A Momentary Glance at the 'Solitary Wave of Asexual Evolution'

David Kessler Bar-Ilan University

Herbert Levine UC San Diego

E. Cohen Bar-Ilan

W. Peng D. Ridgway

L. Tsimring

UC San Diego

Motivation: Experiments on Evolution of Viral Populations

Novella, et al., PNAS 92, 5841 (1995)

Basic Idea:

- Subject Vesicular Stomach Virus to Novel Environment
- Monitor Changes in Time of Population Characteristics
- Monitored Parameter: ''Instantaneous'' Growth Rate

Details:

- Daily Passages:
 - \triangleright Inject Small Number of Virons, ($N = 10^5$) into Cell Culture
 - \triangleright Let Grow for 24 Hours, $N = 10^{10}$
 - \triangleright Select a Small Sample of $N = 10^5$ Virons
 - ▷ Repeat
- Monitor Growth Rate:
 - Every Few Days, Take a Small Sample of Virons
 - ▶ Measure Exponential Growth Rate, in Competition with Reference Virus
 - Exponential Growth Rate = ''Log Fitness''

The Results:

Log Fitness 0 \equiv Wild Type

Significant Change in Fitness

Longer Experiments (> 100 Days) Show Saturation of Fitness

Similar Effects Seen in E. coli, HIV Infections

How can we understand this?

Basic Model

Genome: *L* binary genes, 0=Bad, 1=Good

Birth: Individual Reproduces with Rate x = # of 1's in Genome

Mutation: Genes Flip at Rate μ_0 / gene / birth

• $\mu \equiv \mu_0 L$, Overall (Genomic) Mutation Rate

Death: Fixed Number of Individuals = N

• Kill One Person (at Random) For Every Birth

Basic Mechanisms:

- Selection: Higher Fitness Individuals Grow Faster at Expense of Less Fit
 Drives Waveform to Delta Function at Rightmost Edge
- Diffusion: Widens the Waveform

▶ Together with Selection, Drives Population to Higher Fitness

- Bias: Entropy Favors 50/50 State: x = L/2
 - ▶ Leads to Equilibrium

Can we solve for this traveling wave?

Reaction-Diffusion Approach Eigen, Shuster

$$\dot{P}(x,t) = (x-\overline{x})P + \mu(xP)'' + \mu\left(1-2\frac{x}{L}\right)(xP)'$$

μ=0.1, *L*=100

David A. Kessler, Bar-Ilan Univ.

KITP Workshop

Reaction-Diffusion Approach, continued

μ=0.1, *L*=100

• Exactly Solvable

- Velocity increases exponentially for short times
- Velocity peaks at O(L) in times of order $\ln L$
- Velocity falls exponentially to 0, also in times of order $\ln L$

But does it agree with simulation?

Reaction-Diffusion Approach, continued μ =0.1, *L*=100

• Agrees with Simulation, BUT only for $N \sim O(e^L)$, HUGE!! For Reasonable N, Need Different Approach

The Single-Locus Model, aka The $\mu \ll 1$ Limit

Kimura, 1968; Kessler, Levine, Ridgway, Tsimring, 1997

If $\mu \ll 1$, almost all individuals have same fitness

• Selection collapses distribution much faster than mutation can widen it

Assume we start from a state with N-1 individuals of fitness x, and one of fitness y.

• i.e., a mutation event just occured

Then, what is the probability that type y will become fixed?

• Ignore additional mutations -- very unlikely

 \triangleright Two absorbing states: 1) All x; 2) All y

Answer: Prob.=
$$\frac{\left(\frac{y}{x}\right)^{N-1}\left(\frac{y}{x}-1\right)}{\left(\frac{y}{x}\right)^{N}-1}$$

• Limits:

$$\begin{split} \triangleright & |N(y-x)/x| \ll 1 \qquad \Rightarrow \qquad \frac{1}{N} + \frac{y-x}{2x} \\ \triangleright & N(y-x)/x \gg 1 \gg (y-x)/x > 0 \qquad \Rightarrow \qquad \frac{y-x}{x} \\ \triangleright & (y-x)/x \gg 1 \qquad \Rightarrow \qquad 1 - \frac{x}{y} \\ \triangleright & N(y-x)/x \ll -1 \ll (y-x)/x < 0 \qquad \Rightarrow \qquad \frac{x-y}{x} e^{-N(x-y)/x}, \\ e^{-N(x-y)/x}, \\ \hline Exponentially small \end{cases}$$

David A. Kessler, Bar-Ilan Univ.

The Single-Locus Model (continued)

Implications for velocity:

•
$$|y - x| = 1, x \gg 1 \Rightarrow$$
 Prob. = $\frac{(1 \pm \frac{1}{x})^{N-1}(\pm \frac{1}{x})}{(1 \pm \frac{1}{x})^{N-1}} \approx \frac{1}{x(1 - e^{N/x})}$, Depends of ratio N/x

- For $N/x \ll 1$
 - ▷ Rate of up mutations: $\mu(1 x/L)Nx(\frac{1}{N} + \frac{1}{2x})$
 - ▷ Rate of down mutations: $\mu(x/L)Nx(\frac{1}{N}-\frac{1}{2x})$
 - \triangleright Overall average drift speed: $\mu N/2 + \mu x (1 2x/L),$ increases linearly with N
 - \triangleright Diffusion constant for center of mass: $\mu x,$ independent of N, much larger than drift speed
- For $N/x \gg 1$
 - ▷ Rate of up mutations: $\mu(1 x/L)Nx\left(\frac{1}{x}\right)$
 - ▶ Rate of down mutations: 0
 - \triangleright Overall average speed: $\mu N(1 x/L)$, increases linearly with N
 - \triangleright Diffusion constant for center of mass: μN , same as drift speed

The Single-Locus Model (continued)

Variance of distribution = $\mu N/2$, widens with N

- As N increases, single-locus assumption breaks down
- Not enough time for selection to collapse distribution completely before next mutation

For large N, need different approach

A Technical Interlude

In the Service of Truth in Advertising

We go over from Babies Mutate Model to Everyone Mutates Model

- Now μ is a *rate* of mutation, not a *probability* of mutation
- Basically, $\mu \rightarrow \mu/\overline{x}$
- No Major Difference in Physics
- Makes Things Slightly Simpler

Cutoff Reaction-Diffusion Equation

Tsimring, Levine, Kessler, 1997; Rouzine, Wakeley, Coffin, 2003

Problem is Mistreatment of Leading Edge

- Leading Edge Has Fastest Growth Rate
- Velocity Controlled by Statistical Fluctuations at Edge
- The Exponentially Small Number of Particles in the Leading Edge in the Reaction-Diffusion Equation Have a Huge Effect
- Reaction-Diffusion Equation Only Valid if x = L has Finite Occupation

 \triangleright Explains $N \sim e^L$ Requirement

• Similar Physics Occurs in Diffusion-Limited Aggregation

Cutoff Reaction-Diffusion Equation (continued)

The Answer: Cut Off the Growth in the Leading Edge

• No Growth if Average Occupancy < 1 Individual

Various Cutoff Schemes Possible

Replace (x - x̄)P(x) with θ(P(x) - 1)(x - x̄)P(x)
 ν ~ ln^{1/3} N, not consistent with simulation

• $P_{k*+1} = 0$ where k* is last site such that $P_{k*} > \frac{1}{\mu}$.

 $\triangleright v \sim \ln N$, fair agreement with simulation

• Countless other possibilities

Problem: No way to justify cutoff a priori

Would like a more rigorous approach

The Moment Hierarchy

Consider Average Fitness, $E_1 \equiv \frac{1}{N} \sum_{i=1}^{N} x_i$

Eqn. of Motion for $\langle E_1 \rangle$: ($\langle O \rangle \equiv$ Ensemble Average of O)

$$\langle \dot{E}_1 \rangle = \mu \left(1 - 2 \frac{\langle E_1 \rangle}{L} \right) + \langle C_2 \rangle$$

• C_2 is the variance of the fitness: $C_2 \equiv \frac{1}{N} \sum x_i^2 - E_1^2 \equiv E_2 - E_1^2$ To proceed, we need Eqn. of Motion for $\langle C_2 \rangle$:

$$\langle \dot{C}_2 \rangle = \mu \left(1 - 4 \frac{\langle C_2 \rangle}{L} \right) + \langle C_3 \rangle - \frac{\langle C_3 + 2E_1 C_2 \rangle}{N}$$

• C_3 is the skewness of x: $C_3 \equiv E_3 - 3E_1E_2 + 2E_1^3$

N is large, so maybe we can drop the $\frac{1}{N}$ term?

The Moment Hierarchy (continued)

$$\begin{split} \langle \dot{E_1} \rangle &= \mu \left(1 - 2 \frac{\langle E_1 \rangle}{L} \right) + \langle C_2 \rangle \\ \langle \dot{C_2} \rangle &= \mu \left(1 - 4 \frac{\langle C_2 \rangle}{L} \right) + \langle C_3 \rangle - \frac{\langle C_3 + 2E_1 C_2 \rangle}{N} \end{split}$$

- N is large, so maybe we can drop the $\frac{1}{N}$ term?
 - NO! If we do, we recover (after considering all \dot{C}_k), EXACTLY the Reaction-Diffusion Equation!
 - \triangleright C_3 is driven by C_4 , C_4 by C_5 , etc.
 - Produces exponential growth of all moments
 - ▷ Continues until 1/L terms set it
 - \triangleright All C's grow to size O(L), and then decay
 - $\frac{1}{N}$ term is a *singular* perturbation
 - ▶ Responsible for cutting off the growth of the C's

Consider Next Moment Equation:

$$\langle \dot{C}_3 \rangle = \mu \left(1 - \frac{\langle 2E_1 + 6C_3 \rangle}{L} \right) + \langle C_4 \rangle - \frac{\langle 3C_4 + 6E_1C_3 + 6E_2^2 \rangle}{N}$$

David A. Kessler, Bar-Ilan Univ.

The Moment Hierarchy (continued)

$$\begin{split} \langle \dot{E_1} \rangle &= \mu \left(1 - 2 \frac{\langle E_1 \rangle}{L} \right) + \langle C_2 \rangle \\ \langle \dot{C_2} \rangle &= \mu \left(1 - 4 \frac{\langle C_2 \rangle}{L} \right) + \langle C_3 \rangle - \frac{\langle C_3 + 2E_1 C_2 \rangle}{N} \end{split}$$

Consider Next Moment Equation:

$$\langle \dot{C}_3 \rangle = \mu \left(1 - \frac{\langle 2E_1 + 6C_3 \rangle}{L} \right) + \langle C_4 \rangle - \frac{\langle 3C_4 + 6E_1C_3 + 6E_2^2 \rangle}{N}$$

• $\frac{1}{N}$ suppression term is stronger

Ansatz: Depending on N, all C_k are suppressed beyond some $k^*(N)$

•
$$k^*(N) \sim \ln N$$

- \Rightarrow Can truncate hierarchy beyond $k^*(N)$!
 - Physically, Dynamics can not be sensitive to very high moments of initial condition
 - $\frac{1}{N}$ plays the role of surface tension in Saffman-Taylor

The Moment Hierarchy (continued)

$$\langle \dot{E}_1 \rangle = \mu \left(1 - 2\frac{\langle E_1 \rangle}{L} \right) + \langle C_2 \rangle$$

$$\langle \dot{C}_2 \rangle = \mu \left(1 - 4\frac{\langle C_2 \rangle}{L} \right) + \langle C_3 \rangle - \frac{\langle C_3 + 2E_1C_2 \rangle}{N}$$

$$\langle \dot{C}_3 \rangle = \mu \left(1 - \frac{\langle 2E_1 + 6C_3 \rangle}{L} \right) + \langle C_4 \rangle - \frac{\langle 3C_4 + 6E_1C_3 + 6E_2^2 \rangle}{N}$$

1 Remaining Problem: What to do with Products $\langle E_1C_2 \rangle$, $\langle E_1C_3 \rangle$, etc.? Ansatz #2: Factorize: $\langle E_1C_2 \rangle \rightarrow \langle E_1 \rangle \langle C_2 \rangle$, etc.

• Formally, Connected Correlators should be $\sim rac{1}{N}$

Algorithm: Truncate Moment Hierarchy at same point, Factorize, Solve

Adding 5'th Moment to Hierarchy Has Essentially No Effect! Agreement with Simulation:

Perfect!

With Larger *N*, Have to go to 6'th Moment Going to 8'th Moment Has Essentially No Effect! Agreement with Simulation: Perfect!

6'th and 8'th Moments Agree Agreement with Simulation:

Not Quite Perfect!!??!!

Now have to go to 10th Moment

Agreement with Simulation: Not Quite Perfect!!??!!

What is Going On?

Appears to Be Due to Failure of Factorization

 $\bullet\,$ Surprisingly, Problem Gets Worse with Increasing N

Is There a Way to Doctor This Up?

Wait and See! Nevertheless, Basic Trends OK Velocity $\sim \ln N$

 $\mu = 1., L = 200, x_0 = 100$

Agrees with Experiment?

Chlamydomonas From Colegrave Nature (2002)

Fit is to N^{.16} Clearly Log is OK

References

Evolution:

- Phys. Rev. Lett. 76, 4440 (1996).
- J. Stat. Phys. 87, 519, (1997).
- J. Stat. Phys. 90, 191 (1998).
- Phys. Rev. Lett. 80, 2012 (1998).

Other Examples of Flucutation-Dominated Systems

- Philos. Mag. **B77**, 1313 (1998).
- Phys. Rev. **E58**, 107, (1998).
- Nature **394**, 556 (1998).

Take Home Messages

- Multi-Locus Evolution Model Rich and Interesting Problem
- Finite Population Acts as a Singular Cutoff
- Truncated, Factorized Moment Expansion Captures Essential Physics
- Full Solution Still Awaits Us