Aspects of thermodynamics of the $\mathcal{N} = 4$ theory on S^3

S. Prem Kumar

Swansea University

February 21, 2008

(KITP, Santa Barbara)
• Gauge theories exhibit a rich variety of thermodynamic phases:
• Gauge theories exhibit a rich variety of thermodynamic phases:

E.g. QCD phase diagram

![Diagram](image)
- $SU(N)$ Pure Yang-Mills in 3+1 dimensions (+ adjoint matter)

- This theory has Z_N center symmetry

- $T \neq 0$ thermodynamics: theory on $R^3 \times S^1$

- Order parameter for Z_N: $u_1 = 1/N \text{Tr} \exp i \int_0^\beta A_0 d\tau$

- Polyakov loop

- Low T: $\langle u_1 \rangle = 0 = \Rightarrow$ Confined Phase

- First Order Transition (Svetitsky, Yaffe)

- High T: $\langle u_1 \rangle \neq 0 = \Rightarrow$ Deconfined Phase $\rightarrow Z_N$ breaking

S. Prem Kumar
Aspects of thermodynamics of the $\mathcal{N} = 4$ theory on S^3
• $SU(N)$ Pure Yang-Mills in 3+1 dimensions (+ adjoint matter)

• This theory has \mathbb{Z}_N center symmetry

• $T \neq 0$ thermodynamics: theory on $\mathbb{R}^3 \times S^1$

• Order parameter for \mathbb{Z}_N:

$$u_1 = \frac{1}{N} \text{Tr} \exp i \int_0^\beta A_0 d\tau$$

Polyakov loop

Low T: $\langle u_1 \rangle = 0 \Rightarrow$ Confined Phase

First Order Transition (Svetitsky, Yaffe)

High T: $\langle u_1 \rangle \neq 0 \Rightarrow$ Deconfined Phase $\rightarrow \mathbb{Z}_N$ breaking

S. Prem Kumar Aspects of thermodynamics of the $\mathcal{N} = 4$ theory on S^3
• **$SU(N)$ Pure Yang-Mills** in 3+1 dimensions (+ adjoint matter)

• This theory has \mathbb{Z}_N center symmetry

• $T \neq 0$ thermodynamics: theory on $\mathbb{R}^3 \times S^1$

• Order parameter for \mathbb{Z}_N:

\[
 u_1 = \frac{1}{N} \text{Tr} \exp i \int_0^\beta A_0 d\tau
\]

Polyakov loop

• Low T: $\langle u_1 \rangle = 0 \implies$ Confined Phase

 First Order Transition (Svetitsky, Yaffe)

• High T: $\langle u_1 \rangle \neq 0 \implies$ Deconfined Phase $\rightarrow \mathbb{Z}_N$ breaking
Yang-Mills theories on finite volume can also have interesting thermodynamics as $N \rightarrow \infty$
Yang-Mills theories on finite volume can also have interesting thermodynamics as $N \to \infty$

Motivation:

- AdS/CFT correspondence.
- $\mathcal{N} = 4$ SUSY Yang-Mills at large $N \equiv \text{String theory on } \text{AdS}_5 \times S^5$
Yang-Mills theories on finite volume can also have interesting thermodynamics as $N \to \infty$.

Motivation:
- AdS/CFT correspondence.
- $\mathcal{N} = 4$ SUSY Yang-Mills at large $N \equiv$ String theory on $AdS_5 \times S^5$.

Field theory on $S^3 \times R_t \simeq$ conformal boundary of global AdS_5.

$T \neq 0$: $\mathcal{N} = 4$ SYM on $S^3 \times S^1 \simeq$ boundary of Euclidean AdS_5 space with thermal S^1.

S. Prem Kumar Aspects of thermodynamics of the $\mathcal{N} = 4$ theory on S^3
• Radius of $S^3 = R$

\[\text{Radius of } S^1 = \beta = \frac{1}{T} \]

\[\implies \text{Two dimensionless tunable parameters:} \]

\[\text{'t Hooft coupling } \lambda = g^2 N \text{ and Temperature } TR \]
• Radius of $S^3 = R$

• Radius of $S^1 = \beta = \frac{1}{T}$

\Rightarrow Two dimensionless tunable parameters:

't Hooft coupling $\lambda = g^2 N$ and Temperature TR

• $N = 4$ SYM has only adjoint matter i.e. \mathbb{Z}_N symmetry
• Radius of $S^3 = R$ \quad \text{Radius of } S^1 = \beta = \frac{1}{T}$

\implies Two dimensionless tunable parameters:

't Hooft coupling $\lambda = g^2 N$ \quad \text{and} \quad \text{Temperature } TR$

• $\mathcal{N} = 4$ SYM has only adjoint matter \textit{i.e.} \mathbb{Z}_N symmetry

Two tractable regimes at $N = \infty$:

- $\lambda \to \infty$ Classical SUGRA
- $\lambda << 1$ Weakly coupled gauge theory on S^3
• Radius of $S^3 = R$

 Radius of $S^1 = \beta = \frac{1}{T}$

\Rightarrow Two dimensionless tunable parameters:

't Hooft coupling $\lambda = g^2 N$ and Temperature TR

• $\mathcal{N} = 4$ SYM has only adjoint matter i.e. \mathbb{Z}_N symmetry

Two tractable regimes at $\mathcal{N} = \infty$:

▶ $\lambda \rightarrow \infty$ Classical SUGRA

▶ $\lambda \ll 1$ Weakly coupled gauge theory on S^3

• SUGRA on AdS_5 yields $\lambda \rightarrow \infty$ field theory dynamics

• Can gauge theory at $\lambda \ll 1$ provide a window into AdS gravity?
Free theory \((\lambda = 0)\) on \(S^3 \times S^1\)

(Sundborg; Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk)

- Hamiltonian on \(S^3 = \Delta\): Dilatation operator on \(\mathbb{R}^4\).
Free theory ($\lambda = 0$) on $S^3 \times S^1$

(Sundborg; Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk)

- Hamiltonian on $S^3 = \Delta$: Dilatation operator on \mathbb{R}^4.

- Physical states \simeq All gauge-invariant words

 E.g. $\text{Tr} \left[\phi_1 \phi_2 \ldots \phi_2 \phi_2 \ldots \right]$

 Energy $\sim L$

- No. of states with energy $L \sim e^{\#L}$: Hagedorn density
Free theory ($\lambda = 0$) on $S^3 \times S^1$

(Sundborg; Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk)

- Hamiltonian on $S^3 = \Delta$: Dilatation operator on \mathbb{R}^4.

- Physical states \simeq All gauge-invariant words

 E.g. $\text{Tr} \left[\phi_1 \phi_2 \ldots \phi_2 \phi_2 \ldots \right]$
 Energy $\sim L$

- No. of states with energy $L \sim e^{#L}$: Hagedorn density

- $Z = \text{Tr} \ e^{-\beta \Delta}$ can be computed in a Wilsonian approach:

- A_0 has a zero mode on $S^3 \times S^1$

 $\alpha = \int_0^\beta A_0 d\tau \quad U \equiv e^{i\alpha}$
Integrating out all KK harmonics on $S^1 \times S^3$, obtain an effective action for the zero mode of $U = e^{i\alpha}$

$$Z = \int [dU] \exp\left[\sum_{m=1}^{\infty} a_m (TR) \text{Tr} U^m \text{Tr} U^\dagger m\right]$$

\mathbb{Z}_N-invariant effective action

$$u_n = \frac{1}{N} \text{Tr} U^n \quad n = 1, 2, \ldots$$
• Integrating out all KK harmonics on $S^1 \times S^3$, obtain an effective action for the zero mode of $U = e^{i\alpha}$

$$Z = \int [dU] \exp\left[\sum_{m=1}^{\infty} a_m (TR) \text{Tr} U^m \text{Tr} U^\dagger m \right]$$

Z_N-invariant effective action

$$u_n = \frac{1}{N} \text{Tr} U^n \ n = 1, 2, \ldots$$

• Eigenvalues $(\alpha_1, \alpha_2, \ldots \alpha_N)$ experience Vandermonde repulsion

$$\sim \log |\sin\left(\frac{\alpha_i - \alpha_j}{2}\right)| +$$

T-dependent attraction
• First order Hagedorn/Deconfinement transition at
 \[T_H \approx 0.38 R^{-1} \]
• First order Hagedorn/Deconfinement transition at $T_H \approx 0.38 R^{-1}$
• First order **Hagedorn/Deconfinement** transition at

\[T_H \approx 0.38 R^{-1} \]

- \(\rho(\alpha) \)

\[\begin{array}{c}
-\pi \\
T < T_H \\
\pi
\end{array} \]

\[\begin{array}{c}
\rho(\alpha) \\
\begin{array}{c}
-\pi \\
T > T_H \\
\pi
\end{array}
\end{array} \]

• Change in free energy \(\mathcal{O}(N^2) \)
• First order Hagedorn/Deconfinement transition at $T_H \approx 0.38 R^{-1}$

- Change in free energy $\mathcal{O}(N^2)$

\[
\langle u_1 \rangle = 0 \quad \quad \langle u_1 \rangle \neq 0 \quad \mathbb{Z}_N \text{ breaking}
\]
• $\lambda = 0$ picture consistent with $\lambda = \infty$

At $\lambda = \infty$: first order Hawking-Page transition between Thermal AdS and the Big AdS-Schwarzschild Black Hole

\[
W = \langle \frac{1}{N} \text{Tr} e^{i \int_\beta (A_0 + \ldots)} \rangle = 0
\]

Th AdS

\[
W = e^{-S_{F1}} \neq 0.
\]

AdS BH
• The picture at $\lambda \ll 1$ unresolved. Depending on the sign of b in

$$V = N^2(m^2(T)|u_1|^2 + b|u_1|^4); \quad b \sim \lambda^2$$
• The picture at $\lambda \ll 1$ unresolved. Depending on the sign of b in

$$V = N^2(m^2(T)|u_1|^2 + b|u_1|^4); \quad b \sim \lambda^2$$

Possibility 2

Possibility 1
Introducing Chemical Potentials

- Chemical potentials \((\mu_1, \mu_2, \mu_3)\) for \(U(1)^3 \subset SU(4)_R\) global symmetry.

- The \(\mathcal{N} = 4\) scalars \(\phi_i\) transform as a \(6\) of \(SU(4)_R\),
 Fermions \(\psi^A\) as a \(4\).
Introducing Chemical Potentials

- Chemical potentials \((\mu_1, \mu_2, \mu_3)\) for \(U(1)^3 \subset SU(4)_R\) global symmetry.

- The \(\mathcal{N} = 4\) scalars \(\phi_i\) transform as a \(6\) of \(SU(4)_R\)
 Fermions \(\psi^A\) as a \(4\).

\[
\Delta \rightarrow \Delta - \sum_p \mu_p J_p
\]
Introducing Chemical Potentials

- Chemical potentials \((\mu_1, \mu_2, \mu_3)\) for \(U(1)^3 \subset SU(4)_R\) global symmetry.

- The \(\mathcal{N} = 4\) scalars \(\phi_i\) transform as a 6 of \(SU(4)_R\)

 Fermions \(\psi^A\) as a 4.

\[
\Delta \rightarrow \Delta - \sum_p \mu_p J_p
\]

\[
\mathcal{L}_E \rightarrow \mathcal{L}_E - \frac{1}{2} \mu^2_p \text{Tr} (\phi^2_p + \phi^2_{2p-1}) - i \mu_p \text{Tr} \phi_{2p} D_0 \phi_{2p-1} + \ldots
\]
Introducing Chemical Potentials

- Chemical potentials \((\mu_1, \mu_2, \mu_3)\) for \(U(1)^3 \subset SU(4)_R\) global symmetry.

- The \(\mathcal{N} = 4\) scalars \(\phi_i\) transform as a \(6\) of \(SU(4)_R\)

 Fermions \(\psi^A\) as a \(4\).

\[
\Delta \rightarrow \Delta - \sum_p \mu_p J_p
\]

\[
\mathcal{L}_E \rightarrow \mathcal{L}_E - \frac{1}{2} \mu_p^2 \Tr (\phi_p^2 + \phi_{2p-1}^2) - \frac{i}{2} \mu_p \Tr \phi_{2p} D_0 \phi_{2p-1} + \ldots
\]

- On \(S^3\), all scalars have a conformal mass \(\frac{1}{R^2}\)

\[
V_0 = \frac{N}{\lambda} \Tr \left(\frac{1}{2} (R^{-2} - \mu_p^2)(\phi_{2p}^2 + \phi_{2p-1}^2) - [\phi_a, \phi_b]^2 \right)
\]
Phase diagram at $\lambda = 0$

(Yamada, Yaffe)

Energy unbounded from below for $\mu > \mu_c \equiv \mathcal{R} - 1$

With $T \neq 0$, $\mu \leq \mu_c$ the grand canonical partition sum

$$Z = \text{Tr} e^{-\beta (\Delta - \mu p J_p)} = \int \left[dU \right] \exp \left[\sum_m a_m^{(\mu_p, T)} \text{Tr} U_m \text{Tr} U_m^\dagger \right]$$
Phase diagram at $\lambda = 0$

(Yamada, Yaffe)

- Energy unbounded from below for $\mu > \mu_c \equiv R^{-1}$
Phase diagram at $\lambda = 0$

(Yamada, Yaffe)

- Energy unbounded from below for $\mu > \mu_c \equiv R^{-1}$

- With $T \neq 0$, $\mu \leq \mu_c$ the grand canonical partition sum

$$Z = \text{Tr} e^{-\beta (\Delta - \mu_p J_p)} = \int [dU] \exp \left[\sum_m a_m(\mu_p, T) \text{Tr} U^m \text{Tr} U^\dagger m \right]$$
(Yamada, Yaffe)

- Energy unbounded from below for $\mu > \mu_c \equiv R^{-1}$

- With $T \neq 0$, $\mu \leq \mu_c$ the grand canonical partition sum

$$Z = \text{Tr} e^{-\beta(\Delta - \mu_p J_p)} = \int [dU] \exp \left[\sum_m a_m(\mu_p, T) \text{Tr} U^m \text{Tr} U^\dagger m \right]$$
Small non-zero coupling

(Hollowood, SPK, Naqvi, to appear)

- For $\mu_p > \mu_c$, classical theory is still unstable along mutually commuting scalar directions.
Small non-zero coupling

(Hollowood, SPK, Naqvi, to appear)

- For $\mu_p > \mu_c$, classical theory is still unstable along mutually commuting scalar directions.

- New light, interacting scalar degrees of freedom appear for $\mu_p \simeq \mu_c$ and $T = 0$.

$S. Prem Kumar$

Aspects of thermodynamics of the $\mathcal{N} = 4$ theory on S^3
Small non-zero coupling

(Hollowood, SPK, Naqvi, to appear)

- For $\mu_p > \mu_c$, classical theory is still unstable along mutually commuting scalar directions.

- New light, interacting scalar degrees of freedom appear for $\mu_p \approx \mu_c$ and $T = 0$.

- Classically, at $\mu_p = \mu_c$, flat directions parametrized by constant diagonal modes of (ϕ_{2p}, ϕ_{2p-1}).
Small non-zero coupling

(Hollowood, SPK, Naqvi, to appear)

- For $\mu_p > \mu_c$, classical theory is still unstable along mutually commuting scalar directions.

- New light, interacting scalar degrees of freedom appear for $\mu_p \approx \mu_c$ and $T = 0$.

- Classically, at $\mu_p = \mu_c$, flat directions parametrized by constant diagonal modes of (ϕ_{2p}, ϕ_{2p-1}).

- Along the classically flat directions

\[
\begin{pmatrix}
\phi_{a1} & . & . & . \\
. & \phi_{a2} & . & . \\
. & . & \phi_{a3} & . \\
. & . & . & .
\end{pmatrix}
\]

integrate out all heavy off-diagonal modes, $m^2 \sim |\phi_i - \phi_j|^2 + \ell^2$.

S. Prem Kumar
Aspects of thermodynamics of the $\mathcal{N} = 4$ theory on S^3
\[
S_S \left(3^L \right) = \frac{1}{2} g_2^2 T \left(\nabla_i A^i + \bar{\nabla} A_0 - i [\phi, \bar{\phi}] \right)^2 + \bar{\psi} \left(- \bar{\nabla}^2 - \Delta (s) + [\phi,.] \right) \psi.
\]
Background field gauge on S^3

$$\mathcal{L}^{(gf)} = \frac{1}{2g^2} \text{Tr} \left[\left(\nabla_i A^i + \tilde{D}_0 A^0 - i[\phi, \delta \phi] \right)^2
ight.
\left. + \bar{c} \left(-\tilde{D}_0^2 - \Delta^{(s)} + [\phi, .]^2\right) c \right].$$
Background field gauge on S^3

$$\mathcal{L}^{(gf)} = \frac{1}{2g^2} \text{Tr} \left[\left(\nabla_i A^i + \tilde{D}_0 A^0 + i[\phi, \delta \phi] \right)^2
+ \bar{c} (-\tilde{D}_0^2 - \Delta^{(s)} + [\phi, .]^2) c \right].$$

With $\mu_p \neq 0$, A_0 and scalar fluctuations mix; Fermions also mix.
Background field gauge on S^3

\[
\mathcal{L}^{(gf)} = \frac{1}{2g^2} \text{Tr} \left[\left(\nabla_i A^i + \tilde{D}_0 A^0 - i[\phi, \delta\phi] \right)^2 + \bar{c}(-\tilde{D}_0^2 - \Delta^{(s)} + [\phi, .]^2) c \right].
\]

With $\mu_p \neq 0$, A_0 and scalar fluctuations mix; Fermions also mix.

Fluctuation determinants yield Casimir sums at $T = 0$:

\[
V_{1\text{-loop}} \sim \sum_{\text{species}} \sum_{ij=1}^N \sum_{\ell} \deg(\ell) \varepsilon(\ell, |\phi_i - \phi_j|)
\]
Background field gauge on S^3

$$\mathcal{L}^{(gf)} = \frac{1}{2g^2} \text{Tr} \left[\left(\nabla_i A^i + \tilde{D}_0 A^0 - i[\phi, \delta \phi] \right)^2 + \bar{c}(-\tilde{D}_0^2 - \Delta^{(s)} + [\phi, .]^2) c \right].$$

With $\mu_p \neq 0$, A_0 and scalar fluctuations mix; Fermions also mix.

Fluctuation determinants yield Casimir sums at $T = 0$:

$$V_{1\text{-loop}} \sim \sum_{\text{species}} \sum_{ij=1}^{N} \sum_{\ell} \deg(\ell) \varepsilon(\ell, |\phi_i - \phi_j|)$$

With critical μ_p fermions can have integer moding on S^3:

$$\varepsilon_F = \sqrt{(\ell + \frac{1}{2})^2 + \phi_{ij}^2} \rightarrow \sqrt{(\ell + \frac{1}{2} \pm \frac{\mu_1}{2})^2 + \phi_{ij}^2 \pm \frac{\mu_2}{2} \pm \frac{\mu_3}{2}}.$$
Perform Casimir sums using energy cutoffs on S^3

Regularized Casimir sums at $T = 0$ and with critical μ_p:
Perform Casimir sums using energy cutoffs on S^3.

Regularized Casimir sums at $T = 0$ and with critical μ_p:

$$V_1^b = (2\pi^2 R^3)^{-1} \sum_{ij=1}^{N} \Lambda^4 R^3 - \frac{1}{2} R \Lambda^2 - R^3 \phi_{ij}^2 \Lambda^2 + \frac{1}{12 R} - \frac{1}{4} \phi_{ij}^2 R$$

$$+ \frac{1}{2} \phi_{ij}^4 R^3 \log \left(\frac{|\phi_{ij}| e^{1/4}}{2\Lambda} \right) + 8 \int_{R\phi_{ij}}^{\infty} \frac{x^2 \sqrt{x^2 R^{-2} - \phi_{ij}^2}}{e^{2\pi x} - 1}.$$
Perform Casimir sums using energy cutoffs on S^3

Regularized Casimir sums at $T = 0$ and with critical μ_p:

$$V_1^b = (2\pi^2 R^3)^{-1} \sum_{ij=1}^{N} \Lambda^4 R^3 - \frac{1}{2} R \Lambda^2 - R^3 \phi_{ij}^2 \Lambda^2 + \frac{1}{12 R} - \frac{1}{4} \phi_{ij}^2 R$$

$$+ \frac{1}{2} \phi_{ij}^4 R^3 \log \left(\frac{|\phi_{ij}|e^{1/4}}{2\Lambda} \right) + 8 \int_{R\phi_{ij}}^{\infty} \frac{x^2 \sqrt{x^2 R^{-2} - \phi_{ij}^2}}{e^{2\pi x} - 1}.$$

$$V_1^f = (2\pi^2 R^3)^{-1} \sum_{ij=1}^{N} - \Lambda^4 R^3 + \frac{1}{2} R \Lambda^2 + R^3 \phi_{ij}^2 \Lambda^2 + \frac{5}{48 R}$$

$$+ \frac{1}{4} \phi_{ij}^2 R - \frac{1}{2} \phi_{ij}^4 R^3 \log \left(\frac{|\phi_{ij}|e^{1/4}}{2\Lambda} \right) - 8 \int_{R\phi_{ij}}^{\infty} \frac{x^2 \sqrt{x^2 R^{-2} - \phi_{ij}^2}}{e^{2\pi x} - 1}.$$
At critical chemical potential and $T = 0$, radiative corrections vanish, the classical flat directions are not lifted. For $\mu_1 = \mu_c; \mu_2 = \mu_3 = 0$, the new Hamiltonian $\Delta - J_1$ vanishes on all $1/2$ BPS states. These parametrize the ground states since $\{Q^\dagger, Q\} \sim \Delta - J_1$. At a generic point on this moduli space, there is a charged condensate. For two and three critical μ_p, the ground states are the $1/4$ and $1/8$ BPS states.
\[V_{1}^{b} + V_{1}^{f} = \frac{N^{2}}{Vol(S^{3})} \frac{3}{16R} \]

At critical chemical potential and \(T = 0 \), radiative corrections vanish, the classical flat directions are not lifted.
\[V_1^b + V_1^f = \frac{N^2}{\text{Vol}(S^3)} \frac{3}{16R} \]

- At critical chemical potential and \(T = 0 \), radiative corrections vanish, the classical flat directions are not lifted.

- For \(\mu_1 = \mu_c; \mu_2 = \mu_3 = 0 \), the new Hamiltonian \(\Delta - J_1 \) vanishes on all \(\frac{1}{2} \) BPS states.
\[V_1^b + V_1^f = \frac{N^2}{\text{Vol}(S^3)} \frac{3}{16R} \]

- At critical chemical potential and \(T = 0 \), radiative corrections vanish, the classical flat directions are not lifted.

- For \(\mu_1 = \mu_c; \mu_2 = \mu_3 = 0 \), the new Hamiltonian \(\Delta - J_1 \) vanishes on all \(\frac{1}{2} \) BPS states.

- These parametrize the ground states since \(\{ Q^\dagger, Q \} \sim \Delta - J_1 \)
\[V_1^b + V_1^f = \frac{N^2}{\text{Vol}(S^3)} \frac{3}{16R} \]

- At critical chemical potential and \(T = 0 \), radiative corrections vanish, the classical flat directions are not lifted.

- For \(\mu_1 = \mu_c; \mu_2 = \mu_3 = 0 \), the new Hamiltonian \(\Delta - J_1 \) vanishes on all \(\frac{1}{2} \) BPS states.

- These parametrize the ground states since \(\{Q^+, Q\} \sim \Delta - J_1 \)

- At a generic point on this moduli space, there is a charged condensate
\[V_1^b + V_1^f = \frac{N^2}{Vol(S^3)} \frac{3}{16R} \]

- At critical chemical potential and \(T = 0 \), radiative corrections vanish, the classical flat directions are not lifted.

- For \(\mu_1 = \mu_c; \mu_2 = \mu_3 = 0 \), the new Hamiltonian \(\Delta - J_1 \) vanishes on all \(\frac{1}{2} \) BPS states.

- These parametrize the ground states since \(\{ Q^\dagger, Q \} \sim \Delta - J_1 \)

- At a generic point on this moduli space, there is a charged condensate

- For two and three critical \(\mu_p \), the ground states are the \(\frac{1}{4} \) and \(\frac{1}{8} \) BPS states.
TR \ll 1 \text{ and } |\mu_1 - \mu_c| \lesssim O(\lambda)

- At \mu_1 = \mu_c, switch on a small non-zero T (TR \ll 1)

- Joint potential for \alpha_i and scalars:

\[V_1 = \sum_{ij=1}^{N} \left(\frac{1}{\text{Vol}(S^3)} \left[\frac{3}{16R} - 8Te^{-\frac{1}{TR}} \sqrt{1+R^2\phi_{ij}^2} \right] \cos \left(\frac{\alpha_i - \alpha_j}{T} \right) + O(e^{-2/TR}) \right) . \]
$TR \ll 1$ and $|\mu_1 - \mu_c| \lesssim O(\lambda)$

- At $\mu_1 = \mu_c$, switch on a small non-zero T ($TR \ll 1$)
- Joint potential for α_i and scalars:
 \[V_1 = \sum_{ij=1}^{N} \left(\frac{1}{\text{Vol}(S^3)} \left[\frac{3}{16R} - 8Te^{-\frac{1}{TR}} \sqrt{1+R^2\phi_{ij}^2} \times \cos \left(\frac{\alpha_i-\alpha_j}{T} \right) + O(e^{-2/TR}) \right] \right). \]
- All $\alpha_i = 0$ – deconfined phase: $u_1 = 1$.
- 1-loop term vanishes at large ϕ_{ij}, and has positive curvature near $\phi_i = 0$.
- For some values of $\mu \gtrsim \mu_c$, V_1 can overcome tree level instability near $\phi_i = 0$.
For $TR \ll 1$ metastable state with $(\mu_1 - \mu_c) \leq 1$

- Thermal activation and tunnelling rates $\propto \exp\left(-\frac{1}{TR}\right)$

Aspects of thermodynamics of the $\mathcal{N} = 4$ theory on S^3
• For $TR \ll 1$ metastable state with $(\mu_1 - \mu_c) \leq \frac{1}{R} \lambda \exp(-\frac{1}{TR})$

• Thermal activation and tunnelling rates $\propto \exp(-Ne^{-\frac{1}{TR}})$
• Width of metastable band \(\sim \lambda e^{-1/TR} \)
At high temperatures $\sqrt{\lambda} \gg 1$, theory is deconfined ($\alpha_i = 0$).

 Scalars have a thermal mass λT^2 near the origin $\phi_i = 0$.

 At large $|\phi_{ij}|$, quantum corrections vanish, effective potential has classical behaviour.

 Thus for $\mu_c < \mu < \sqrt{\lambda T^2} + \mu_c^2$, there is a metastable phase near the origin, with decay rate $\sim e^{-N/\lambda^{3/2}}$.

(Yamada, Yaffe)
High T metastable phase

(Yamada, Yaffe)

- At high temperatures $\frac{1}{\sqrt{\lambda}} \gtrsim TR \gg 1$, theory is deconfined ($\alpha_i = 0$).

- Scalars have a thermal mass λT^2 near the origin $\phi_i = 0$.

- At large $|\phi_{ij}|$, quantum corrections vanish, effective potential has classical behaviour.
(Yamada, Yaffe)

- At high temperatures $\frac{1}{\sqrt{\lambda}} \gtrsim TR \gg 1$, theory is deconfined ($\alpha_i = 0$).
- Scalars have a thermal mass λT^2 near the origin $\phi_i = 0$.
- At large $|\phi_{ij}|$, quantum corrections vanish, effective potential has classical behaviour.
- Thus for $\mu_c < \mu < \sqrt{\lambda T^2 + \mu_c^2}$, there is a metastable phase near the origin, with decay rate $\sim e^{-N/\lambda^2}$.
High T metastable potential

\[\frac{1}{\lambda} > (TR)^2 \gg 1 \]
Weak-strong comparison

\(\lambda \ll 1 \)

- Confined
- Unstable
- Metastable
- Deconfined

(Cvetic, Gubser; Behrndt, Cvetic, Sabra; Yamada)
Weak-strong comparison

(Cvetic, Gubser; Behrndt, Cvetic, Sabra; Yamada)
Further directions

- Unitary matrix model for on S^3, truncated to the 'b' term, as a model for extracting small black holes; blackhole-string phase transition. (Alvarez-Gaume, Gomez, Liu, Wadia; Basu, Wadia; Dutta, Gopakumar)

- An effective potential for the Polyakov loop from gravity. (Headrick)

- Eigenvalue distributions for the Polyakov-Maldacena both at weak and strong coupling. (Hartnoll, SPK)
Real time correlators at high temperature, $TR \to \infty$ - Poles vs. Cuts.

E.g. $\langle \text{Tr} F^2(t, \vec{x}) \text{Tr} F^2(0) \rangle^\text{ret}_{\omega, \vec{k}}$.

(Hartnoll, SPK)

More generally, branch cuts from graphs at $\lambda \ll 1$ should turn into poles corresponding to BH quasinormal frequencies at $\lambda \to \infty$.
• Real time correlators as probes of black hole singularities. (Fidkowski, Hubeny, Kleban, Shenker)

\[\langle O^+(t)O^-(−t) \rangle \sim \frac{1}{(t−t_c)^{2\Delta}}; \quad \Delta \gg 1. \]

• Exponential falloff of correlator at large imaginary frequency. (Festuccia, Liu)

• Remnants of such signals in weakly coupled field theory?