Estimating parameters from CFSE data

Rob J. de Boer Theoretical Biology, UU

Ongoing work with:

Rustom Antia, Vitaly Ganusov, Sergei Pilyugin & & Alan Perelson

CFSE

- Carboxy Fluorescent Succinimidyl Ester
- \rightarrow Lyons & Parish, JIM, 1994
- Label cells *in vitro*: cell pick up the dye
- Two daughter cells after division half the intensity
- Follow cells in vitro or in vivo for 7 divisions
- Because method tracks individual divisions it is typically more informative than BrdU or ²H-glucose labeling

Example

After 48h most cells have completed three divisions: Not true because division index 3 naturally has 2³-fold more cells

- Data are fingered: fit a log-normal Gaussian distribution
- \rightarrow number (or fraction) of cells in each division index *i*
- Divide this by 2^i to correct for number of divisions
- \rightarrow otherwise overestimation of highest division index
- Precursor cohort plot: frequency distribution of normalized cell numbers (or fractions)
- Compute mean of frequency distribution for divided cells $\widehat{\mu_2}(t) = \sum_{i=1} \infty i f_i(t)$
- Conjecture: mean $\widehat{\mu_2}(t)$ increases linearly in time!

Mean increases linearly in time:

- Slope reflects division time
- Time at which $\widehat{\mu_2} = 1$ is time to first division
- Cell cycle times of 20 h and 60 h.
- Intuitive leap: if true this seems a very general approach
- Frequency distributions seem Gaussian: times to first divisions have a Gaussian distribution.

Normalization gives fractions completing n divisions

Importantly, the 2^n normalization repairs the mistake of saying that **most** cells have completed n divisions

Questions

- Pilyugin et al. JTB (in press) showed for homogeneous models that slope of mean depends the distribution of the death rates.
- Here we focuss on heterogeneous model: resting cells that are stimulated to divide.
- Do Gaussian frequency distributions truly reflect a Gaussian distribution in the time to first division?

Modeling the Gett & Hodgkin approach

Homogeneous case:

$$\frac{\mathrm{d}N_0}{\mathrm{d}t} = -(p+d)N_0$$

$$\frac{\mathrm{d}N_i}{\mathrm{d}t} = 2pN_{i-1} - (p+d)N_i , \qquad \text{for } i = 1, \dots, \infty$$

The total number of cells: $N(t) = N_0(0)e^{(p-d)t}$.

The frequency distribution of cells over the division numbers, is a Poisson distribution: $\mu(t) = 2pt$,

$$F_i(t) = \frac{(2pt)^i}{i!} e^{-2pt}$$
, for $i = 1, ..., \infty$

Normalization

When $n_i(t) \equiv N_i(t)/2^i$ one obtains

$$f_i(t) = \frac{(pt)^i}{i!} \mathrm{e}^{-pt} \; ,$$

and

$$n(t) = N_0(0) \mathrm{e}^{-dt}$$

Thus $\mu_2(t) = pt$ and $\mu_2 = 1$ yields t = 1/p.

Death rate can be estimated from $n(t) = N_0(0)e^{-dt}$.

$$\widehat{\mu}_2(t) \equiv \sum_{i=1}^{\infty} i f_i(t) / \sum_{i=1}^{\infty} f_i$$

This new mean is

$$\widehat{\mu_2}(t) = \frac{pt}{1 - \mathrm{e}^{-pt}} \; ,$$

and the normalized number of dividing cells is $a(t) = dt \left[d - nt \right]$

$$\widehat{n}(t) = N_0(0) \mathrm{e}^{-dt} \left[1 - \mathrm{e}^{-pt} \right]$$

Both have an initial transient of one cell cycle, p^{-1} .

Moreover, solving $\widehat{\mu}_2(t) = 1$ gives zero $(\widehat{\mu}_2(0) \rightarrow 1)$.

Only after this transient $\widehat{\mu}_2(t) \rightarrow pt$.

Use μ_2 or asymptote of $\widehat{\mu_2}$ to estimate p.

Means of the data

Increase seems fairly linear, asymptotic regime approached? Why use $\hat{\mu}_2(t)$ instead of $\mu_2(t)$ or even simply $\mu(t)$?

Conclusion

Method	Transient		cells	Intersect	Slope
μ	0	0	$e^{(p-d)t}$	$(2p)^{-1}$	2pt
μ_2	0	0	e^{-dt}	p^{-1}	pt
$\widehat{\mu_2}$	p^{-1}	20 h	e^{-dt}	p^{-1}	pt

 ϕ is fraction of precursors cells that divides, and let τ be the time delay before proliferation starts.

The gives the total normalized cell numbers

$$n(t) = P e^{-d(t+\tau)}$$

and the frequency distribution

$$f_0(t) = \phi e^{-pt} + 1 - \phi$$
 and $f_i(t) = \phi \frac{(pt)^i}{i!} e^{-pt}$,

with mean

$$\mu_2(t) \equiv \sum_{i=0}^{\infty} i f_i(t) = \phi pt \; .$$

Solving $\mu_2(t) = 1$ also fails to deliver the time to first division.

Because ϕ cancels from when one computes

$$\widehat{\mu}_2(t) \equiv \sum_{i=1}^{\infty} i f_i(t) / \sum_{i=1}^{\infty} f_i ,$$

one obtains the same mean as before:

$$\widehat{\mu_2}(t) = \frac{pt}{1 - \mathrm{e}^{-pt}} \; ,$$

and the normalized number of dividing cells is

$$\widehat{n}(t) = N_0(0) \mathrm{e}^{-dt} \left[1 - \mathrm{e}^{-pt} \right]$$

Thus after the initial transient of one cell cycle, p^{-1} , one should be able to estimate p.

 $\widehat{\mu_2}(t)$ seems to perform better than $\mu_2(t)$.

Means of the data

Time in hours

Data seem to suggest that $\phi = 1$.

Conclusion

Method	Transient		cells	Intersect	Slope
μ	0	0	$e^{(p-d)t}$	$(2p)^{-1}$	2pt
μ_2	0	0	e^{-dt}	p^{-1}	pt
$\widehat{\mu_2}$	p^{-1}	20 h	e^{-dt}	p^{-1}	pt
μ_2	au	40 h	e^{-dt}	$\tau + (\phi p)^{-1}$	ϕpt
$\widehat{\mu_2}$	$\tau + p^{-1}$	60 h	e^{-dt}	$ au+p^{-1}$	pt

Heterogeneous case

Slopes of $0.025h^{-1}$, $-0.025h^{-1}$, and $-0.05h^{-1}$. Death rate $d = 0.025h^{-1}$, delivers $p = 0.05h^{-1}$. Loss of non-divided cells would be $N_0(t) = N(0)e^{-(p+d)t} = N(0)e^{-0.05t}$. No evidence for $\phi < 1$

$$\frac{dN_0}{dt} = -(p'+d')N_0 , \qquad \frac{dN_1}{dt} = 2p'N_0 - (p+d)N_1$$
$$\frac{dN_i}{dt} = 2pN_{i-1} - (p+d)N_i , \qquad \text{for } i = 2, \dots, \infty ,$$

Total cell numbers obey

$$N(t) = \frac{N_0(0)e^{(p-d)t}}{c} \left[2p' + be^{-ct} \right] ,$$

and the mean is

$$\mu(t) = \frac{2p'[a(e^{-ct} - 1) + 2pct]}{c[2p' + be^{-ct}]}$$

where $a = p - p' + d - d' \ge 0$, b = p - p' - (d - d') > 0, and a transient of c = p + p' - (d - d') > 0.

For times larger than $1/c = [p + p' - (d - d')]^{-1}$ h the mean will approach

$$\mu(t) = 2pt - \frac{p - p' + d - d'}{p + p' - (d - d')} ,$$

which increases with the expected slope 2pt.

Solving $\mu(t) = 1$ from this asymptote gives t = 1/(p+p'-d+d'), which only delivers the time to first division when d = d'.

Picking $p = 0.05h^{-1}$, $p' = 1/60h^{-1}$, $d = 0.025h^{-1}$, and $d' = 0.01h^{-1}$, the transient is about 20h.

Similar analysis gives

$$\mu_2(t) = \frac{p'}{\gamma} \frac{\gamma p t + a(\mathrm{e}^{-\gamma t} - 1)}{p' + (d' - d)\mathrm{e}^{-\gamma t}}$$

and

$$n(t) = \frac{N_0(0)\mathrm{e}^{-dt}}{\gamma} \left[p' + (d'-d)\mathrm{e}^{-\gamma t} \right] ,$$

which both have a transient of $\gamma = p' + d' - d = p - a$.

After this transient, i.e., for $t \to \infty$

$$\mu_2(t) = pt - \frac{a}{\gamma} = pt - \frac{p - p' + d - d'}{p' + d' - d} ,$$

which increases with slope pt.

But ...

Solving $\mu_2(\infty) = 1$ yields t = 1/(p' + d' - d) which is only equal to the time to first division when d = d'.

Picking $p = 0.05h^{-1}$, $p' = 1/60h^{-1}$, $d = 0.025h^{-1}$, and $d' = 0.01h^{-1}$, the transient is about $1/\gamma = 600h$.

Similar analysis yields

$$\widehat{n}(t) = \frac{p' N_0(0) \mathrm{e}^{-dt}}{\gamma} \left[1 - \mathrm{e}^{-\gamma t} \right] ,$$

and

$$\widehat{\mu_2}(t) = \frac{\gamma p t + a(e^{-\gamma t} - 1)}{\gamma [1 - e^{-\gamma t}]}$$

with the same long transient γ .

For $t \to \infty$ the mean of the divided cells approaches

$$\widehat{\mu}_{2}(t) = pt - \frac{a}{\gamma} = pt - \frac{p - p' + d - d'}{p' + d' - d}$$

which is the same as $\mu_2(t)$.

Note that γ could even be negative.

Heterogeneous model: three means for d' = d

Difference between death rates determines length of the transient.

Conclusion

Method	Transient		cells	Intersect	Slope
μ	0	0	$e^{(p-d)t}$	$(2p)^{-1}$	2pt
μ_2	0	0	e^{-dt}	p^{-1}	pt
$\widehat{\mu_2}$	p^{-1}	20 h	e^{-dt}	p^{-1}	pt
μ_2	au	40 h	e^{-dt}	$ au + (\phi p)^{-1}$	ϕpt
$\widehat{\mu_2}$	$ au+p^{-1}$	60 h	e^{-dt}	$ au+p^{-1}$	pt
μ	$[p+p'-(d-d')]^{-1}$	19.35 h	$e^{(p-d)t}$	$[p + p' - d + d']^{-1}$	2pt
μ_2	$[p' + d' - d]^{-1}$	600 h	e^{-dt}	$[p' + d' - d]^{-1}$	pt
$\widehat{\mu_2}$	$[p' + d' - d]^{-1}$	600 h	e^{-dt}	$[p' + d' - d]^{-1}$	pt

Estimates: $p = 0.025h^{-1}$ (40h), $p' = 0.022h^{-1}$ (45)h, $d' = 0.01 h^{-1}$, and $N(0) = 1.5 \times 10^4$ cells.

Fitting with the Smith-Martin model

ODE models perform poorly: time delay is required.

- Collect data late enough to approach the linear regime of $\mu(t)$, but early enough to exclude confounding factors
- Parameter estimation using means sensitive to transients
- Since $\mu(t)$ has the shortest transient one could argue that this mean is the most reliable?
- Normalization remains important to argue about fractions of cells having completed *n* divisions, and to test whether means are increasing linearly.
- Difference between $\mu_2(t)$ and $\hat{\mu}_2(t)$ may give indication that a fraction of the cells fails to divide
- Time to first division very difficult to estimate
- Plot N(t), n(t), and $N_0(t)$ and estimates slopes.
- Use all this information as an initial guess for fitting with the Smith-Martin model.
- Do not fit ODE models to CFSE data