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Basic idea

Production, spectroscopy, and decays of heavy
quarkonium (charmonium, bottomonium) are precision
probes of QCD at zero temperature.

Maybe some related properties could also be useful at
finite temperatures?

Matsui, Satz 1986
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The relevant physical observable

Heavy quarkonium contribution to the production rate
of lepton–antilepton pairs from a thermal plasma:
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Q ≡ Q1 +Q2

„

• Initial state could also be non-thermal, e.g. anisotropic.

• Could also consider light quarks, but here only heavy.

«

3



Challenge

Surprisingly, despite asymptotic freedom, the existence
of a high temperature does not necessarily make the
theoretical determination of the properties of heavy
quarkonium more tractable than at T = 0.

In other words, most standard approximation methods
appear to develop further systematic errors at T > 0.

Approximation methods:

1. Potential models

2. Lattice QCD

3. AdS/CFT

4. Perturbation theory
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1. Potential models

In the deconfined phase, the quarks are bound together
by a Debye-screened Coulomb potential:

V (r) ≈ −
g2CF
4π

exp(−mDr)

r
,

where mD ∼ gT is the Debye mass and CF ≡ 4/3.

The corresponding Schrödinger equation,
(

−
∇2

r

M
+ V (r)

)

ψ = (E − 2M)ψ ,

does not possess any bound state solution for large
enough mD, mD > g2CFM/(4π × 1.68...).
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The same with various non-perturbative potentials:

1.0 1.2 1.4 1.6 1.8 2.0
T/Tc

-0.8

-0.6

-0.4

-0.2

0.0

mc = 1.3 GeV
mc = 1.5 GeV-0.04

-0.02

0.00
ε 

  (
G

eV
)

ε 
 (

G
eV

)

χ

J/ψ , ηc

ψ′ ,ηc′

(b) 

J/ψ , ηc

(a)  
UQQ Potential

F1 Potential

U1 Potential

(1)

Wong, hep-ph/0408020

⇒ quarkonium “melts”. (Heavy ion experimentalists’
Monte Carlo inputs just the melting temperatures.)
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Problems:

T = 0: using the non-perturbative static potential in a
perturbative setup is not theoretically consistent (even
though this leads to reasonable spectroscopy) ⇒ PNRQCD.

T > 0: which non-perturbative potential to use?

Current status: Mócsy, Petreczky, 0705.2559
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2. Lattice QCD

Measure Euclidean correlation function GV (τ) between
vector currents, for 0 < τ < β ≡ 1/T .

In the continuum limit this is related to the
Minkowskian spectral function ρV (ω) through

GV (τ) =

∫ ∞

0

dω

π
ρV (ω)

cosh
(

β
2 − τ

)

ω

sinh βω
2

.

Then simply “invert” this for ρV (ω).
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Results in different channels:
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Aarts, Allton, Oktay, Peardon, Skullerud, 0705.2198
(see also: Jakovác, Petreczky, Petrov, Velytsky, hep-lat/0611017)
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Problems:

T = 0: as usual, ∃ finite volume and lattice spacing,
and mostly non-chiral quarks with unphysical masses.

T > 0: even in the limit of perfect data, it is not a
Laplace transform, so strictly speaking it is not clear
how to invert for ρV (ω). In practice impose as “prior”
the free behaviour at large ω and use e.g. “maximum
entropy method” to estimate result at moderate ω.

Recent developments:
Aarts, Allton, Foley, Hands, Kim, hep-lat/0703008;

Meyer, 0704.1801.
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3. AdS/CFT

Melting temperatures:
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Peeters, Sonnenschein, Zamaklar, hep-th/0606195, “ Holographic melting and related

properties of mesons in a quark gluon plasma”
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Spectral functions:
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4. Perturbation theory

At T > 0, perturbation theory suffers from infrared
divergences, which require complicated resummations
(weak-coupling expansion 6= loop expansion). As a
result, the weak-coupling series is typically of the form

〈O〉 ∼ 1 + #1 g
2 + #2 g

3 + #3 g
4 ln

1

g
+ #4 g

6 + ... ,

where some coefficients can be non-perturbative.

Moreover, even if the coefficients were known, the
convergence of the series can be very slow.
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Appendix A: momentum scales at T 6= 0

QCD ≡ 4d YM + quarks; ωn ∼ 2πT

⇓ perturbation theory (1)

EQCD ≡ 3d YM + A0; mD ∼ gT

⇓ perturbation theory (2)

MQCD ≡ 3d YM; g2
3 ∼ g2T

⇓ non-perturbative computation (3)

PHYSICS

Expansion parameter: ǫ(i) ∼ g2T/4π|k|(i).

14



Example of slow convergence: pressure
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Example of faster convergence: spatial string tension
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⇒ Practical mindset these days:

Compute the observable with all available methods,
possessing complementary systematic errors, and hope
to find a consistent picture!

Here: weak-coupling expansion, i.e. “just” graphs:

q

q̄

Q
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Momentum/energy scales

Vacuum: M, g2M,g4M, . . .

Finite temperature: T, gT, g2T, . . .

The procedure now depends on the ratio of M and T .

T ∼ g2M ⇒ width ∼ g6M ≪ binding energy ∼ g4M
⇒ bound state exists.

T ∼ gM ⇒ width ∼ g3M ≫ binding energy ∼ g4M
⇒ bound state has melted.

In the following assume, formally, g2M < T < gM .
Then the computation proceeds in the following steps:
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1. Relation of production rate to Green’s function

dNµ+µ−

d4xd4Q
= −

e2

3(2π)5Q2

`

1+
2m2

µ

Q2

´`

1−
4m2

µ

Q2

´
1
2e

−
q0

T C̃>(Q) ,

C̃>(Q) ≡

Z ∞

−∞

dt

Z

d3
x eiQ·x〈Ĵ µ(x)Ĵµ(0)〉 ,

Ĵ µ(x) = ... +
2

3
e ˆ̄c (x)γµĉ(x) −

1

3
e ˆ̄b (x)γµb̂(x) ,

〈...〉 ≡ Z
−1

Tr[exp(−Ĥ/T )(...)] .

2

4

Rather than C̃> one often considers the spectral function:

ρ(Q) =
1

2
(1 − e−

q0

T )C̃>(Q) .

3

5
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Appendix B: Time orderings at finite temperature

Consider 2-point functions; x ≡ (t, x); x̃ ≡ (τ, x);

Â(t) = eiĤtÂ(0)e−iĤt; Â(τ) = eĤτÂ(0)e−Ĥτ .

C̃>(Q) ≡

Z

dt d3
x eiQ·x〈Â(x)B̂(0)〉 ,

C̃<(Q) ≡

Z

dt d3
x eiQ·x〈B̂(0)Â(x)〉 ,

C̃R(Q) ≡ i

Z

dt d3
x eiQ·x〈[Â(x), B̂(0)]θ(t)〉 ,

C̃T (Q) ≡

Z

dt d3
x eiQ·x〈Â(x)B̂(0)θ(t) + B̂(0)Â(x)θ(−t)〉,

C̃E(Q̃) ≡

Z β

0

dτ

Z

d3
x eiQ̃·x̃〈Â(x̃)B̂(0)〉 .
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2. Properties of the Green’s function at large M

Restrict to q = 0 and introduce point-splitting:

C>(t; r, r
′
) ≡

Z

d
3
x

D

ˆ̄ψ
“

t, x+
r

2

”

γ
µ
W ψ̂

“

t, x−
r

2

”

ˆ̄ψ (0,−
r′

2
)γµW

′
ψ̂(0,

r′

2
)
E

.

The r-dependence is not physical ...

C̃>(Q) =

Z ∞

−∞

dt eiq
0tC>(t; 0, 0) ,

... but it facilitates perturbative solution: to O(g0),

˘

i∂t −
ˆ

2M −
∇2

r

M
+ O

` 1

M3

´˜¯

C>(t; r, r
′
) = 0 ,

C>(0; r, r
′
) = −6Nc δ

(3)
(r − r

′
) + O

` 1

M2

´

.
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3. Definition of a real-time static potential

The static potential V>(t, r) is defined to be the term
independent ofM in the “exact” Schrödinger equation:

˘

i∂t −
ˆ

2M + V>(t, r) −
∇2

r

M
+ O

` 1

M2

´˜¯

C> = 0 .

It can thus be obtained in the limit M → ∞, whereby
the heavy quarks can be replaced by Wilson lines.

Noting that C>(t; r, r) ∝ CE(it, r), where CE(τ, r) is
the Euclidean Wilson loop, we are lead to

i∂tCE(it, r) ≡ V>(t, r)CE(it, r) .
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Appendix C: A few different static potentials

From Polyakov loops:

r
1

T

〈Tr[P ] Tr[P †]〉 ≡ e−
Va(r,T )

T .

From a Wilson loop:

r
1

T

〈Tr[WE(
1

T
, r)]〉 ≡ e−

Vb(r,T )
T .

Or may also Legendre transform from “free energy” to “internal

energy”: U i = V i + TS i = V i − T∂TV i.

From an analytic continuation:

r
τ

〈Tr[WE(τ, r)]〉 ≡ CE(τ, r) .
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4. Result for real-time static potential

In Hard Thermal Loop perturbation theory, to O(g2):

ReV
(2)
> (∞, r) = −

g2CF
4π

[

mD +
exp(−mDr)

r

]

,

ImV
(2)
> (∞, r) = −

g2TCF
4π

φ(mDr) ,

where

φ(x) = 2

∫ ∞

0

dz z

(z2 + 1)2

[

1 −
sin(zx)

zx

]

,

is finite and strictly increasing, with the limiting values
φ(0) = 0, φ(∞) = 1.
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Appendix D: Hard Thermal Loop propagators

Introducing the projection operators

P T
00(Q̃) = P T

0i(Q̃) = P T
i0(Q̃) ≡ 0 , P T

ij (Q̃) ≡ δij −
q̃iq̃j

q̃2
,

P
E
µν(Q̃) ≡ δµν −

q̃µq̃ν

Q̃2
− P

T
µν(Q̃) ,

the Euclidean gluon propagator reads

〈A
a
µA

b
ν〉 = δ

abˆ P T
µν(Q̃)

Q̃2 + ΠT(Q̃)
+

PE
µν(Q̃)

Q̃2 + ΠE(Q̃)
+ ξ

q̃µq̃ν

(Q̃2)2

˜

,

where ξ is the gauge parameter.
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The Hard Thermal Loop self-energies read

ΠT(Q̃) =
m2

D

2

˘(iq̃0)
2

q̃2
+
iq̃0

2|q̃|

ˆ

1 −
(iq̃0)

2

q̃2

˜

ln
iq̃0 + |q̃|

iq̃0 − |q̃|

¯

,

ΠE(Q̃) = m2
D

ˆ

1 −
(iq̃0)

2

q̃2

˜ˆ

1 −
iq̃0

2|q̃|
ln
iq̃0 + |q̃|

iq̃0 − |q̃|

˜

,

where q̃0 denotes bosonic Matsubara frequencies, and

m
2
D = g

2
T

2`Nc

3
+
Nf

6

´

.

Graphs:
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Physics of real part:
2 × thermal mass correction for a heavy quark +
r-dependent Debye-screened potential.

Physics of imaginary part:
almost static (off-shell) gluons may disappear due to
interactions with hard particles in the plasma.

2 2

nFnB(1 − nF) nF(1 + nB)(1 − nF)

This is the phenomenon of Landau-damping.

Consequently, there is no stationary wave function:
the bound state is a short-lived transient!
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5. Result for the spectral function

Insert V>(∞, r) to the time-dependent Schrödinger
equation, solve, and Fourier transform to ω ≡ q0.
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Basic structure as suggested by Matsui and Satz (1986) from phenomenological arguments.
Melting temperature ∼ consistent with potential models and lattice QCD within ±50 MeV.
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Dilepton production rate:
dNµ+µ−

d4xd4Q
∝ ρV (ω)

ω2 e−
ω
T
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The peak is boosted because of the Boltzmann factor.
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Conclusions

Useful definition of a finite-temperature real-time static
potential is non-trivial. V> originates from a physical
observable; it has both a real and an imaginary part.

Using this potential, the existence and disappearance
of a peak in the quarkonium spectral function is
qualitatively a weak-coupling phenomenon.

At high temperatures, there is no stationary wave
function. The bound state is a short-lived transient!

In the end, for quantitative understanding, need to go
to higher orders / compare with other methods.
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