statures from Received for the second second

KITP Seminar UC Santa Barbara 24th January 2008

Juan García-Bellido

Inst. Física Teórica

Annual and the early universe

J. G.-B. Daniel G. Figueroa Alfonso Sastre Andres Diaz-Gil, J. G.-B. Margarita Garcia Perez lat

The origin of matter and radiation

Preheating

ery rich phenomenology after inflation

Non-thermal production of particles (CDM)
Production of topological defects (strings)
EW baryogenesis & leptogenesis
Production of gravitational waves
Production of primordial magnetic fields
etc.

Tachyonic preheating

JGB, Linde

Felder, JGB, Kofman, Linde, Tkachev

JGB, García-Perez, González-Arroyo PRD57, 6075 (1998) PRL87, 011601 (2001) BBB64; 163517 (2003)

Tachyonic preheating

Spinodal growth of long wave Higgs modes

At the end of Hybrid Inflation
Higgs couples to gauge fields
Strong production of fermions
Production of cosmic strings

 $\phi \in U(1)$

String production @ end hybrid inflation

The Higgs Evolution

$$m_{\varphi}^{2} = m^{2} \left(\frac{\chi^{2}}{\chi_{c}^{2}} - 1 \right) \approx -2Vm^{3}(t - t_{c})$$
$$= -M^{3}(t - t_{c}) = -M^{2}\tau$$

 $H = \frac{1}{2} \int d^{3}k \Big[p_{k}(\tau) p_{k}^{+}(\tau) + (k^{2} - \tau) y_{k}(\tau) y_{k}^{+}(\tau) \Big]$

$$[y_k(\tau), p_{k'}(\tau)] = i\hbar \delta^3(k-k')$$

Higgs Quantum Field

$$y_{k}(\tau) = f_{k}(\tau)a_{k}(\tau_{0}) + f_{k}^{i}(\tau)a_{-k}^{+}(\tau_{0})$$

$$p_{k}(\tau) = -i\left[g_{k}(\tau)a_{k}(\tau_{0}) - g_{k}^{i}(\tau)a_{-k}^{+}(\tau_{0})\right]$$

$$f_{k}^{''} + (k^{2} - \tau)f_{k} = 0 \qquad g_{k} = if_{k}^{i}$$

Airy function $\Omega_{k}(\tau) = \frac{g_{k}^{i}(\tau)}{f_{k}^{i}(\tau)} = \frac{1 - 2iF_{k}(\tau)}{2|f_{k}(\tau)|^{2}}$ $F_{k}(\tau) = \operatorname{Im}(f_{k}^{i}g_{k})$

Quantum Initial Conditions

$$\forall k \ a_k(\tau_0)|0,\tau_0\rangle=0 \Rightarrow \Psi_0(\tau_0)=N_0e^{-k|y_k^0|^2}$$

Unitary Evolution
 $|0,\tau\rangle=U|0,\tau_0\rangle \Rightarrow \Psi_0(\tau)=\frac{1}{\sqrt{\pi}|f_k|}e^{-\Omega_k(\tau)|y_k^0|^2}$
Occupation number of mode k
 $n_k(\tau)=\langle 0,\tau|N_k(\tau_0)|0,\tau\rangle=\frac{1}{2k}|g_k|^2+\frac{k}{2}|f_k|^2-\frac{1}{2}$

Quantum to Classical Transition

$$\langle 0,\tau | G(\hat{y},\hat{p}) | 0,\tau \rangle \approx \langle G_0(y,p) \rangle_{gaussian}$$

Quantum to Classical Transition

For $k < \sqrt{\tau}$ (longwave modes) Power spectrum (approximation):

$$P_{app}(k, \tau) = k^3 |f_k(\tau)|^2 \approx A(\tau) k^2 e^{-B(\tau)k^2}$$

$$A(\tau) = A_0 B i^2(\tau) \approx \frac{A_0}{\pi \sqrt{\tau}} e^{\frac{4}{3}\tau^{3/2}}$$

$$B(\tau) = 2\sqrt{\tau}$$
 Airy function

Power spectrum of longwave modes

Lattice Simulations

Quantum averages = Gaussian ensemble averages

Initial conditions: Highly occupied modes

$$|0,\tau\rangle = U|0,\tau_0\rangle \Rightarrow \Psi_0(\tau) = \frac{1}{\sqrt{\pi}|f_k|} e^{-\Omega_k(\tau)|y_k^0|^2}$$

Rayleigh distribution: $P_{\psi}(|\varphi_{k}|)d|\varphi_{k}|d\theta_{k}=e^{-\frac{|\varphi_{k}|^{2}}{|f_{k}|^{2}}}\frac{d|\varphi_{k}|^{2}}{|f_{k}|^{2}}\frac{d\theta_{k}}{2\pi}$

High peaks of Higgs field

High peaks

High peaks and mean of Higgs field

Stochastic background gravitational waves

J. G.-B. Daniel G. Figueroa

+Alfonso Sastre

PRL98, 061302 (2007)

arXiv:0707.0839 [hepph]

The Higgs-Inflaton model

$$L = Tr[(\partial_{\mu} \boldsymbol{\Phi})^{+} \partial^{\mu} \boldsymbol{\Phi}] + \frac{1}{2} (\partial_{\mu} \boldsymbol{\chi})^{2} - V(\boldsymbol{\Phi}, \boldsymbol{\chi})$$

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ backreaction

$$g^{\mu\nu}\partial_{\mu}\varphi \partial_{\nu}\varphi = (\partial_{0}\varphi)^{2} - (\nabla\varphi)^{2} - h^{ij}\nabla_{i}\varphi \nabla_{j}\varphi$$

Gravity waves evolution equation

$$\partial_0^2 h_{ij} - \nabla^2 h_{ij} = 16\pi \ G \ \Pi_{ij} \quad \text{anisotropic stress tensor} \\ \Pi_{ij} = \nabla_i \varphi \ \nabla_j \varphi - \frac{1}{3} \delta_{ij} (\nabla \varphi)^2 + \nabla_i \chi \ \nabla_j \chi - \frac{1}{3} \delta_{ij} (\nabla \chi)^2$$

$$t_{\mu\nu} = \frac{1}{32\pi G} \langle \partial_{\mu} h_{ij}^{TT} \partial_{\nu} h_{ij}^{TT} \rangle \quad \text{energy density}$$
$$\frac{\rho_{gw}}{\rho_0} = \frac{1}{8\pi G v^2 m^2} \langle \partial_0 h_{ij}^{TT} \partial_0 h_{ij}^{TT} \rangle = \frac{2}{5} \frac{1}{8\pi G v^2 m^2} \langle \partial_0 h_{ij} \partial_0 h_{ij} \rangle$$

$$\Omega_{gw} = \int \frac{df}{f} \Omega_{gw}(f) = \int \frac{dk}{k} \frac{k^3}{2\pi^2} \frac{\rho_{gw}(k)}{\rho_0} \frac{\rho_{rad}}{\rho_c}$$

Kinetic Turbulence &

GW spectrum during turbulence

$$\frac{k^3}{2\pi^2} \frac{\rho_{gw}(k,t)}{\rho_0} = 0.002 \ Gv^2 \ t^{1.78} k^2 \exp(-0.32 \ t^{-2/9} k^2)$$

instantaneous spectrum:

$$\Omega_{gw}(t) = \int \frac{dk}{k} \frac{k^3}{2\pi^2} \frac{\rho_{gw}(k,t)}{a^4 \rho_c} = 0.002 \ \Omega_{rad} \frac{Gv^2 t^2}{a^4}$$

integrated spectrum after end of turbulence (t*):

$$\Omega_{gw} = \int dt \ \Omega_{gw}(t) \approx \Omega_{gw}(t_1) (mt)^{\alpha} \ \alpha = 1, \frac{1}{3}$$

BIG BANG

Gravitational Waves are produced directly at the Big Bang

End of Inflation (Big Bang 10⁻³⁵ Seconds)

> Big Bang plus 380,000 Years

> > gravitational waves

Big Bang plus 13.7 Billion Years Now

light

Detection Gravitation

8

Waves

Ranges of Gravitational Wave Detectors in the Wor

Dimensionless stress amplitude

$$\langle h_{ij}(t) h^{ij}(t) \rangle = 2 \int_{0}^{\infty} \frac{df}{f} h_{c}^{2}(f)$$

$$\Omega_{gw}(f) = \frac{f d\rho_{gw}}{\rho_c df} = \frac{2\pi^2}{3H_0^2} f^2 h_c^2(f)$$

$$h_c(f) = 1.3 \times 10^{-18} \left(\frac{1 Hz}{f}\right) \sqrt{\Omega_{gw}(f) h_0^2}$$

Backgrounds, Bounds & Sensitivity

Telescope	Person	Date	Objective	Discovery
Optical	Galileo	1608	Navigation	Jupiter's moons
Geiger	Hess	1912	Geothermal	Cosmic Rays
Optical	Hubble	1929	Nebulae l	Jniverse Expansio
Radio	Jansky	1932	Atmos. Noise	Radio Galaxies
licrowavesenzias, Wilson 1964 Telecommunicatio Backgr. Radiation				
X Rays	Giacconi	1965	Sun, Moon	Neutron Stars
Radio	Hewish, Bel	1967	Ionosphere	Pulsars
Rays	military	1960 s	Nuclear Tests	Gamma Ray Bursts
Radio I	lulse, Taylo	r1974	Binary Pulsa	ravitational Wave
Cerenkov	Koshiba	1998	Proton Decay	ol./Atm. Neutrinos
Optical	Kirschner Perlmutter	1998	Supernovae l	Jniverse Acceleratio
Laser nterferom	?	2020?	Gravitational Waves	Big Bang, Inflation

Conclusions

- CMB anisotropies suggest inflation
- The end of inflation is our local Big Bang
- It is extremely violent at preheating
- Production of gravitational waves at Big

Bang

• New detectors of GW are under construction

Primordial Magnetic Fields

J. G.-B. Andres Diaz-Gil Margarita Garcia-Perez Antonio Gonzalez-Arroyo

hep-lat/0509094 arXiv:0710.0580 [heplat] arXiv:0712.4263 [hepph]

EW Tachyonic Preheating

- Spinodal growth of long wave Higgs modes
- At the end of EW Hybrid Inflation
- Inflaton couples to Higgs
- Higgs couples to SM fields
- Strong production of fermions and gauge fields

The SU(2)xU(1) Higgs-Inflaton mode

$$\begin{split} L &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a} + Tr[(D_{\mu} \Phi)^{+} D^{\mu} \Phi] \\ D_{\mu} &= \partial_{\mu} - \frac{i}{2} g_{\mu} A^{a}_{\mu} \tau_{a} - \frac{i}{2} g_{\gamma} B_{\mu} \tau_{3} + \frac{1}{2} (\partial_{\mu} \chi)^{2} - V(\Phi, \chi) \\ G^{a}_{\mu\nu} &= \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} + g_{\nu} \varepsilon^{abc} A^{b}_{\mu} A^{c}_{\nu} \\ F_{\mu\nu} &= \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu} \end{split}$$

$$Tr[\phi^{+}\phi] = \frac{1}{2}(\phi_{0}^{2} + \phi^{a}\phi_{a}) \equiv \frac{1}{2}\phi^{2}$$
$$V(\phi, \chi) = \frac{\lambda}{4}(\phi^{2} - v^{2}) + \frac{g^{2}}{2}\phi^{2}\chi^{2} + \frac{1}{2}m^{2}\chi^{2}$$

Ø

В

Charges in W^+

Charged plasma

 H_{B}

 H_{z}

В

Time evolution

Time evolution

Boltzman-Maxwell distribution

 $P(B) = B^2 \exp\{\frac{3B^2}{2\langle B^2 \rangle}\} \quad \langle B^2 \rangle = \frac{\pi^2}{15}T^4$ $T \approx 0.4 - 0.6 m$

Spatial averages

$$B_{(1)}(L) = \frac{1}{L} \int_{C} \vec{B} \cdot d\vec{x}$$

$$B_{(2)}(L) = \frac{1}{L^{2}} \int_{S} \vec{B} \cdot d\vec{S}$$

$$B_{(3)}(L) = \frac{1}{L^{3}} \int_{V} \vec{B} \cdot d^{3}\vec{x}$$

Linear average

Magnetic flux

Volume average

Spatial averages

100

Spatial averages

 $B_{\xi}^{2} \approx 3 \times 10^{-3} t^{0.5} \rho_{0}$

 $\xi \approx 8 t^{0.02} m^{-1}$

he coherence scale of magnetic field

 $\xi \propto t$ $\xi \propto a(t)$ $\xi_{0} \approx 3 \ cm \left(\frac{a_{dec}}{a_{EW}}\right)^{2} \left(\frac{a_{0}}{a_{dec}}\right) \approx 20 \ Mpc$

Observatio

Magnetic Fields

Coherent Magnetic Fields

 $B \approx 50 \ \mu G$ at L<5 kpc galaxies $B \approx 5 - 10 \ \mu G$ at $L \approx 10 \ kpc$ $B \approx 1 \mu G$ at $L \approx 1 Mpc$ clusters $B < 10^{-2} - 10^{-3} \mu G$ at $L \approx 1 - 50 Mpc$ supercluster $B < 10^{11} G at T = 10^9 K$ **BBN**
Coherent Magnetic Field in M31

 $B \approx 1 - 3 \mu G$ $l \approx 10 kpc$

Fig. 11. Orientation of the magnetic field (χ_B) in the central region of M 31 overlayed onto the H α photograph of Ciardullo et al. (1988). The lengths of the vectors indicate the degree of linear polarization at $\lambda 6.3$ cm

Faraday rotation by cluster galaxies

Coherent Magnetic Fields in

Chictore RM- -1.3 ... 0.8

EW Symmetry Breaking can lead to the production of primordial magnetic fields at tachyonic preheating after hybrid inflation

The right amplitude and scale of magnetic fields depends on the extent of kinetic turbulence

nitial conditions for magneto-Hydrodynamic simulations