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Motivation: Experiments on Evolution of Viral Populations
Novella, et al., PNAS 92, 5841 (1995)

Basic Idea:
• Subject Vesicular Stomach Virus to Novel Environment

• Monitor Changes in Time of Population Characteristics

• Monitored Parameter: ``Instantaneous'' Growth Rate

Details:
• Daily Passages:

. Inject Small Number of Virons, (N = 105) into Cell Culture

. Let Grow for 24 Hours, N = 1010

. Select a Small Sample of N = 105 Virons

. Repeat

• Monitor Growth Rate:

. Every Few Days, Take a Small Sample of Virons

. Measure Exponential Growth Rate, in Competition with Reference Virus

. Exponential Growth Rate = ``Log Fitness''
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The Results:
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Log Fitness 0 ≡ Wild Type

Significant Change in Fitness

Longer Experiments (> 100 Days) Show Saturation of Fitness

Similar Effects Seen in E. coli, HIV Infections

How can we understand this?
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Basic Model

Genome: L binary genes, 0=Bad, 1=Good

Birth: Individual Reproduces with Rate x = # of 1's in Genome

Mutation: Genes Flip at Rate µ0 / gene / birth
• µ ≡ µ0L, Overall (Genomic) Mutation Rate

Death: Fixed Number of Individuals = N

• Kill One Person (at Random) For Every Birth
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Simulation:

100 120 140 160 180 200

x

0

500

1000

1500

2000

O
cc

up
an

cy

L=200, N=10
4
, µ=0.1

`The Solitary Wave of Asexual Evolution'
J. Wakeley

Basic Mechanisms:
• Selection: Higher Fitness Individuals Grow Faster at Expense of Less Fit

. Drives Waveform to Delta Function at Rightmost Edge

• Diffusion: Widens the Waveform
. Together with Selection, Drives Population to Higher Fitness

• Bias: Entropy Favors 50/50 State: x = L/2

. Leads to Equilibrium

Can we solve for this traveling wave?
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Reaction-Diffusion Approach
Eigen, Shuster

Ṗ (x, t) = (x− x)P + µ(xP )
′′
+ µ

(
1− 2

x

L

)
(xP )

′

0 5 10 15

t

50

60

70

80

90

100

A
ve

ra
ge

 F
itn

es
s

Reaction-Diffusion

µ=0.1, L=100
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Reaction-Diffusion Approach, continued
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Reaction-Diffusion

µ=0.1, L=100

• Exactly Solvable

• Velocity increases exponentially for short times

• Velocity peaks at O(L) in times of order lnL

• Velocity falls exponentially to 0, also in times of order lnL

But does it agree with simulation?
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Reaction-Diffusion Approach, continued
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• Agrees with Simulation, BUT only for N ∼ O(eL), HUGE!!

For Reasonable N, Need Different Approach
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The Single-Locus Model, aka The µ � 1 Limit
Kimura, 1968; Kessler, Levine, Ridgway, Tsimring, 1997

If µ � 1, almost all individuals have same fitness
• Selection collapses distribution much faster than mutation can widen it

Assume we start from a state with N − 1 individuals of fitness x, and
one of fitness y.

• i.e., a mutation event just occured

Then, what is the probability that type y will become fixed?
• Ignore additional mutations -- very unlikely

. Two absorbing states: 1) All x ; 2) All y

Answer: Prob.= (y
x)

N−1(y
x−1)

(y
x)

N−1

• Limits:

. |N(y − x)/x| � 1 ⇒ 1
N + y−x

2x

. N(y − x)/x � 1 � (y − x)/x > 0 ⇒ y−x
x

. (y − x)/x � 1 ⇒ 1− x
y

. N(y − x)/x � −1 � (y − x)/x < 0 ⇒ x−y
x e−N(x−y)/x,

Exponentially small
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The Single-Locus Model (continued)

Implications for velocity:

• |y−x| = 1, x � 1 ⇒ Prob. = (1± 1
x)

N−1
(± 1

x)

(1± 1
x)

N−1
≈ 1

x(1−eN/x)
, Depends of ratio N/x

• For N/x � 1

. Rate of up mutations: µ(1− x/L)Nx( 1
N + 1

2x)

. Rate of down mutations: µ(x/L)Nx( 1
N −

1
2x)

. Overall average drift speed: µN/2 + µx(1 − 2x/L), increases linearly
with N

. Diffusion constant for center of mass: µx, independent of N, much
larger than drift speed

• For N/x � 1

. Rate of up mutations: µ(1− x/L)Nx
(

1
x

)
. Rate of down mutations: 0
. Overall average speed: µN(1− x/L), increases linearly with N
. Diffusion constant for center of mass: µN, same as drift speed
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The Single-Locus Model (continued)

Variance of distribution = µN/2, widens with N

• As N increases, single-locus assumption breaks down

• Not enough time for selection to collapse distribution completely before next
mutation

For large N, need different approach
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But first. . .

A Technical Interlude
In the Service of Truth in Advertising

We go over from Babies Mutate Model to Everyone Mutates Model
• Now µ is a rate of mutation, not a probability of mutation

• Basically, µ → µ/x

• No Major Difference in Physics

• Makes Things Slightly Simpler
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Cutoff Reaction-Diffusion Equation
Tsimring, Levine, Kessler, 1997; Rouzine, Wakeley, Coffin, 2003

Problem is Mistreatment of Leading Edge
• Leading Edge Has Fastest Growth Rate

• Velocity Controlled by Statistical Fluctuations at Edge

• The Exponentially Small Number of Particles in the Leading Edge in the
Reaction-Diffusion Equation Have a Huge Effect

• Reaction-Diffusion Equation Only Valid if x = L has Finite Occupation

. Explains N ∼ eL Requirement

• Similar Physics Occurs in Diffusion-Limited Aggregation
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Cutoff Reaction-Diffusion Equation (continued)

The Answer: Cut Off the Growth in the Leading Edge
• No Growth if Average Occupancy < 1 Individual

Various Cutoff Schemes Possible
• Replace (x− x)P (x) with θ(P (x)− 1)(x− x)P (x)

. v ∼ ln1/3 N, not consistent with simulation

• Pk∗+1 = 0 where k∗ is last site such that Pk∗ > 1
µ.

. v ∼ ln N, fair agreement with simulation

• Replace (x− x)P (x) with xθ(P (x)− ε)P (x)− xP (x)

. v ∼ ln N, qualitatively consistent with simulation, quantitative
agreement if ε is roughly 1/4

• Countless other possibilities

Problem: No way to justify cutoff a priori

Would like a more rigorous approach
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The Moment Hierarchy

Consider Average Fitness, E1 ≡ 1
N

∑N
i=1 xi

Eqn. of Motion for 〈E1〉: (〈O〉 ≡ Ensemble Average of O)

˙〈E1〉 = µ

(
1− 2

〈E1〉
L

)
+ 〈C2〉

• C2 is the variance of the fitness: C2 ≡ 1
N

∑
x2

i − E2
1 ≡ E2 − E2

1

To proceed, we need Eqn. of Motion for 〈C2〉:

˙〈C2〉 = µ

(
1− 4

〈C2〉
L

)
+ 〈C3〉 −

〈C3 + 2E1C2〉
N

• C3 is the skewness of x: C3 ≡ E3 − 3E1E2 + 2E3
1

N is large, so maybe we can drop the 1
N term?
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The Moment Hierarchy (continued)

˙〈E1〉 = µ

(
1− 2

〈E1〉
L

)
+ 〈C2〉

˙〈C2〉 = µ

(
1− 4

〈C2〉
L

)
+ 〈C3〉 −

〈C3 + 2E1C2〉
N

N is large, so maybe we can drop the 1
N term?

• NO! If we do, we recover (after considering all Ċk), EXACTLY the Reaction-
Diffusion Equation!

. C3 is driven by C4, C4 by C5, etc.

. Produces exponential growth of all moments

. Continues until 1/L terms set it

. All C's grow to size O(L), and then decay

• 1
N term is a singular perturbation

. Responsible for cutting off the growth of the C's

Consider Next Moment Equation:

˙〈C3〉 = µ

(
1− 〈2E1 + 6C3〉

L

)
+ 〈C4〉 −

〈3C4 + 6E1C3 + 6E2
2〉

N
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The Moment Hierarchy (continued)
˙〈E1〉 = µ

(
1− 2

〈E1〉
L

)
+ 〈C2〉

˙〈C2〉 = µ

(
1− 4

〈C2〉
L

)
+ 〈C3〉 −

〈C3 + 2E1C2〉
N

Consider Next Moment Equation:

˙〈C3〉 = µ

(
1− 〈2E1 + 6C3〉

L

)
+ 〈C4〉 −

〈3C4 + 6E1C3 + 6E2
2〉

N

• 1
N suppression term is stronger

Ansatz: Depending on N, all Ck are suppressed beyond some k∗(N)

• k∗(N) ∼ ln N

⇒ Can truncate hierarchy beyond k∗(N)!
• Physically, Dynamics can not be sensitive to very high moments of initial

condition

• 1
N plays the role of surface tension in Saffman-Taylor
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The Moment Hierarchy (continued)

˙〈E1〉 = µ

(
1− 2

〈E1〉
L

)
+ 〈C2〉

˙〈C2〉 = µ

(
1− 4

〈C2〉
L

)
+ 〈C3〉 −

〈C3 + 2E1C2〉
N

˙〈C3〉 = µ

(
1− 〈2E1 + 6C3〉

L

)
+ 〈C4〉 −

〈3C4 + 6E1C3 + 6E2
2〉

N

1 Remaining Problem: What to do with Products 〈E1C2〉, 〈E1C3〉, etc.?

Ansatz #2: Factorize: 〈E1C2〉 → 〈E1〉〈C2〉, etc.

• Formally, Connected Correlators should be ∼ 1
N

Algorithm: Truncate Moment Hierarchy at same point, Factorize, Solve
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And the Results are . . .
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Adding 5'th Moment to Hierarchy Has Essentially No Effect!

Agreement with Simulation:
Perfect!
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And the Results are . . .
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µ=1, N=400, L=200

With Larger N, Have to go to 6'th Moment

Going to 8'th Moment Has Essentially No Effect!

Agreement with Simulation:
Perfect!
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And the Results are . . .
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µ=1, N=800, L=200

6'th and 8'th Moments Agree

Agreement with Simulation:
Not Quite Perfect!!??!!
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And the Results are . . .
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µ=1, L=200, N=1600

Now have to go to 10th Moment

Agreement with Simulation:
Not Quite Perfect!!??!!
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What is Going On?
Appears to Be Due to Failure of Factorization

• Surprisingly, Problem Gets Worse with Increasing N

Is There a Way to Doctor This Up?

Wait and See!
Nevertheless, Basic Trends OK

Velocity ∼ lnN
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Agrees with Experiment?

Chlamydomonas 
From Colegrave
Nature (2002)

Fit is to N.16

Clearly Log is OK
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Take Home Messages

• Multi-Locus Evolution Model Rich and Interesting Problem

• Finite Population Acts as a Singular Cutoff

• Truncated, Factorized Moment Expansion Captures Essential Physics

• Full Solution Still Awaits Us
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