Estimating parameters from CFSE data

Rob J. de Boer
Theoretical Biology, UU

Ongoing work with:
Rustom Antia, Vitaly Ganusov, Sergei Pilyugin \&
Alan Perelson

CFSE

- Carboxy Fluorescent Succinimidyl Ester
\rightarrow Lyons \& Parish, JIM, 1994
- Label cells in vitro: cell pick up the dye
- Two daughter cells after division half the intensity
- Follow cells in vitro or in vivo for 7 divisions
- Because method tracks individual divisions it is typically more informative than BrdU or ${ }^{2} \mathrm{H}$-glucose labeling

Example

After 48h most cells have completed three divisions:
Not true because division index 3 naturally has 2^{3}-fold more cells

Gett \& Hodgkin, Nature Immunology, 2000

Gett \& Hodgkin, Nature Immunology, 2000

- Data are fingered: fit a log-normal Gaussian distribution \rightarrow number (or fraction) of cells in each division index i
- Divide this by 2^{i} to correct for number of divisions
\rightarrow otherwise overestimation of highest division index
- Precursor cohort plot: frequency distribution of normalized cell numbers (or fractions)
- Compute mean of frequency distribution for divided cells $\widehat{\mu_{2}}(t)=\sum_{i=1} \infty i f_{i}(t)$
- Conjecture: mean $\widehat{\mu_{2}}(t)$ increases linearly in time!

Gett \& Hodgkin, Nature Immunology, 2000

Gett \& Hodgkin, Nature Immunology, 2000

Mean increases linearly in time:

- Slope reflects division time
- Time at which $\widehat{\mu_{2}}=1$ is time to first division
- Cell cycle times of 20 h and 60 h .
- Intuitive leap: if true this seems a very general approach
- Frequency distributions seem Gaussian: times to first divisions have a Gaussian distribution.

Normalization gives fractions completing n divisions

Importantly, the 2^{n} normalization repairs the mistake of saying that most cells have completed n divisions

Questions

- Pilyugin et al. JTB (in press) showed for homogeneous models that slope of mean depends the distribution of the death rates.
- Here we focuss on heterogeneous model: resting cells that are stimulated to divide.
- Do Gaussian frequency distributions truly reflect a Gaussian distribution in the time to first division?

Modeling the Gett \& Hodgkin approach

Homogeneous case:

$$
\begin{aligned}
\frac{\mathrm{d} N_{0}}{\mathrm{~d} t} & =-(p+d) N_{0} \\
\frac{\mathrm{~d} N_{i}}{\mathrm{~d} t} & =2 p N_{i-1}-(p+d) N_{i}, \quad \text { for } i=1, \ldots, \infty
\end{aligned}
$$

The total number of cells: $N(t)=N_{0}(0) \mathrm{e}^{(p-d) t}$.

The frequency distribution of cells over the division numbers, is a Poisson distribution: $\mu(t)=2 p t$,

$$
F_{i}(t)=\frac{(2 p t)^{i}}{i!} \mathrm{e}^{-2 p t}, \quad \text { for } i=1, \ldots, \infty
$$

Normalization

When $n_{i}(t) \equiv N_{i}(t) / 2^{i}$ one obtains

$$
f_{i}(t)=\frac{(p t)^{i}}{i!} \mathrm{e}^{-p t}
$$

and

$$
n(t)=N_{0}(0) \mathrm{e}^{-d t}
$$

Thus $\mu_{2}(t)=p t$ and $\mu_{2}=1$ yields $t=1 / p$.

Death rate can be estimated from $n(t)=N_{0}(0) \mathrm{e}^{-d t}$.

Mean of divided cells

$$
\widehat{\mu_{2}}(t) \equiv \sum_{i=1}^{\infty} i f_{i}(t) / \sum_{i=1}^{\infty} f_{i}
$$

This new mean is

$$
\widehat{\mu_{2}}(t)=\frac{p t}{1-\mathrm{e}^{-p t}}
$$

and the normalized number of dividing cells is

$$
\widehat{n}(t)=N_{0}(0) \mathrm{e}^{-d t}\left[1-\mathrm{e}^{-p t}\right]
$$

Both have an initial transient of one cell cycle, p^{-1}.
Moreover, solving $\widehat{\mu_{2}}(t)=1$ gives zero $\left(\widehat{\mu_{2}}(0) \rightarrow 1\right)$.
Only after this transient $\widehat{\mu_{2}}(t) \rightarrow p t$.

Homogeneous model: three means

Use μ_{2} or asymptote of $\widehat{\mu_{2}}$ to estimate p.

Means of the data

Increase seems fairly linear, asymptotic regime approached? Why use $\widehat{\mu_{2}}(t)$ instead of $\mu_{2}(t)$ or even simply $\mu(t)$?

Conclusion

Method	Transient		cells	Intersect	Slope
μ	0	0	$\mathrm{e}^{(p-d) t}$	$(2 p)^{-1}$	$2 p t$
μ_{2}	0	0	$\mathrm{e}^{-d t}$	p^{-1}	$p t$
$\widehat{\mu_{2}}$	p^{-1}	20 h	$\mathrm{e}^{-d t}$	p^{-1}	$p t$

Fraction of cells that never divides

ϕ is fraction of precursors cells that divides, and let τ be the time delay before proliferation starts.

The gives the total normalized cell numbers

$$
n(t)=P \mathrm{e}^{-d(t+\tau)}
$$

and the frequency distribution

$$
f_{0}(t)=\phi \mathrm{e}^{-p t}+1-\phi \quad \text { and } \quad f_{i}(t)=\phi \frac{(p t)^{i}}{i!} \mathrm{e}^{-p t}
$$

with mean

$$
\mu_{2}(t) \equiv \sum_{i=0}^{\infty} i f_{i}(t)=\phi p t
$$

Solving $\mu_{2}(t)=1$ also fails to deliver the time to first division.

The Gett \& Hodgkin mean $\widehat{\mu_{2}}(t)$

Because ϕ cancels from when one computes

$$
\widehat{\mu_{2}}(t) \equiv \sum_{i=1}^{\infty} i f_{i}(t) / \sum_{i=1}^{\infty} f_{i}
$$

one obtains the same mean as before:

$$
\widehat{\mu_{2}}(t)=\frac{p t}{1-\mathrm{e}^{-p t}}
$$

and the normalized number of dividing cells is

$$
\widehat{n}(t)=N_{0}(0) \mathrm{e}^{-d t}\left[1-\mathrm{e}^{-p t}\right]
$$

Thus after the initial transient of one cell cycle, p^{-1}, one should be able to estimate p.

Fraction of cells that never divides: $\phi=0.5$

$\widehat{\mu_{2}}(t)$ seems to perform better than $\mu_{2}(t)$.

Means of the data

Data seem to suggest that $\phi=1$.

Conclusion

Method	Transient		cells	Intersect	Slope
μ	0	0	$\mathrm{e}^{(p-d) t}$	$(2 p)^{-1}$	$2 p t$
μ_{2}	0	0	$\mathrm{e}^{-d t}$	p^{-1}	$p t$
$\widehat{\mu_{2}}$	p^{-1}	20 h	$\mathrm{e}^{-d t}$	p^{-1}	$p t$
$\frac{\mu_{2}}{\widehat{\mu_{2}}}$	τ	40 h	$\mathrm{e}^{-d t}$	$\tau+(\phi p)^{-1}$	$\phi p t$
	$\tau+p^{-1}$	60 h	$\mathrm{e}^{-d t}$	$\tau+p^{-1}$	$p t$

Heterogeneous case

Slopes of $0.025 h^{-1},-0.025 h^{-1}$, and $-0.05 h^{-1}$. Death rate $d=0.025 \mathrm{~h}^{-1}$, delivers $p=0.05 \mathrm{~h}^{-1}$. Loss of non-divided cells would be $N_{0}(t)=N(0) \mathrm{e}^{-(p+d) t}=N(0) \mathrm{e}^{-0.05 t}$.
No evidence for $\phi<1$

$$
\begin{aligned}
& \frac{\mathrm{d} N_{0}}{\mathrm{~d} t}=-\left(p^{\prime}+d^{\prime}\right) N_{0} \quad, \quad \frac{\mathrm{~d} N_{1}}{\mathrm{~d} t}=2 p^{\prime} N_{0}-(p+d) N_{1} \\
& \frac{\mathrm{~d} N_{i}}{\mathrm{~d} t}=2 p N_{i-1}-(p+d) N_{i}, \quad \text { for } i=2, \ldots, \infty
\end{aligned}
$$

Total cell numbers obey

$$
N(t)=\frac{N_{0}(0) \mathrm{e}^{(p-d) t}}{c}\left[2 p^{\prime}+b \mathrm{e}^{-c t}\right]
$$

and the mean is

$$
\mu(t)=\frac{2 p^{\prime}\left[a\left(\mathrm{e}^{-c t}-1\right)+2 p c t\right]}{c\left[2 p^{\prime}+b \mathrm{e}^{-c t}\right]}
$$

where $a=p-p^{\prime}+d-d^{\prime} \geq 0, b=p-p^{\prime}-\left(d-d^{\prime}\right)>0$, and a transient of $c=p+p^{\prime}-\left(d-d^{\prime}\right)>0$.

Heterogeneous model: $\mu(t)$

For times larger than $1 / c=\left[p+p^{\prime}-\left(d-d^{\prime}\right)\right]^{-1} \mathrm{~h}$ the mean will approach

$$
\mu(t)=2 p t-\frac{p-p^{\prime}+d-d^{\prime}}{p+p^{\prime}-\left(d-d^{\prime}\right)}
$$

which increases with the expected slope $2 p t$.

Solving $\mu(t)=1$ from this asymptote gives $t=1 /\left(p+p^{\prime}-d+\right.$ $\left.d^{\prime}\right)$, which only delivers the time to first division when $d=d^{\prime}$.

Picking $p=0.05 \mathrm{~h}^{-1}, p^{\prime}=1 / 60 \mathrm{~h}^{-1}, d=0.025 \mathrm{~h}^{-1}$, and $d^{\prime}=$ $0.01 \mathrm{~h}^{-1}$, the transient is about 20 h .

Heterogeneous model: $\mu_{2}(t)$

Similar analysis gives

$$
\mu_{2}(t)=\frac{p^{\prime}}{\gamma} \frac{\gamma p t+a\left(\mathrm{e}^{-\gamma t}-1\right)}{p^{\prime}+\left(d^{\prime}-d\right) \mathrm{e}^{-\gamma t}}
$$

and

$$
n(t)=\frac{N_{0}(0) \mathrm{e}^{-d t}}{\gamma}\left[p^{\prime}+\left(d^{\prime}-d\right) \mathrm{e}^{-\gamma t}\right]
$$

which both have a transient of $\gamma=p^{\prime}+d^{\prime}-d=p-a$.

After this transient, i.e., for $t \rightarrow \infty$

$$
\mu_{2}(t)=p t-\frac{a}{\gamma}=p t-\frac{p-p^{\prime}+d-d^{\prime}}{p^{\prime}+d^{\prime}-d}
$$

which increases with slope $p t$.

```
But ...
```

Solving $\mu_{2}(\infty)=1$ yields $t=1 /\left(p^{\prime}+d^{\prime}-d\right)$ which is only equal to the time to first division when $d=d^{\prime}$.

Picking $p=0.05 \mathrm{~h}^{-1}, p^{\prime}=1 / 60 \mathrm{~h}^{-1}, d=0.025 \mathrm{~h}^{-1}$, and $d^{\prime}=$ $0.01 \mathrm{~h}^{-1}$, the transient is about $1 / \gamma=600 \mathrm{~h}$.

Heterogeneous model: $\widehat{\mu_{2}}(t)$

Similar analysis yields

$$
\widehat{n}(t)=\frac{p^{\prime} N_{0}(0) \mathrm{e}^{-d t}}{\gamma}\left[1-\mathrm{e}^{-\gamma t}\right]
$$

and

$$
\widehat{\mu_{2}}(t)=\frac{\gamma p t+a\left(\mathrm{e}^{-\gamma t}-1\right)}{\gamma\left[1-\mathrm{e}^{-\gamma t}\right]}
$$

with the same long transient γ.

For $t \rightarrow \infty$ the mean of the divided cells approaches

$$
\widehat{\mu_{2}}(t)=p t-\frac{a}{\gamma}=p t-\frac{p-p^{\prime}+d-d^{\prime}}{p^{\prime}+d^{\prime}-d}
$$

which is the same as $\mu_{2}(t)$.

Note that γ could even be negative.

Difference between death rates determines length of the transient.

Conclusion

Method	Transient	cells	Intersect	Slope	
μ	0	0	$\mathrm{e}^{(p-d) t}$	$(2 p)^{-1}$	$2 p t$
μ_{2}	0	0	$\mathrm{e}^{-d t}$	p^{-1}	$p t$
$\widehat{\mu_{2}}$	p^{-1}	20 h	$\mathrm{e}^{-d t}$	p^{-1}	$p t$
μ_{2}	τ	40 h	$\mathrm{e}^{-d t}$	$\tau+(\phi p)^{-1}$	$\phi p t$
$\widehat{\mu_{2}}$	$\tau+p^{-1}$	60 h	$\mathrm{e}^{-d t}$	$\tau+p^{-1}$	$p t$
μ	$\left[p+p^{\prime}-\left(d-d^{\prime}\right)\right]^{-1}$	19.35 h	$\mathrm{e}^{(p-d) t}$	$\left[p+p^{\prime}-d+d^{\prime}\right]^{-1}$	$2 p t$
μ_{2}	$\left[p^{\prime}+d^{\prime}-d\right]^{-1}$	600 h	$\mathrm{e}^{-d t}$	$\left[p^{\prime}+d^{\prime}-d\right]^{-1}$	$p t$
$\widehat{\mu_{2}}$	$\left[p^{\prime}+d^{\prime}-d\right]^{-1}$	600 h	$\mathrm{e}^{-d t}$	$\left[p^{\prime}+d^{\prime}-d\right]^{-1}$	$p t$

Fitting with the ODE model

Estimates: $p=0.025 h^{-1}$ (40h), $p^{\prime}=0.022 h^{-1}$ (45)h, $d^{\prime}=$ $0.01 \mathrm{~h}^{-1}$, and $N(0)=1.5 \times 10^{4}$ cells.

Fitting with the Smith-Martin model

ODE models perform poorly: time delay is required.

Conclusions

- Collect data late enough to approach the linear regime of $\mu(t)$, but early enough to exclude confounding factors
- Parameter estimation using means sensitive to transients
- Since $\mu(t)$ has the shortest transient one could argue that this mean is the most reliable?
- Normalization remains important to argue about fractions of cells having completed n divisions, and to test whether means are increasing linearly.
- Difference between $\mu_{2}(t)$ and $\widehat{\mu_{2}}(t)$ may give indication that a fraction of the cells fails to divide
- Time to first division very difficult to estimate
- Plot $N(t), n(t)$, and $N_{0}(t)$ and estimates slopes.
- Use all this information as an initial guess for fitting with the Smith-Martin model.
- Do not fit ODE models to CFSE data

