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INTRODUCTION

nonequilibrium quantum field theory:

framework with many applications

in early universe:
inflation, baryon asymmetry, phase transitions, ...

in relativistic heavy ion collisions
probing strongly interacting matter/extreme QCD

in atomic physics, BEC, plasma physics, ...
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INTRODUCTION

in this lecture:

emphasis on methods

relativistic quantum fields

a few illustrations
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OUTLINE

what is nonequilibrium field theory?

mean field theory

2PI effective action

a few selected applications

transport
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QUANTUM DYNAMICS
GENERAL FORMULATION

well-defined problem:

initial conditions: density matrix ρD

time evolution: Heisenberg e.o.m. O(t) = eiHtOe−iHt

observables:

〈O(t)〉 = Tr ρD O(t) 〈O(t)O(t′)〉 = Tr ρD O(t)O(t′) etc.

in equilibrium: ρD ∼ e−H/T , commutes with the
evolution operator

time translation invariance:

〈O(t)〉 = 〈O(0)〉 〈O(t)O(t′)〉 = G(t− t′)
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QUANTUM DYNAMICS
GENERAL FORMULATION

out of equilibrium:

〈O(t)〉 = Tr ρD O(t) 〈O(t)O(t′)〉 = Tr ρD O(t)O(t′) etc.

density matrix ρD arbitrary ([H, ρD] 6= 0)

initial value problem: start at t = t0

time translation invariance is broken:

〈O(t)〉 = G(t− t0) 〈O(t)O(t′)〉 = G(t− t0, t
′ − t0)

relation to the initial conditions: memory

effective independence of t0 as t→ ∞?
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NONEQUILIBRIUM DYNAMICS
MAIN OBSTRUCTION

no exact solution method available

use approximation methods

language of unequal-time correlation functions

n-point functions: hierarchy of coupled equations

approximation: truncate hierarchy

problem not specific for quantum dynamics

fluctuations: quantum and/or statistical

⇒ consider also classical statistical field theory
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NONEQUILIBRIUM DYNAMICS
CORRELATION FUNCTIONS

quantum field theory

〈φ(x)φ(y)〉 =

∫

dφ′dφ′′〈φ′|ρD|φ′′〉
︸ ︷︷ ︸

∫

Dφ eiSφ(x)φ(y)
︸ ︷︷ ︸

initial cond. quantum evolution
(path integral)

classical statistical field theory

〈φ(x)φ(y)〉cl =

∫

DπDφρcl[π, φ]
︸ ︷︷ ︸

φ(x)φ(y) + equations of motion
︸ ︷︷ ︸

initial prob. distribution classical evolution
and phase space integral
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NONEQUILIBRIUM DYNAMICS
ASIDE

in classical statistical field theory:

“exact” evolution can be found numerically

〈φ(x)φ(y)〉cl =

∫

DπDφρcl[π, φ]φ(x)φ(y) + e.o.m.

sample initial conditions from ρcl[π, φ]

solve e.o.m. for each of them

average over initial conditions

note:

classical thermal statistics: ncl(ω) = T/ω

Rayleigh-Jeans divergence

careful with interpretation at late times KITP, Intro to 2PI, Jan/08 – p.6



MEAN FIELD APPROXIMATIONS
SIMPLEST ATTEMPT

equation of motion: (� +m2)φ = −λ
6φ

3

expectation values:

〈φ(x)〉 coupled to 〈φ3(x)〉

G(x, y) = 〈φ(x)φ(y)〉 coupled to 〈φ3(x)φ(y)〉

etc.

mean field/Gaussian/Hartree approximation: replace

φ3 → 3〈φ2〉φ (〈φ〉 = 0 for simplicity)

self-consistent equation for two-point function

[
� +m2 +

λ

2
G(x, x)

]
G(x, y) = 0
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MEAN FIELD APPROXIMATIONS
SIMPLEST ATTEMPT

successfully truncated hierarchy of correlation
functions

Gaussian approximation for G(x, y) = 〈φ(x)φ(y)〉

same in quantum and classical theory

alas:

approximation has a nonthermal fixed point

best seen using equal-time correlation functions

Gφφ(x− y, t) = 〈φ(x, t)φ(y, t)〉

Gππ(x− y, t) = 〈π(x, t)π(y, t)〉

Gπφ(x− y, t) =
1

2
〈π(x, t)φ(y, t) + φ(x, t)π(y, t)〉
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MEAN FIELD APPROXIMATIONS
SIMPLEST ATTEMPT

Gaussian approximation:

∂tGφφ(p, t) = 2Gπφ(p, t)

∂tGπφ(p, t) = −ω̄2
pGφφ(p, t) +Gππ(p, t)

∂tGππ(p, t) = −2ω̄2
pGπφ(p, t)

with ω̄2
p = p2 +m2 +

λ

2
〈φ2〉

conserved quantity for every momentum mode p

C2(p) = Gφφ(p, t)Gππ(p, t) −G2
πφ(p, t)

∂tC(p) = 0
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MEAN FIELD APPROXIMATIONS
SIMPLEST ATTEMPT

nonthermal fixed point:

G∗
ππ(p) = ω̄2

pG
∗
φφ(p)

G∗
πφ(p) = 0

C2(p) = G∗
φφ(p)G∗

ππ(p) fixed by initial ensemble

ω̄∗2
p = p2 +m2 +

λ

2
〈φ2〉∗

explicit solution:

〈φ2〉∗ determined by gap equation

G∗
ππ(p) = C(p)ω̄∗

p G∗
φφ(p) = C(p)/ω̄∗

p

fixed point relevant for actual nonperturbative dynamics?
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NONTHERMAL FIXED POINTS
G.A., BONINI AND WETTERICH

classical test in 1 + 1 dimensions

0.0 250.0 500.0 750.0 1000.0

mt

10.0

20.0

30.0

40.0

50.0

T
 ′

MC (exact)

MC (exact)

Hartree

Hartree

classical mode
temperature:

T (p, t) = Gππ(p, t)

in classical thermal
equilibrium:

T (p, t) = T

Hartree approximation: oscillating around nonthermal
fixed point
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NONTHERMAL FIXED POINTS
G.A., BONINI AND WETTERICH

momentum-dependent “temperature” profile

0.0 1.0 2.0 3.0 4.0 5.0

p/m

5.0

5.5

6.0

6.5

7.0

7.5

T
 ′(

p
)

Hartree, Gaussian

beyond Hartree

MC (exact)

fixed point

classical mode
temperature:

T (p, t) = Gππ(p, t)

fixed point:

T ∗(p) = T0

[

1 +
λ

2

〈φ2〉∗

p2 +m2

]1/2

initial response determined by nonthermal fixed point,
also for exact (MC) evolution
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NONTHERMAL FIXED POINTS
G.A., BONINI AND WETTERICH

momentum-dependent “temperature” profile

0.0 2.0 4.0 6.0 8.0 10.0 12.0

p/m

20.0

25.0

30.0

35.0

T
 ′

1

2

3

4

5

6

classical mode
temperature:

T (p, t) = Gππ(p, t) → T

t1 < t2 < . . . < t6

fixed point relevant at early times

exact (MC) evolution eventually thermalizes:
all modes the same temperature KITP, Intro to 2PI, Jan/08 – p.8



NONEQUILIBRIUM QUANTUM FIELDS?
WISH LIST

mean field approximation (dramatically) inadequate

need to include scattering

want:

stable time evolution
nontrivial due to secularity: many schemes break
down when t ∼ 1/(expansion parameter)

connection with well-established approaches, e.g.
kinetic theory

dynamics at very late times: conservation laws and
hydrodynamics, transport

...

KITP, Intro to 2PI, Jan/08 – p.9



KINETIC THEORY
CONNECTION WITH ESTABLISHED METHODS

example:

Boltzmann equation: (∂t + vp · ∂X) f(p, X) = C[f ]

X = (t,x) vp = p/Ep p0 = Ep (onshell)

real particles undergo isolated collisions

collision kernel for two-to-two scattering processes:

C[f ] =
1

2

∫

p′kk′

|M|2(2π)4δ4(p+ p′ − k − k′)

[(1 ± fp) (1 ± fp′) fkfk′ − fpfp′ (1 ± fk) (1 ± fk′)]

stationary solution: f(p, X) → n(Ep) = 1/[eEp/T ∓ 1]

KITP, Intro to 2PI, Jan/08 – p.10



KINETIC THEORY
BEYOND KINETIC THEORY?

assumptions:

onshell particles: phase space distribution

isolated collisions, well separated in space and time

‘slowly varying’, gradient expansion

relax these assumptions:

quantum field theory

⇒ dynamics of correlation functions, in particular
two-point functions

KITP, Intro to 2PI, Jan/08 – p.10



KINETIC THEORY
TWO-POINT FUNCTIONS

Wightman functions:

G>(x, y) = 〈φ(x)φ(y)〉 = G<(y, x)

spectral function:

ρ(x, y) = i〈[φ(x), φ(y)]〉 = i
(
G>(x, y) −G<(x, y)

)

statistical function:

F (x, y) =
1

2
〈[φ(x), φ(y)]+〉 =

1

2

(
G>(x, y) +G<(x, y)

)

two-point functions closely related to particle distribution
functions, after series of manipulations

KITP, Intro to 2PI, Jan/08 – p.10



KINETIC THEORY
TWO-POINT FUNCTIONS

separation of slow and fast variables: Wigner transform

X =
1

2
(x+y) (x−y) → p ⇒ G>(x, y) → G>(p,X)

in equilibrium: Kubo-Martin-Schwinger (KMS) condition
periodicity of the trace (X independent)

G>(x, y) ∼ Tre−H/Tφ(x)φ(y) ⇒ G>(ω,p) = eω/TG<(ω,p)

all 2-point functions related to the spectral density

G>(ω,p) = [nB(ω) + 1] ρ(ω,p) G<(ω,p) = nB(ω)ρ(ω,p)

noneq. distr. function: G<(p,X) = f(p,X)ρ(p,X)

onshell approximation f(p, X), with p0 = Ep(X)
KITP, Intro to 2PI, Jan/08 – p.10



2PI EFFECTIVE ACTION
FIELD THEORY APPROACH

therefore:

two-point function important role

obeys Dyson equation: G−1 = G−1
0 − Σ

what is self energy Σ?

formalize: action principle

two-particle irreducible effective action

or

Φ-derivable approach

Luttinger/Ward, Baym, Cornwall/Jackiw/Tomboulis, ....

KITP, Intro to 2PI, Jan/08 – p.11



2PI EFFECTIVE ACTION
FIELD THEORY APPROACH

generating functional with local and bilocal sources

Z[J,K] = eiW [J,K] =

∫

Dϕ ei(S[ϕ]+Jiϕ
i+ 1

2
ϕiKijϕ

j)

Legendre transform: δW
δJi

= φi, δW
δKij

= φiφj +Gij

Γ[φ,G] = W [J,K] − Jiφ
i −

1

2
Kij

(
Gij + φiφj

)

effective action can be written as

Γ[φ,G] = S[φ] +
i

2
Tr lnG−1 +

i

2
TrG−1

0 (G−G0) + Γ2[φ,G]

variational principe (in absence of sources)

δΓ

δφ
= 0,

δΓ

δG
= 0 ⇒ G−1 = G−1

0 − Σ[G], Σ = 2i
δΓ2

δG
KITP, Intro to 2PI, Jan/08 – p.11



2PI EFFECTIVE ACTION
FIELD THEORY APPROACH

action principle, at the extremum

(
� + V ′[φ]

)
φ+

δΓ2[φ,G]

δφ
= 0 G−1 = G−1

0 [φ]−Σ[φ,G]

prescription for the self energy Σ = 2iδΓ2/δG

Γ2 is 2PI ⇔ Σ is 1PI, depends on full G

example:

avoid overcounting

KITP, Intro to 2PI, Jan/08 – p.11



NONEQUILIBRIUM DYNAMICS
INITIAL VALUE PROBLEM

t

solve equations in real time:

〈φ(x)φ(y)〉 =

∫

dφ′dφ′′〈φ′|ρD|φ′′〉
︸ ︷︷ ︸

∫

Dφ eiSφ(x)φ(y)
︸ ︷︷ ︸

initial cond. quantum evolution
(path integral)

use Schwinger-Keldysh contour for initial value problems

i
(
�x +m2

)
G(x, y) =

∫

C

dzΣ(x, z)G(z, y) + δC(x− y)

action principle along complex-time path C

KITP, Intro to 2PI, Jan/08 – p.12



NONEQUILIBRIUM DYNAMICS
INITIAL VALUE PROBLEM

Green functions: G>, G< etc.

minimal choice

decompose contour propagator in real and imaginary
parts:

G(x, y) = F (x, y) −
i

2
sign(x0 − y0)ρ(x, y)

statistical function spectral function
even, anti-commutator odd, commutator

spectral function is a commutator:

ρ(x, y)
∣
∣
x0=y0

= 0, ∂x0ρ(x, y)
∣
∣
x0=y0

= δ(x − y)

KITP, Intro to 2PI, Jan/08 – p.12



NONEQUILIBRIUM DYNAMICS
INITIAL VALUE PROBLEM

manifestly real and causal equations

[
�x +m2

]
F (x, y) = −

∫ x0

0
dz0

∫

dz Σρ(x, z)F (z, y)

+

∫ y0

0
dz0

∫

dz ΣF (x, z)ρ(z, y)

[
�x +m2

]
ρ(x, y) = −

∫ x0

y0

dz0

∫

dz Σρ(x, z)ρ(z, y)

with ΣF,ρ given in terms of F and ρ

predicting the future = remembering the past

KITP, Intro to 2PI, Jan/08 – p.12



NONEQUILIBRIUM DYNAMICS
INITIAL VALUE PROBLEM

action principle

conserved energy (〈φ〉 = 0):

E =

∫

d3x
1

2

[
∂x0∂y0 + ∂xi∂yi +m2

]
F (x, y)

∣
∣
∣
x=y

+
1

4

∫

d3x

∫ x0

0
dz0

∫

d3z [Σρ(x, z)F (z, x) − ΣF (x, z)ρ(z, x)]

conserved for every truncation

KITP, Intro to 2PI, Jan/08 – p.12



2PI TRUNCATIONS
LOOP AND 1/N EXPANSIONS TO NEXT-TO-LEADING ORDER

so far exact, approximation enters via truncation of Γ2

systematic, in practice loop and 1/N expansions

three-loop expansion (〈φ〉 = 0)

diagrams 1, 2, 3 well-studied (no internal vertices)

self energies:

KITP, Intro to 2PI, Jan/08 – p.13



2PI TRUNCATIONS
LOOP AND 1/N EXPANSIONS TO NEXT-TO-LEADING ORDER

large N expansion:

O(N) model, vertex ∼ 1/N (with 〈φ〉 = 0 for simplicity)

∼ N ∼ 1 ∼ 1/N

KITP, Intro to 2PI, Jan/08 – p.13



2PI TRUNCATIONS
LOOP AND 1/N EXPANSIONS TO NEXT-TO-LEADING ORDER

large N expansion:

O(N) model, vertex ∼ 1/N (with 〈φ〉 = 0 for simplicity)

efficient formulation: use chain of bubbles

= +

⇒ effective two-loop approximation

NNLO contribution (∼ 1/N ):

KITP, Intro to 2PI, Jan/08 – p.13



2PI TRUNCATIONS
LOOP AND 1/N EXPANSIONS TO NEXT-TO-LEADING ORDER

large N expansion:

O(N) model, vertex ∼ 1/N (with 〈φ〉 = 0 for simplicity)

dressed propagators:

G−1 = G−1
0 − Σ D−1 = D−1

0 − Π

self energies:

KITP, Intro to 2PI, Jan/08 – p.13



2PI TRUNCATIONS
LOOP AND 1/N EXPANSIONS TO NEXT-TO-LEADING ORDER

closed set of self-consistent equations:

[
�x +M2(x)

]
F (x, y) = −

∫ x0

0
dz0

∫

dz Σρ(x, z)F (z, y)

+

∫ y0

0
dz0

∫

dz ΣF (x, z)ρ(z, y)

[
�x +M2(x)

]
ρ(x, y) = −

∫ x0

y0

dz0

∫

dz Σρ(x, z)ρ(z, y)

with

ΣF (x, y) = −
λ

3N

[

F (x, y)DF (x, y) −
1

4
ρ(x, y)Dρ(x, y)

]

Σρ(x, y) = −
λ

3N
[ρ(x, y)DF (x, y) + F (x, y)Dρ(x, y)]

KITP, Intro to 2PI, Jan/08 – p.13



2PI TRUNCATIONS
LOOP AND 1/N EXPANSIONS TO NEXT-TO-LEADING ORDER

large N expansion:

large Nf gauge theory, vertex e2 ∼ 1/N

dressed propagators:

G−1 = G−1
0 − Σ D−1 = D−1

0 − Π

self energies:

KITP, Intro to 2PI, Jan/08 – p.13



SOLUTIONS
NUMERICAL

solve integro-differential equations on a spacetime
lattice

straightforward discretization, no further approximation

expensive numerically due to “memory kernel”

some applications

KITP, Intro to 2PI, Jan/08 – p.14



LOSS OF MEMORY
THERMALIZATION

first results by Berges and Cox (2000):

take different initial conditions (or density matrices)
with the total energy density identical

independence of initial conditions at late times

3-loop expansion in λφ4

in 1 + 1 dimensions

time evolution of different
momentum modes F (t, t; p)

KITP, Intro to 2PI, Jan/08 – p.15



PRECISION TESTS
CLASSICAL 2PI APPROXIMATION

2PI approach in classical statistical field theory

possibility to compare with “exact” solution

sampling of initial conditions + numerical integration of
classical equation of motion

example of classical limit: three-loop approximation

Σρ(x, z) = −
λ2

2
ρ(x, z)

[
F 2(x, z) −

1

12
ρ2(x, z)

]
,

ΣF (x, z) = −
λ2

6
F (x, z)

[
F 2(x, z) −

3

4
ρ2(x, z)

]

classically:

Σcl
ρ (x, z) = −

λ2

2
ρ(x, z)F 2(x, z) Σcl

F (x, z) = −
λ2

6
F 3(x, z)
KITP, Intro to 2PI, Jan/08 – p.16



NONEQUILIBRIUM INITIAL CONDITIONS
TSUNAMI

Gaussian initial conditions far from equilibrium

specify F (t, t′;p), ∂tF (t, t′;p), ∂t∂t′F (t, t′;p) at t = t′ = 0
in terms of initial particle number n(p)

0 1 2 3 4

p/m

0

0.25

0.5

0.75

1

1.25

n(
p)

tsunami
thermal

easily implemented in exact and 2PI dynamics
KITP, Intro to 2PI, Jan/08 – p.17



PRECISION TESTS
G.A. & BERGES

0 50 100 150

mt

0

0.5

1

1.5

G
φφ

(t
,t

;p
)

2PI−1/N classical

MC

2PI−1/N quantum

N=10

p/m=0

p/m=1.9

p/m=4.2

p/m=4.6

p/m=4.9

tsunami initial
conditions

equal-time correlation
function:
‘particle number’

high energy density:
compare quantum and
classical evolution

evolution from 2PI-1/N expansion in agreement with
‘exact’ evolution, also for late times.

reliable description of both early and late times

capable of describing equilibration
KITP, Intro to 2PI, Jan/08 – p.18



PRECISION TESTS
G.A. & BERGES

0 5 10 15 20

mt

−0.6

−0.3

0

0.3

0.6

G
φφ

(p
=

0
,t

)

2PI−1/N classical

MC

N=20

N=2

N=10

2PI-1/N expansion

unequal-time correlation
function

Monte Carlo: sample of 80.000 initial conditions

2PI-1/N : one (expensive) numerical solution

quantitative agreement for larger N

KITP, Intro to 2PI, Jan/08 – p.18



PRECISION TESTS
G.A. & BERGES

0 0.1 0.2 0.3 0.4 0.5

1/N

0

0.1

0.2

0.3

0.4

0.5

γ

2PI−1/N classical

MC

2PI−1/N quantum 2PI-1/N expansion

assume ansatz

G(t, 0;p) ∼ e−γt cosmt

fit γ and m

compare classical 2PI with classical exact

quantitative agreement for larger N

compare classical 2PI with quantum 2PI

quantum 6= classical!
KITP, Intro to 2PI, Jan/08 – p.18



(NOT) KINETIC THEORY

G.A. & BERGES

separation of fast and slow variables

effective particle number distribution is evolving fast
and wildly

1 2 3 4 5 6

ε/m

0

1

2

3

4

n
(ε

,X
0
)

mX
0
=0.1

mX
0
=14.5

mX
0
=28.9

mX
0
=130
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(NOT) KINETIC THEORY

G.A. & BERGES

self-consistent evolution of the spectral function
ρ(t, t′;p)

no quasiparticle approximation

Wigner transform: ρ(t, t′;p) → ρ(ω,p;X0)

0 1 2 3 4

ω/m

0

1

2

3

4

m
2
ρ(

X
0
;ω

,p
)

mX
0
=25.0

mX
0
=35.4

mX
0
=68.2

0 20 40 60

mX
0

1

1.5

2 E
p
(X

0
)/m X0 = (t+ t′)/2

quasiparticle peak

non-zero width

slowly evolving
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ET CETERA

much more work has been done:

quick establishment of equation of state
(prethermalization)

fermions

momentum anisotropy

(tachyonic) preheating

warm inflation

renormalization

...

cold atoms

KITP, Intro to 2PI, Jan/08 – p.20



TRANSPORT
FINAL STAGES

unified picture:

dynamics far from equilibrium with 2PI truncations

system will (eventually) equilibrate and thermalize

precise question:

which scattering processes are certainly included?

which scattering processes are certainly not included?

KITP, Intro to 2PI, Jan/08 – p.21



TRANSPORT
FINAL STAGES

final stages of evolution

dynamics of nearly conserved quantities

hydrodynamic modes are slowest

energy-momentum

charges

...

evolve according to “low-energy effective field theory”
=

hydrodynamics

KITP, Intro to 2PI, Jan/08 – p.21



NEAR EQUILIBRIUM: TRANSPORT COEFFICIENTS
KUBO RELATIONS AND LINEAR RESPONSE

electrical conductivity: σ =
1

6

∂

∂ω
ρii(ω,0)

∣
∣
∣
ω=0

shear viscosity: η =
1

20

∂

∂ω
ρππ(ω,0)

∣
∣
∣
ω=0

ρii

∼ σ

ω

spectral densities:

ρµν(ω,p) =

∫

d4x eipx〈[jµ(x), jν(0)]〉eq

ρππ(ω,p) =

∫

d4x eipx〈[πij(x), πij(0)]〉eq

with jµ = ψ̄γµψ, πij = Tij −
1
3δijT

k
k = ∂iφ∂jφ− 1

3δij∂kφ∂kφ

transport coefficients ∼
slope of current-current
spectral functions at ω = 0

KITP, Intro to 2PI, Jan/08 – p.22



NEAR EQUILIBRIUM: TRANSPORT COEFFICIENTS

G. A. AND J. M. MARTINEZ RESCO

imaginary part of correlators of bilocal operators

2PI effective action
as generating functional: � � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

+

generates ladder diagrams:

� �� �� �� �� �� �� �
� �� �� �� �� �� �� � � �

� � � �

1
2+

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � �� � �� � �� � �� � �� � �� � �
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� � � � � � � �

=

with kernel or rung:

Λij;kl = 4i
δ2Γ2

δGijδGkl
= 2

δΣij

δGkl

kernel (and self energy) determined by Γ2

KITP, Intro to 2PI, Jan/08 – p.23



NEAR EQUILIBRIUM: TRANSPORT COEFFICIENTS
DRESSED PROPAGATORS

pinching poles:

lim
ω→0

ρii(ω,0) = 4e2ω

∫
d4p

(2π)4
n′F (p0)GR(p)GA(p)

0p propagators in the loop carry the same
momentum, product of retarded (R) and
advanced (A) propagators

with bare propagators ill-defined

KITP, Intro to 2PI, Jan/08 – p.24



NEAR EQUILIBRIUM: TRANSPORT COEFFICIENTS
DRESSED PROPAGATORS

pinching poles:

lim
ω→0

ρii(ω,0) = 4e2ω

∫
d4p

(2π)4
n′F (p0)GR(p)GA(p)

0p

Γ

propagators in the loop carry the same
momentum, product of retarded (R) and
advanced (A) propagators

inclusion of thermal width Γ ∼ 1/N required

⇒ finite collision time/mean free path in a medium
resummed nonperturbatively

KITP, Intro to 2PI, Jan/08 – p.24



NEAR EQUILIBRIUM: TRANSPORT COEFFICIENTS
RUNGS AND LADDER DIAGRAMS

O(N) model large Nf QED/QCD

+ subleading terms in the 1/N expansion

KITP, Intro to 2PI, Jan/08 – p.25



NEAR EQUILIBRIUM: TRANSPORT COEFFICIENTS
RUNGS AND LADDER DIAGRAMS

O(N) model large Nf QED/QCD

+ subleading terms in the 1/N expansion

typical ladder diagrams:

KITP, Intro to 2PI, Jan/08 – p.25



NEAR EQUILIBRIUM: TRANSPORT COEFFICIENTS
RUNGS AND LADDER DIAGRAMS

O(N) model large Nf QED/QCD

+ subleading terms in the 1/N expansion

power counting
positive powers of N : closed scalar or fermion
loops and pairs of propagators with pinching poles
negative powers of N : vertices

all contributions to LO in 1/N expansion

subleading terms: cannot be neglected for
self-consistent dynamics far from equilibrium

KITP, Intro to 2PI, Jan/08 – p.25



TRANSPORT
PRECISE QUESTION

which scattering processes are (not) included?

3-loop expansion in gφ3 + λφ4 theory

kernel

a lot of scattering processes

KITP, Intro to 2PI, Jan/08 – p.26



TRANSPORT
PRECISE QUESTION

2-loop approximation:
(iterated)

sum of squares of 2 → 2 scattering processes

|M|2 ∼ g4
[
|G(s)|2 + |G(t)|2 + |G(u)|2

]

3-loop approximation:

square of sum of 2 → 2 scattering processes
(+ subleading vertex corrections)

|M|2 ∼
∣
∣λ+ g2 [G(s) +G(t) +G(u)]

∣
∣
2

interference included
KITP, Intro to 2PI, Jan/08 – p.26



TRANSPORT
PRECISE QUESTION

2-loop or large Nf expansion in QED

coupled integral equations:
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TRANSPORT
PRECISE QUESTION

scattering kernel

weak coupling in the leading log approximation
(transport coefficient ∼ 1/e4 ln 1/e)

rung 1 ⇒ t-channel Coulomb scattering
rung 2 ⇒ Compton scattering, pair annihilation

KITP, Intro to 2PI, Jan/08 – p.27



TRANSPORT
PRECISE QUESTION

scattering kernel

weak coupling in the leading log approximation
(transport coefficient ∼ 1/e4 ln 1/e)

rung 1 ⇒ t-channel Coulomb scattering
rung 2 ⇒ Compton scattering, pair annihilation

leading order large Nf QED:

rung 1 and 4 ⇒ Coulomb scattering in all channels
(no interference)

KITP, Intro to 2PI, Jan/08 – p.27



TRANSPORT
SUMMARY

scalars/fermions (with current truncations):

most transport coefficients correct to LO

notable exception: bulk viscosity Calzetta and Hu

gauge theories (two loop truncations):

correct to leading log

correct at leading order in large Nf

full leading order requires use of 3PI effective action
(Carrington et al)

KITP, Intro to 2PI, Jan/08 – p.28



OUTLOOK

done:

scalars/fermions: most formal aspects studied

some applications

gauge theories: formal developments in progress

to do:

more applications for scalars/fermions possible

gauge theories: more formal developments

gauge theories: numerical implementation and tests

KITP, Intro to 2PI, Jan/08 – p.29
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