to stretching in direction

orthogonal to ocular dominance columns
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Action of Euclidean Group

• Euclidean group: rotations, reflections, translations

• Many differential equations are Euclidean invariant
Similarity of pattern formation due to symmetry

• Abstract physical space of V1 is R2 × S1 — not R2

Hypercolumn becomes circle measuring orientation

hypercolumn

lateral connections

local connections

Figure 7: Abstraction of local and anisotropic lateral connections in V1

• Euclidean groups acts on R2 × S1 by
Rθ(x, ϕ) = (Rθx, ϕ + θ) κ(x, ϕ) = (κx,−ϕ)

Ty(x, ϕ) = (Tyx, ϕ)
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Isotropic Lateral Connections

hypercolumn

lateral connections

local connections

Figure 8: Abstraction of local and isotropic lateral connections in V1

• Isotropic lateral connections introduce new O(2) symmetry

φ̂(x, ϕ) = (x, ϕ + φ̂)

• Weak anisotropy is forced symmetry breaking of

E(2)+̇O(2)→ E(2)
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Four Models

1. E(2) acting on R2 (Ermentrout-Cowan)

neurons located at each point x

2. Shift-twist action of E(2) on R2×S1 (Bressloff-Cowan)

hypercolumns located at x; neurons tuned to ϕ

anisotropic lateral connections

3. E(2)+̇O(2) acting on R2 × S1 (Wolf)

isotropic lateral coupling

4. Symmetry breaking: E(2)+̇O(2)→ E(2)

weakly anisotropic lateral coupling
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Pattern Formation Outline

1. Double-Periodicity and Planar Lattices

• Translations: plane waves

• Reflections: even and odd representations

• Rotations: infinite-dimensional eigenspaces

• Lattices: back to finite dimensions

2. Bifurcation Theory with Symmetry

• Equivariant Branching Lemma

• Scalar and pseudoscalar bifurcations

3. Planforms

• Adaptation to Visual Cortex

Line Fields, contours, and thresholding

•Winner-take-all strategy

• Cortex to Retina transformation
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Observations Using Symmetry
Bosch Vivancos, Chossat, Melbourne

• Assume system of differential equations on R2 × S1

with Euclidean equivariant linearization L

Lγ = γL ∀γ ∈ E(2)

• Planforms are approximated by eigenfunctions of L

Symmetry dictates eigenfunctions

• TRANSLATIONS on R2 × S1 imply

Wk = {u(ϕ)eik·x + c.c : u : S1 → C}

is L-invariant subspace for every dual wave vector

k ∈ R2

• Eigenfunctions have plane wave factors

u(ϕ)eik·x + c.c.
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Action of Reflections

• Choose REFLECTION ρ so that ρk = k

ρ
(

u(ϕ)eik·x
)

= ρ(u(ϕ))eik·x

So ρ : Wk → Wk

• ρ2 = 1 implies Wk = W+
k ⊕W

−
k

where ρ acts as +1 on W+
k and −1 on W−

k

• Eigenfunctions are even or odd. When k = (1, 0)

u(−ϕ) = u(ϕ) u ∈ W+
k

u(−ϕ) = −u(ϕ) u ∈ W−
k

• Both kinds of eigenfunctions occur in models

• Study nonoriented directions: u(x, ϕ + π) = u(x, ϕ)
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Action of Rotations

Rθ

(

u(ϕ)eik·x
)

= Rθ(u(ϕ))eiRθ(k)·x

Therefore
Rθ(Wk) = WRθ(k)

• Rotation symmetry implies kerL is ∞-dimensional

Planar Lattices

• Double-periodicity: Look for solns on lattice

• The space of doubly periodic functions w.r.t L is

FL = {f ∈ F : f (x + `) = f (x) ∀` ∈ L}

• Finite number of rotations: ker L is finite-dimensional

• Choose lattice size so shortest dual vectors are critical
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Equivariant Bifurcation Theory

• Symmetry group Γ: f (γx) = γf (x)

• Fix(Σ) = {x ∈ Rn : σx = x ∀σ ∈ Σ}

• Fix(Σ) is flow invariant

Proof: f (x) = f (σx) = σf(x)

The Equivariant Branching Lemma

• Isotropy subgroup Σ ⊂ Γ is axial if

dim Fix(Σ) = 1

on critical eigenspace

• Generically, there exists a branch of
solutions with Σ symmetry for every
axial subgroup Σ
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Planforms For Ermentrout-Cowan

Square lattice: Two axial subgroups of T2+̇D4

O(2)⊕ Z2 stripes and D4 squares

Hexagonal lattice: Two axial subgroups of T2+̇D6

O(2)⊕ Z2 stripes and D6 hexagons
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Figure 9: Thresholding of axial eigenfunctions: (left) stripes; (right) squares
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Figure 10: Thresholding of axial eigenfunction hexagons
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Axial Subgroups in Orientation Tuned Models

Name Axial Planform Eigenfunction

squares D4 u(ϕ) cosx + u
(

ϕ− π
2

)

cos y

stripes O(2)⊕D1 u(ϕ) cosx

hexagons D6

∑2
j=0 u (ϕ− jπ/3) cos(kj · x)

stripes O(2)⊕D1 u(ϕ) cos(k1 · x)

Table 1: Axial planforms when u(ϕ) = u(−ϕ) is even.

Name Axial Planform Eigenfunction

square D∗4 u(ϕ) cosx− u
(

ϕ− π
2

)

cos y

stripes O(2)⊕D∗1 u(ϕ) cosx

hexagons Z6

∑2
j=0 u (ϕ− jπ/3) cos(kj · x)

triangles D3

∑2
j=0 u (ϕ− jπ/3) sin(kj · x)

rectangles D2 u
(

ϕ− π
3

)

cos(k2 · x)− u
(

ϕ + π
3

)

cos(k3 · x)

stripes O(2)⊕D∗1 u(ϕ) cos(k1 · x)

Table 2: Axial planforms when u(ϕ) = −u(−ϕ) is odd. ∗ = glide reflection

17



How to Find Amplitude Function u(ϕ)

• Isotropic connections imply EXTRA O(2) symmetry

• O(2) decomposes Wk into sum of irreducible sub-
spaces

Wk,p = {zepϕieik·x + c.c. : z ∈ C} ∼= R2

Generically, eigenfunctions of L lie in Wk,p for some p

• W+
k,p = {cos(pϕ)eik·x} even case

W−
k,p = {sin(pϕ)eik·x} odd case

•Wilson-Cowan models lead to
p = 0 or p = 1 bifurcations in even case
p = 1 bifurcations in odd case

• Compute pictures in p = 1 cases

u(ϕ) ≈ cos(ϕ) and u(ϕ) ≈ sin(ϕ)
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Winner-Take-All Strategy
Creation of Line Fields

• Given: Activity of neuron in hypercolumn at x
sensitive to direction ϕ

• Assumption: Most active neuron in hypercolumn
suppresses other neurons in hypercolumn

• Consequence: For all x find ϕx ∈ S1 where
activity is maximum

• Planform: Draw small line segment at x
oriented at angle ϕx
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Figure 11: Even Stripes (upper); odd Stripes (lower)

20



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

 D
4
 − Esquares

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

 D
4
 − Osquares

Figure 12: Even Squares (upper); odd Squares (lower)
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Cortex to Retina

• Neurons on cortex are uniformly distributed

• Neurons in retina fall off by 1/r2 from fovea

• Unique conformal map takes uniform density square
to 1/r2 density disk: complex exponential

• Cortex to retinal map is

r = ω exp(εx)
θ = εy

In retinal images we take

ω = 30/e2π and ε = 2π/nh

where nh = 36 = # hypercolumn widths in cortex

• Straight lines on cortex 7→
circles, logarithmic spirals, and rays in retina
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(I)   (II)

(III) (IV)
Figure 13: Hallucinatory form constants. (I) funnel and (II) spiral images seen following
ingestion of LSD [Siegel & Jarvik, 1975], (III) honeycomb generated by marihuana [Clottes
& Lewis-Williams (1998)], (IV) cobweb petroglyph [Patterson, 1992].
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Planforms in the Visual Field

(a) (b)

(c) (d)
Visual field planforms
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Isotropic Coupling: Extra O(2) symmetry

• ϕ̂(x, ϕ) = (x, ϕ + ϕ̂)

• Eigenspaces: sum of even and odd

• Square lattice:

four axials

one maximal subgroup with 2D fixed-point subspace
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Figure 14: Direction fields of new planforms in isotropic model.

• Hexagonal lattice:

Nine axials

three maximal subgroups with 2D fixed-pt subspaces
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Hallucinations in Isotropic Coupling Model

Figure 15: (Top) Conjugate solutions (7); (bottom) threshold.
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Figure 16: Phosphene-like planforms: (top) planform (12); (bottom) planform (9)
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Weakly Anisotropic Coupling

• Square lattice: Forced symmetry-breaking to

1. even and odd stripes

2. even and odd squares

3. two new equilibrium planforms

4. a time-periodic rotating wave

• Hexagonal lattice: Forced symmetry-breaking to

1. seven types of equilibria

2. two contracting or expanding periodic states

3. two rotating waves

4. state that is an equilibrium or time-periodic
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Landau Theory of Phase Transitions
for a Liquid Crystal

• nematic phase

preferred direction along which molecules align

• Alignment of molecules represented by

3× 3 symmetric trace zero matrices Q(x)

• Molecule at x aligns along eigendirection of Q(x)

corresponding to largest eigenvalue

• Q is second moment of probability distribution

for alignment of rod-like molecule

• Action of E(3): Let γ ∈ O(3) and y ∈ R3

(TyQ)(x) = Q(x− y)
(γ ·Q)(x) = γQ(γ−1x)γ−1
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Scalar and Pseudoscalar Eigenspaces
Chillingworth and Golubitsky

• Spatially uniform liquid crystal: Q independent of x

homeotropic — all molecules aligned in one direction

isotropic — equally likely to align in any direction

• Bifurcation from Euclidean invariant Q0

Translation invariance implies Q0 is constant

Rotation invariance implies: Q0 = α





−1 0 0
0 −1 0
0 0 2





• α > 0: homeotropic — directors point vertically

• α < 0: isotropic — directors equally likely to point in
any horizontal direction

• Q0 is invariant under up-down reflection: τ =





1 0 0
0 1 0
0 0 −1





• Symmetry group is Γ = E(2)⊕ Z2(τ )

Just like Bénard convection with midplane reflection
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Linear Theory

• Translations: eigenfunctions have form e2πik·xQ+ c.c.

Wk = {e2πik·xQ + c.c. : Q is complex-valued}

where dimWk = 10

• Four possible bifurcations
scalar/pseudoscalar

τ acts trivially/nontrivially

• Since L commutes with τ , we can subdivide

Wk = W++
k ⊕W+−

k ⊕W−+
k ⊕W−−

k

where each W±±
k is L-invariant

•

Q++ =





a 0 0
0 b 0
0 0 −a− b



 Q+− =





0 0 i
0 0 0
i 0 0





and

Q−+ =





0 1 0
1 0 0
0 0 0



 Q−− =





0 0 0
0 0 i
0 i 0




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Pattern Formation from the Isotropic State

Rolls solutions on bifurcation from αQ0 when α < 0
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Figure 17: Rolls perturbation from −Q0: (upper) scalar; (lower) pseudoscalar τ = +1.
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Pattern Formation from the
Homeotropic State

Rolls solutions on bifurcation from αQ0 when α > 0
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Figure 18: Rolls perturbation from Q0: (upper) scalar; (lower) pseudoscalar τ = +1.
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