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Motivation: Experiments on Evolution of Viral Populations
Novella, et al., PNAS 92, 5841 (1995)

Basic ldea:

e Subject Vesicular Stomach Virus to Novel Environment
e Monitor Changes in Time of Population Characteristics
e Monitored Parameter: ‘‘Instantaneous’’ Growth Rate

Details:

e Daily Passages:

> Inject Small Number of Virons, (N = 10°) into Cell Culture
> Let Grow for 24 Hours, N = 10

> Select a Small Sample of N = 10° Virons
> Repeat

e Monitor Growth Rate:

> Every Few Days, Take a Small Sample of Virons
> Measure Exponential Growth Rate, in Competition with Reference Virus
> Exponential Growth Rate = ‘‘Log Fitness’’
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The Results:

Logarithm of fitness

0 20 40 60 80 100
Passage

Log Fitness 0 = Wild Type
Significant Change in Fitness

Longer Experiments (> 100 Days) Show Saturation of Fitness

Similar Effects Seen in E. coli, HIV Infections

How can we understand this?
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Basic Model

Genome: L binary genes, 0=Bad, 1=Good
Birth: Individual Reproduces with Rate = = # of 1’s in Genome

Mutation: Genes Flip at Rate .o / gene / birth

e 1 = uolL, Overall (Genomic) Mutation Rate

Death: Fixed Number of Individuals = N
e Kill One Person (at Random) For Every Birth
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Simulatipn:
L=200, N=10", p=0.1
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‘“The Solitary Wave of Asexual Evolution’

. . J. Wakeley
Basic Mechanisms:

e Selection: Higher Fitness Individuals Grow Faster at Expense of Less Fit
> Drives Waveform to Delta Function at Rightmost Edge

e Diffusion: Widens the Waveform
> Together with Selection, Drives Population to Higher Fitness

e Bias: Entropy Favors 50/50 State: =z = L /2
> Leads to Equilibrium
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Reaction-Diffusion Approach

P(z,t) = (x —T)P 4+ u(xzP)" + p (1 — 2%) (zP)’
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Reaction-Diffusion Approach, continued

Average Fitness

e Exactly Solvable

100

1n=0.1, L=100

— Reaction-Diffusion 7

15

e Velocity increases exponentially for short times

e Velocity peaks at O(L) in times of order InL
e Velocity falls exponentially to 0, also in times of order InL

But does it agree with simulation?
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Reaction-Diffusion Approach, continued

1=0.1, L=100
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e Agrees with Simulation, BUT only for N ~ O(et), HUGE!!
For Reasonable N, Need Different Approach
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The Single-Locus Model, aka The ; <« 1 Limit

If 1< 1, almost all individuals have same fitness

e Selection collapses distribution much faster than mutation can widen it

Assume we start from a state with N —1 individuals of fitness z, and
one of fitness .

e i.e., a mutation event just occured

Then, what is the probability that type y will become fixed?

e Ignore additional mutations -- very unlikely
> Two absorbing states: 1) All x ; 2) All y

Answer: _®)E)
nswer: Prob.= R
e Limits: ’
> IN(y —z)/z| < 1 - Ly
> Ny—x)/z>1>(y—x)/xz >0 - gt
> (y—z)/z>1 = 12
> Ny —z)/z < -1 < (y —x)/x <0 — oy ~N(-y)/z

Exponentially small
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The Single-Locus Model (continued)

Implications for velocity:

e |ly—x| =1, > 1= Prob.

e For

e For

< S m, Depends of ratio N/x

N/x < 1

> Rate of up mutations: (1 — x/L)Nxz(5 +

> Rate of down mutations: p(x/L)Nz(% — 5=

> Oyte;?ra]l\lr average drift speed: uN/2 + px(1l — 2x/L), increases linearly
wi

> Diffusion constant for center of mass: px, independent of N, much
larger than drift speed

N/x > 1
> Rate of up mutations: (1 — x/L)Nx (1)
> Rate of down mutations: 0

> Overall average speed: N (1 — x/L), increases linearly with N
> Diffusion constant for center of mass: uN, same as drift speed
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The Single-Locus Model (continued)

Variance of distribution = yN/2, widens with N

e As N increases, single-locus assumption breaks down

e Not enough time for selection to collapse distribution completely before next
mutation

For large N, need different approach
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But first. ..
A Technical Interlude

We go over from Babies Mutate Model to Everyone Mutates Model
e Now n is a rate of mutation, not a probability of mutation
e Basically, u — u/x
e No Major Difference in Physics

e Makes Things Slightly Simpler
N=10" L=100
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Cutoff Reaction-Diffusion Equation

Problem is Mistreatment of Leading Edge
e Leading Edge Has Fastest Growth Rate

e Velocity Controlled by Statistical Fluctuations at Edge

e The Exponentially Small Number of Particles in the Leading Edge in the
Reaction-Diffusion Equation Have a Huge Effect

e Reaction-Diffusion Equation Only Valid if x = L has Finite Occupation
> Explains N ~ e Requirement

e Similar Physics Occurs in Diffusion-Limited Aggregation
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Cutoff Reaction-Diffusion Equation (continued)

The Answer: Cut Off the Growth in the Leading Edge

e No Growth if Average Occupancy < 1 Individual

Various Cutoff Schemes Possible
e Replace (z — T)P(x) with 6(P(x) — 1)(x — T)P(x)

1/3

> v ~ In"/° N, not consistent with simulation

® Pj.1 =0 where kx is last site such that Py, > .

> v ~ In N, fair agreement with simulation

e Replace (z — 7)P(z) With z0(P(z) — ¢)P(z) — TP (x)

> v ~ InN, qualitatively consistent with simulation,
agreement if e is roughly 1/4

e Countless other possibilities
Problem: No way to justify cutoff a priori

Would like a more rigorous approach
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The Moment Hierarchy

N

Consider Average Fitness, E; =~ > .., z;

Eqn. of Motion for (F,): ((O) = Ensemble Average of 0)

(F1) = (1 - 2<ELl>> +(C)

e C, is the variance of the fitness: C, = + Y 27 — Ef = E;, — E;

To proceed, we need Egn. of Motion for (C5):

<02> =" (1 — 4<CLZ>) s <CS> . <CS ‘|‘§E102>

o Cs is the skewness of x: C3 = E3 — 3E,Ey + 2E7

N is large, so maybe we can drop the + term?
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The Moment Hierarchy (continued)

(E1) = p (1 - 2<ELl>> +(C5)
(Co) = 1o (1 - 4<(22>) oy (Gt ;Elcg

N is large, so maybe we can drop the { term?

e NO! If we do, we recover (after considering all C)), EXACTLY the Reaction-
Diffusion Equation!

> C5 is driven by C,, C, by Cs, etc.

> Produces exponential growth of all moments

> Continues until 1/L terms set it

> All C’s grow to size O(L), and then decay
e ~ term is a singular perturbation

> Responsible for cutting off the growth of the C'’s

Consider Next Moment Equation:

- 2E; +6C 3Cy + 6E,C3 + 6E3
<03>=u(1—< . 3>)+<C4>—< 1 OB+ O
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The Moment Hierarchy (continued)

(E1) = (1 - 2“?) +(C)

Yy B <02> B <03—|—2E102>
(G =n(1-41) 4 cap - 52
Consider Next Moment Equation:
: 2F, + 6C 3C4 + 6FE,C3 + 6E3
(Cap = (1= BETEE) 4 () - BAEEE L0

1 . .
e — suppression term 1is stronger

Ansatz: Depending on N, all C, are suppressed beyond some k*(N)
e k“(N) ~InN

= Can truncate hierarchy beyond k*(N)!

e Physically, Dynamics can not be sensitive to very high moments of initial
condition

e + plays the role of surface tension in Saffman-Taylor
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The Moment Hierarchy (continued)

(F1) = 1 (1 - 2<E1>) +(C)

L
<C2> = K (1 — 4<CLZ>) + <CS> o <C3 +]3[E102>
<03> = L <1 _ (2F ‘[|: 603>) {0y — (3Cy + GEJ;CS + 6E2)

1 Remaining Problem: What to do with Products (F,C5), (E1C3), etc.?

Ansatz #2: Factorize: (F1Cs5) — (Eq){(Cs), etc.

e Formally, Connected Correlators should be ~

Algorithm: Truncate Moment Hierarchy at same point, Factorize, Solve
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And the Results are ...

=1, L=200, N=200
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Adding 5’th Moment to Hierarchy Has Essentially No Effect!

Agreement with Simulation:
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And the Results are ...
u=1, N=400, L=200
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With Larger N, Have to go to 6’th Moment
Going to 8’th Moment Has Essentially No Effect!

Agreement with Simulation:
Perfect!
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And the Results are
u=1, N=800, L=200
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6’th and 8’th Moments Agree

Agreement with Simulation:
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And the Results are
u=1, L=200, N=1600
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Now have to go to 10th Moment
Agreement with Simulation:
Not Quite Perfect!!??!!
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What is Going On?
Appears to Be Due to Failure of Factorization

e Surprisingly, Problem Gets Worse with Increasing N
Is There a Way to Doctor This Up?

Wait and See!

Nevertheless, Basic Trends OK
Velocity ~In N

p=1., L=200, x,=100

7
6 B — Simulation
| Hierarchy Solution
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Agrees with Experiment?

o Chlamydomonas
b 025-
From Colegrave
0.20 Nature (2002)
S o.15]
=
&
2 0.104
0.05 4 o
Fit is to N-1¢
%3 i 2 3 4 5 6 Clearly Log is OK
Effective population size (x 108)
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Take Home Messages
e Multi-Locus Evolution Model Rich and Interesting Problem
e Finite Population Acts as a Singular Cutoff
e Truncated, Factorized Moment Expansion Captures Essential Physics

e Full Solution Still Awaits Us
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