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Realization of String Theory Hybrid Inflation

Warped brane inflation
throat warped geometry
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Warped Brane Inflation in String Theory

on the ground of KKLT throat warped geometry
throat warped geometry
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Klebanov-Strassler geometry
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Figure 1: Radial geometry of a Klebanov Strassler throat. For most part of this paper,
we consider KKLMMT-like inflation scenario where unstable D-brane system of D3
branes and anti-D3 branes near the bottom of the throat drives mflation, possibly
with some leftover D3’s.
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Cascading Energy from Inflaton to Radiation
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Figure 2: Identifying the channels of D-brane decay



D — D Annihilation and Closed Strings Production
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Closed Strings Decay to Local KK Modes
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KK Modes of Isometric Throat
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Fluctuations in Cosmology with Compactification
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Fluctuations in Cosmology with Compactification

string theorist

CY cosmologist

™ 3+1 FRW

Practical cosmologist CY +fluctuations

3+1 FRW +KK gas

CY



INTERACTIONS OF KK MODES
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KK-SM particles Interactions Kk H

/dﬂ;r — G (ind) {;r ind) d,H o, H 59 (y° — Yp) = /fﬂ;r —g(ygjg“”{ygjﬁﬁﬂﬁyﬁ

(:ﬂ;_-,] L‘ﬂL[:yb) I.“"P' r_’} HI_J H }u}q{hb {34;?3 "}"HL‘- s, Erﬂyﬁ
(m) ~#

C AKKbb vanishes for all M #10

M 1s the projection of the angular momentum along the z-axis



- . SM D3 brane

. . . y )
Zeros and signs of sperical harmonics at S°

FIG. 1: Zeros and signs on the spherical harmonics on $%. We compare the M = 0 with the M #0
case, The spherical harmonics with M # 0 vanish at the two poles. As a consequence, K K modes
with nonvanishing angular momentum along the directions whose isometries are left unbroken by

the brane are not directly coupled to brane fields (see the main text for details).



KK story

KK particles are thermalized first
SM particles are thermalized much later
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End point of inflation LK, Yi 05
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Resolution?

® Attachment of KS throat to a compact CY
Induces symmetry breaking perturbations.

infinite throat warped geometry

ompact throat warped geometry




Impact of isometry breaking perturbation on KK modes decay
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Fluctuations in Cosmology with Compactification
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KK Modes of the Throat with Isometry Breaking Perturbations
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KK Modes of the Throat with Isometry Breaking Perturbations
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RELIC ABUNDANCES
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FIG. 3: Estimate for the m /T ratio at which the scatterings KIK; + KK_; — b+ b freeze out. The

value is strongly sensitive to the ratio R/va/.
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FIG. 4: Relic abundance for the KK, species as function of parameter R /v'o'. We note that the

lightest modes are more abundant than the heavier ones.
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Temperature of the universe at which the relic KKy, particles start to dominate, (provided

they have not decayed yet) as function of R/v/a'. The temperature T.y = 7.4 - 107 GeV at

the moment of matter-radiation equality is also shown for comparison. In the long throat, for

R/va' =6, the KK modes can be the dark matter candidate.



PHENOMENOLOGICAL CONSTRAINTS

_imits from BBN
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function of o and R/va'. For definiteness, we have fixed V;" /R = 1 in this plot. Higher values

of this ratio correspond to a shorter lifetime, cf. Eq. (88).
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FIG. 8 Different scenarios for the decay of the KK particles in the short throat, for the fixed

-1/6 : : ,
value V;'" /R = 1. The horizontal line corresponds to the reference value oo = 1.29.
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FIG. 7: BBN limit 7 < 1072 s for three reference values of the ratio Vﬁlm /R for the short throat.

For each case, regions above the lines (greater lifetime) are excluded.

v = 1.29 corresponds to the reference value.
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lifetime, cf. Eq. (90).
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FIG. 10: Combined upper bound on the mass m times the abundance Y for an unstable particle

with lifetime 7. The BBN limit is taken from [29], while the bound from the diffuse ~ ray back-

ground from [31]. The horizontal line denoted by 2,0 is the limit imposed by requiring that the

energy density of the KX particle does not exceed the dark matter £}, The other curves represent
176,

the values of 7 and m Y obtained in the long throat, for V;'" /R = 10, for different values of o

(indicated on the lines) and of F/v/«o' (mY is an increasing function of R /+/a’).
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FIG. 11: Final exclusion region for the parameter in the long throat. The three lines correspond
to three reference value of 1":31;'3 /R. For each case, values of the parameters on the right of the
corresponding curve conflict with the phenomenological limits shown in Fig. 10, The highest values
of ev shown result in KKy particles with a much longer lifetime than the age of the universe. In
this case, the only relevant bound is that the energy density of the KKy, particles does not exceed

the one of dark matter in our universe. The horizontal line corresponds to o = 1.29
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FIG. 12: Angular KK modes can be the dark matter candidate for R /v/a' = 6 and for the values
_;"1 .I'I.E i = = = - .

of the parameters a and V;'" /R above the line shown in the plot, corresponding to a lifetime of

the KK particles greater than about 3-10%®s (to avoid the limit from the diffuse v ray background,

. 176 ;1 . . . -
cf. Fig. 10). For V;' /R > 1 this occurs for relatively large values of o > 1.7.



Figure 4: KK modes in the inflation throat deposit energy to lower energy throats.
The branching ratio will be largely determined by how throats are distributed in the
internal manifold with respect to the inflation throat and less sensitive to the field
content of each throat. Energy deposited in throat 1 will later decay to throat 2, but
at much more suppressed rate because its mass scale is far lower than that of the
inflation throat.
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a Standard Model throat can be cloaked by a horizon of a black hole produced by

tunneling of the excited Kaluza-Klein modes from the Inflationary throat.

A. Buchel, LK



a Standard Model throat can be cloaked by a horizon of a black hole produced by

tunneling of the excited Kaluza-Klein modes from the Inflationary throat.
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ascading gauge theory undergoes

a deconfining phase transition manifested in a
formation of BH horizon in KS geometry




Kahler moduli Inflation (Conlon&Quevedo hep-th/050912)
Roulette Inflation-Kahler moduli/axion
(Bond, LK, Prokushkin&Vandrevange hep-th/0612197)

v

Figure 1: Schematic illustration of the ingredients in Kihler moduli inflation. The four-cveles of the
CY are the Kahler moduli T; which govern the sizes of different holes in the manifold. We assume T3
and the overall scale T are already stabilized, while the last modulus to stabilize, T, drives inflation
while settling down to its minimum. The lmaginary parts of T; have to be left to the imagination.
The outer 3 + 1 observable dimensions are also not shown.






