Intro to non-EQUILIbrium 2PI effective ACTION TECHNIQUES

Gert Aarts

Physics Department, Swansea University

Swansea University
Prifysgol Abertawe

INTRODUCTION

nonequilibrium quantum field theory:

- framework with many applications
- in early universe: inflation, baryon asymmetry, phase transitions, ...
- in relativistic heavy ion collisions probing strongly interacting matter/extreme QCD
- in atomic physics, BEC, plasma physics, ...

InTRODUCTION

in this lecture:

- emphasis on methods
- relativistic quantum fields
- a few illustrations

REFERENCES

- I'll discuss work of many (relativistic) people, not properly inserting references throughout

Berges, Cox (2000)
Aarts, Berges, + Ahrensmeier, Baier, Serreau
Berges + Borsanyi, Serreau, Wetterich, + Reinosa
Cooper, Dawson, Mihaila
Juchem, Cassing, Greiner
Müller, Lindner
Arrizabalaga, Smit, Tranberg
Rajantie, Tranberg
Aarts + Bonini, Wetterich, + Martinez Resco, + Tranberg Jeon, Yaffe
Calzetta, Hu
Carrington et al

OUTLINE

- what is nonequilibrium field theory?
- mean field theory
- 2PI effective action
- a few selected applications
- transport

QUANTUM DYNAMICS

GENERAL FORMULATION

well-defined problem:

- initial conditions: density matrix ρ_{D}
- time evolution: Heisenberg e.o.m. $\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t}$
- observables:

$$
\langle\mathcal{O}(t)\rangle=\operatorname{Tr} \rho_{D} \mathcal{O}(t) \quad\left\langle\mathcal{O}(t) \mathcal{O}\left(t^{\prime}\right)\right\rangle=\operatorname{Tr} \rho_{D} \mathcal{O}(t) \mathcal{O}\left(t^{\prime}\right) \quad \text { etc. }
$$

- in equilibrium: $\rho_{D} \sim e^{-H / T}$, commutes with the evolution operator
- time translation invariance:

$$
\langle\mathcal{O}(t)\rangle=\langle\mathcal{O}(0)\rangle \quad\left\langle\mathcal{O}(t) \mathcal{O}\left(t^{\prime}\right)\right\rangle=G\left(t-t^{\prime}\right)
$$

QUANTUM DYNAMICS

GENERAL FORMULATION
out of equilibrium:
$\langle\mathcal{O}(t)\rangle=\operatorname{Tr} \rho_{D} \mathcal{O}(t) \quad\left\langle\mathcal{O}(t) \mathcal{O}\left(t^{\prime}\right)\right\rangle=\operatorname{Tr} \rho_{D} \mathcal{O}(t) \mathcal{O}\left(t^{\prime}\right) \quad$ etc.

- density matrix ρ_{D} arbitrary $\left(\left[H, \rho_{D}\right] \neq 0\right)$
- initial value problem: start at $t=t_{0}$
- time translation invariance is broken:

$$
\langle\mathcal{O}(t)\rangle=G\left(t-t_{0}\right) \quad\left\langle\mathcal{O}(t) \mathcal{O}\left(t^{\prime}\right)\right\rangle=G\left(t-t_{0}, t^{\prime}-t_{0}\right)
$$

- relation to the initial conditions: memory
- effective independence of t_{0} as $t \rightarrow \infty$?

NONEQUILIBRIUM DYNAMICS

MAIN OBSTRUCTION
no exact solution method available

- use approximation methods
- language of unequal-time correlation functions
e n-point functions: hierarchy of coupled equations
approximation: truncate hierarchy
- problem not specific for quantum dynamics
- fluctuations: quantum and/or statistical
\Rightarrow consider also classical statistical field theory

NONEQUILIBRIUM DYNAMICS

CORRELATION FUNCTIONS

- quantum field theory

$$
\langle\phi(x) \phi(y)\rangle=\underbrace{\int d \phi^{\prime} d \phi^{\prime \prime}\left\langle\phi^{\prime}\right| \rho_{D}\left|\phi^{\prime \prime}\right\rangle}_{\text {initial cond. }} \underbrace{\int \mathcal{D} \phi e^{i S} \phi(x) \phi(y)}_{\begin{array}{c}
\text { quantum evolution } \\
\text { (path integral) }
\end{array}}
$$

- classical statistical field theory
$\langle\phi(x) \phi(y)\rangle_{\mathrm{cl}}=\int \underbrace{D \pi D \phi \rho_{\mathrm{cl}}[\pi, \phi]} \underbrace{\phi(x) \phi(y)+\text { equations of motion }}$
initial prob. distribution classical evolution and phase space integral

NONEQUILIBRIUM DYNAMICS

ASIDE

in classical statistical field theory:

- "exact" evolution can be found numerically

$$
\langle\phi(x) \phi(y)\rangle_{\mathrm{cl}}=\int D \pi D \phi \rho_{\mathrm{cl}}[\pi, \phi] \phi(x) \phi(y)+\text { e.o.m. }
$$

- sample initial conditions from $\rho_{\mathrm{cl}}[\pi, \phi]$
- solve e.o.m. for each of them
- average over initial conditions note:
- classical thermal statistics: $n_{\mathrm{cl}}(\omega)=T / \omega$
- Rayleigh-Jeans divergence
- careful with interpretation at late times

Mean field approximations

SIMPLEST ATTEMPT

- equation of motion: $\left(\square+m^{2}\right) \phi=-\frac{\lambda}{6} \phi^{3}$
- expectation values:

$$
\begin{aligned}
\langle\phi(x)\rangle & \begin{array}{l}
\text { coupled to }
\end{array}\left\langle\phi^{3}(x)\right\rangle \\
G(x, y)=\langle\phi(x) \phi(y)\rangle & \begin{array}{l}
\text { coupled to } \\
\text { etc. }
\end{array}
\end{aligned}
$$

- mean field/Gaussian/Hartree approximation: replace

$$
\phi^{3} \rightarrow 3\left\langle\phi^{2}\right\rangle \phi \quad(\langle\phi\rangle=0 \text { for simplicity })
$$

- self-consistent equation for two-point function

$$
\left[\square+m^{2}+\frac{\lambda}{2} G(x, x)\right] G(x, y)=0
$$

Mean field approximations

SIMPLEST ATTEMPT

- successfully truncated hierarchy of correlation functions
- Gaussian approximation for $G(x, y)=\langle\phi(x) \phi(y)\rangle$
- same in quantum and classical theory
alas:
- approximation has a nonthermal fixed point
- best seen using equal-time correlation functions

$$
\begin{aligned}
G_{\phi \phi}(x-y, t) & =\langle\phi(x, t) \phi(y, t)\rangle \\
G_{\pi \pi}(x-y, t) & =\langle\pi(x, t) \pi(y, t)\rangle \\
G_{\pi \phi}(x-y, t) & =\frac{1}{2}\langle\pi(x, t) \phi(y, t)+\phi(x, t) \pi(y, t)\rangle
\end{aligned}
$$

MEAN FIELD APPROXIMATIONS

SIMPLEST ATTEMPT

- Gaussian approximation:

$$
\begin{aligned}
\partial_{t} G_{\phi \phi}(p, t) & =2 G_{\pi \phi}(p, t) \\
\partial_{t} G_{\pi \phi}(p, t) & =-\bar{\omega}_{p}^{2} G_{\phi \phi}(p, t)+G_{\pi \pi}(p, t) \\
\partial_{t} G_{\pi \pi}(p, t) & =-2 \bar{\omega}_{p}^{2} G_{\pi \phi}(p, t) \\
\text { with } \bar{\omega}_{p}^{2} & =p^{2}+m^{2}+\frac{\lambda}{2}\left\langle\phi^{2}\right\rangle
\end{aligned}
$$

- conserved quantity for every momentum mode p

$$
\begin{aligned}
C^{2}(p) & =G_{\phi \phi}(p, t) G_{\pi \pi}(p, t)-G_{\pi \phi}^{2}(p, t) \\
\partial_{t} C(p) & =0
\end{aligned}
$$

MEAN FIELD APPROXIMATIONS

SIMPLEST ATTEMPT

- nonthermal fixed point:

$$
\begin{aligned}
& G_{\pi \pi}^{*}(p)=\bar{\omega}_{p}^{2} G_{\phi \phi}^{*}(p) \\
& G_{\pi \phi}^{*}(p)=0 \\
& C^{2}(p)=G_{\phi \phi}^{*}(p) G_{\pi \pi}^{*}(p) \\
& \bar{\omega}_{p}^{* 2}=p^{2}+m^{2}+\frac{\lambda}{2}\left\langle\phi^{2}\right\rangle^{*}
\end{aligned}
$$

fixed by initial ensemble
explicit solution:

- $\left\langle\phi^{2}\right\rangle^{*}$ determined by gap equation
- $G_{\pi \pi}^{*}(p)=C(p) \bar{\omega}_{p}^{*} \quad G_{\phi \phi}^{*}(p)=C(p) / \bar{\omega}_{p}^{*}$
fixed point relevant for actual nonperturbative dynamics?

NONTHERMAL FIXED POINTS

G.A., Bonini and Wetterich

- classical test in $1+1$ dimensions

classical mode temperature:

$$
T(p, t)=G_{\pi \pi}(p, t)
$$

in classical thermal equilibrium:

$$
T(p, t)=T
$$

- Hartree approximation: oscillating around nonthermal fixed point

NONTHERMAL FIXED POINTS

G.A., Bonini and Wetterich

- momentum-dependent "temperature" profile

classical mode temperature:

$$
T(p, t)=G_{\pi \pi}(p, t)
$$

fixed point:

$$
T^{*}(p)=T_{0}\left[1+\frac{\lambda}{2} \frac{\left\langle\phi^{2}\right\rangle^{*}}{p^{2}+m^{2}}\right]^{1 / 2}
$$

- initial response determined by nonthermal fixed point, also for exact (MC) evolution

NONTHERMAL FIXED POINTS

G.A., Bonini and Wetterich

- momentum-dependent "temperature" profile

classical mode temperature:

$$
\begin{gathered}
T(p, t)=G_{\pi \pi}(p, t) \rightarrow T \\
t_{1}<t_{2}<\ldots<t_{6}
\end{gathered}
$$

- fixed point relevant at early times
- exact (MC) evolution eventually thermalizes: all modes the same temperature

NONEQUILIBRIUM QUANTUM FIELDS?

WISH LIST

- mean field approximation (dramatically) inadequate
- need to include scattering
want:
- stable time evolution
- nontrivial due to secularity: many schemes break down when $t \sim 1 /$ (expansion parameter)
- connection with well-established approaches, e.g. kinetic theory
- dynamics at very late times: conservation laws and hydrodynamics, transport

Kinetic THEORY

CONNECTION WITH ESTABLISHED METHODS

example:
อ Boltzmann equation: $\left(\partial_{t}+\mathbf{v}_{\mathbf{p}} \cdot \partial_{X}\right) f(\mathbf{p}, X)=C[f]$

$$
X=(t, \mathbf{x}) \quad \mathbf{v}_{\mathbf{p}}=\mathbf{p} / E_{\mathbf{p}} \quad p^{0}=E_{\mathbf{p}} \quad(\text { onshell })
$$

- real particles undergo isolated collisions
- collision kernel for two-to-two scattering processes:

$$
\begin{aligned}
C[f]= & \frac{1}{2} \int_{\mathbf{p}^{\prime} \mathbf{k k ^ { \prime }}}|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{4}\left(p+p^{\prime}-k-k^{\prime}\right) \\
& {\left[\left(1 \pm f_{\mathbf{p}}\right)\left(1 \pm f_{\mathbf{p}^{\prime}}\right) f_{\mathbf{k}} f_{\mathbf{k}^{\prime}}-f_{\mathbf{p}} f_{\mathbf{p}^{\prime}}\left(1 \pm f_{\mathbf{k}}\right)\left(1 \pm f_{\mathbf{k}^{\prime}}\right)\right] }
\end{aligned}
$$

- stationary solution: $f(\mathbf{p}, X) \rightarrow n\left(E_{\mathbf{p}}\right)=1 /\left[e^{E_{\mathbf{p}} / T} \mp 1\right]$

Kinetic Theory

BEYOND KINETIC THEORY?

assumptions:

- onshell particles: phase space distribution
- isolated collisions, well separated in space and time
- 'slowly varying', gradient expansion
relax these assumptions:
quantum field theory
\Rightarrow dynamics of correlation functions, in particular two-point functions

Kinetic THEORY

TWO-POINT FUNCTIONS

- Wightman functions:

$$
G^{>}(x, y)=\langle\phi(x) \phi(y)\rangle=G^{<}(y, x)
$$

- spectral function:

$$
\rho(x, y)=i\langle[\phi(x), \phi(y)]\rangle=i\left(G^{>}(x, y)-G^{<}(x, y)\right)
$$

- statistical function:

$$
F(x, y)=\frac{1}{2}\left\langle[\phi(x), \phi(y)]_{+}\right\rangle=\frac{1}{2}\left(G^{>}(x, y)+G^{<}(x, y)\right)
$$

two-point functions closely related to particle distribution functions, after series of manipulations

Kinetic THEORY

TWO-POINT FUNCTIONS

- separation of slow and fast variables: Wigner transform
$X=\frac{1}{2}(x+y) \quad(x-y) \rightarrow p \quad \Rightarrow \quad G^{>}(x, y) \rightarrow G^{>}(p, X)$
- in equilibrium: Kubo-Martin-Schwinger (KMS) condition periodicity of the trace (X independent)
$G^{>}(x, y) \sim \operatorname{Tr} e^{-H / T} \phi(x) \phi(y) \Rightarrow G^{>}(\omega, \mathbf{p})=e^{\omega / T} G^{<}(\omega, \mathbf{p})$
- all 2-point functions related to the spectral density
$G^{>}(\omega, \mathbf{p})=\left[n_{B}(\omega)+1\right] \rho(\omega, \mathbf{p}) \quad G^{<}(\omega, \mathbf{p})=n_{B}(\omega) \rho(\omega, \mathbf{p})$
- noneq. distr. function: $G^{<}(p, X)=f(p, X) \rho(p, X)$
- onshell approximation $f(\mathbf{p}, X)$, with $p^{0}=E_{\mathbf{p}}(X)$

2PI EFFECTIVE ACTION

FIELD THEORY APPROACH

therefore:

- two-point function important role
- obeys Dyson equation: $G^{-1}=G_{0}^{-1}-\Sigma$
- what is self energy Σ ?
- formalize: action principle
two-particle irreducible effective action or Φ-derivable approach

Luttinger/Ward, Baym, Cornwall/Jackiw/Tomboulis,

2PI EFFECTIVE ACTION

FIELD THEORY APPROACH

- generating functional with local and bilocal sources

$$
Z[J, K]=e^{i W[J, K]}=\int \mathcal{D} \varphi e^{i\left(S[\varphi]+J_{i} \varphi^{i}+\frac{1}{2} \varphi^{i} K_{i j} \varphi^{j}\right)}
$$

- Legendre transform: $\frac{\delta W}{\delta J_{i}}=\phi^{i}, \frac{\delta W}{\delta K_{i j}}=\phi^{i} \phi^{j}+G^{i j}$

$$
\Gamma[\phi, G]=W[J, K]-J_{i} \phi^{i}-\frac{1}{2} K_{i j}\left(G^{i j}+\phi^{i} \phi^{j}\right)
$$

- effective action can be written as

$$
\Gamma[\phi, G]=S[\phi]+\frac{i}{2} \operatorname{Tr} \ln G^{-1}+\frac{i}{2} \operatorname{Tr} G_{0}^{-1}\left(G-G_{0}\right)+\Gamma_{2}[\phi, G]
$$

- variational principe (in absence of sources)

$$
\frac{\delta \Gamma}{\delta \phi}=0, \quad \frac{\delta \Gamma}{\delta G}=0 \Rightarrow G^{-1}=G_{0}^{-1}-\Sigma[G], \quad \Sigma=2 i \frac{\delta \Gamma_{2}}{\delta G}
$$

2PI EFFECTIVE ACTION

FIELD THEORY APPROACH

- action principle, at the extremum

$$
\left(\square+V^{\prime}[\phi]\right) \phi+\frac{\delta \Gamma_{2}[\phi, G]}{\delta \phi}=0 \quad G^{-1}=G_{0}^{-1}[\phi]-\Sigma[\phi, G]
$$

- prescription for the self energy $\Sigma=2 i \delta \Gamma_{2} / \delta G$
- Γ_{2} is $2 \mathrm{PI} \Leftrightarrow \Sigma$ is 1 PI , depends on full G
example:

- avoid overcounting

NONEQUILIBRIUM DYNAMICS

INITIAL VALUE PROBLEM
solve equations in real time:

$$
\begin{aligned}
& \langle\phi(x) \phi(y)\rangle=\underbrace{\int d \phi^{\prime} d \phi^{\prime \prime}\left\langle\phi^{\prime}\right| \rho_{D}\left|\phi^{\prime \prime}\right\rangle} \underbrace{\int \mathcal{D} \phi e^{i S} \phi(x) \phi(y)} \\
& \text { initial lond. } \\
& \text { quantum evolution } \\
& \text { (path integral) }
\end{aligned}
$$

use Schwinger-Keldysh contour for initial value problems

$$
i\left(\square_{x}+m^{2}\right) G(x, y)=\int_{\mathcal{C}} d z \Sigma(x, z) G(z, y)+\delta_{\mathcal{C}}(x-y)
$$

action principle along complex-time path \mathcal{C}

NONEQUILIBRIUM DYNAMICS

INITIAL VALUE PROBLEM

- Green functions: $G^{>}, G^{<}$etc.
- minimal choice
- decompose contour propagator in real and imaginary parts:

$$
\begin{aligned}
& G(x, y)=F(x, y)-\frac{i}{2} \operatorname{sign}\left(x^{0}-y^{0}\right) \rho(x, y) \\
& \text { spectral function } \\
& \text { odd, commutator function }
\end{aligned}
$$

- spectral function is a commutator:

$$
\left.\rho(x, y)\right|_{x^{0}=y^{0}}=0,\left.\quad \partial_{x^{0}} \rho(x, y)\right|_{x^{0}=y^{0}}=\delta(\mathbf{x}-\mathbf{y})
$$

NONEQUILIBRIUM DYNAMICS

INITIAL VALUE PROBLEM

manifestly real and causal equations

$$
\begin{aligned}
{\left[\square_{x}+m^{2}\right] F(x, y)=} & -\int_{0}^{x^{0}} d z^{0} \int d \mathbf{z} \Sigma_{\rho}(x, z) F(z, y) \\
& +\int_{0}^{y^{0}} d z^{0} \int d \mathbf{z} \Sigma_{F}(x, z) \rho(z, y) \\
{\left[\square_{x}+m^{2}\right] \rho(x, y)=} & -\int_{y^{0}}^{x^{0}} d z^{0} \int d \mathbf{z} \Sigma_{\rho}(x, z) \rho(z, y)
\end{aligned}
$$

with $\Sigma_{F, \rho}$ given in terms of F and ρ
predicting the future $=$ remembering the past

NONEQUILIBRIUM DYNAMICS

INITIAL VALUE PROBLEM

- action principle
- conserved energy $(\langle\phi\rangle=0)$:

$$
\begin{aligned}
& E=\left.\int d^{3} x \frac{1}{2}\left[\partial_{x^{0}} \partial_{y^{0}}+\partial_{x^{i}} \partial_{y^{i}}+m^{2}\right] F(x, y)\right|_{x=y} \\
& +\frac{1}{4} \int d^{3} x \int_{0}^{x^{0}} d z^{0} \int d^{3} z\left[\Sigma_{\rho}(x, z) F(z, x)-\Sigma_{F}(x, z) \rho(z, x)\right]
\end{aligned}
$$

- conserved for every truncation

2PI TRUNCATIONS

LOOP AND $1 / N$ EXPANSIONS TO NEXT-TO-LEADING ORDER

- so far exact, approximation enters via truncation of Γ_{2}
- systematic, in practice loop and $1 / N$ expansions
- three-loop expansion $(\langle\phi\rangle=0)$

- diagrams 1, 2, 3 well-studied (no internal vertices)
- self energies:

2PI TRUNCATIONS

LOOP AND $1 / N$ EXPANSIONS TO NEXT-TO-LEADING ORDER

large N expansion:

- $O(N)$ model, vertex $\sim 1 / N$ (with $\langle\phi\rangle=0$ for simplicity)

$\sim N$

~ 1

$\sim 1 / N$

2PI TRUNCATIONS

LOOP AND $1 / N$ EXPANSIONS TO NEXT-TO-LEADING ORDER

large N expansion:

- $O(N)$ model, vertex $\sim 1 / N$ (with $\langle\phi\rangle=0$ for simplicity)
- efficient formulation: use chain of bubbles

$$
\rangle--\langle=X+\searrow \bigcirc--<
$$

\Rightarrow effective two-loop approximation

- NNLO contribution $(\sim 1 / N)$:

2PI TRUNCATIONS

LOOP AND $1 / N$ EXPANSIONS TO NEXT-TO-LEADING ORDER

large N expansion:

- $O(N)$ model, vertex $\sim 1 / N$ (with $\langle\phi\rangle=0$ for simplicity)

- dressed propagators:

$$
G^{-1}=G_{0}^{-1}-\Sigma \quad D^{-1}=D_{0}^{-1}-\Pi
$$

- self energies:

2PI TRUNCATIONS

LOOP AND $1 / N$ EXPANSIONS TO NEXT-TO-LEADING ORDER

- closed set of self-consistent equations:

$$
\begin{aligned}
{\left[\square_{x}+M^{2}(x)\right] F(x, y)=} & -\int_{0}^{x^{0}} d z^{0} \int d \mathbf{z} \Sigma_{\rho}(x, z) F(z, y) \\
& +\int_{0}^{y^{0}} d z^{0} \int d \mathbf{z} \Sigma_{F}(x, z) \rho(z, y) \\
{\left[\square_{x}+M^{2}(x)\right] \rho(x, y)=} & -\int_{y^{0}}^{x^{0}} d z^{0} \int d \mathbf{z} \Sigma_{\rho}(x, z) \rho(z, y)
\end{aligned}
$$

with

$$
\begin{aligned}
\Sigma_{F}(x, y) & =-\frac{\lambda}{3 N}\left[F(x, y) D_{F}(x, y)-\frac{1}{4} \rho(x, y) D_{\rho}(x, y)\right] \\
\Sigma_{\rho}(x, y) & =-\frac{\lambda}{3 N}\left[\rho(x, y) D_{F}(x, y)+F(x, y) D_{\rho}(x, y)\right]
\end{aligned}
$$

2PI TRUNCATIONS

LOOP AND $1 / N$ EXPANSIONS TO NEXT-TO-LEADING ORDER

large N expansion:

- large N_{f} gauge theory, vertex $e^{2} \sim 1 / N$

- dressed propagators:

$$
G^{-1}=G_{0}^{-1}-\Sigma \quad D^{-1}=D_{0}^{-1}-\Pi
$$

- self energies:

Solutions

NUMERICAL

- solve integro-differential equations on a spacetime lattice
- straightforward discretization, no further approximation
- expensive numerically due to "memory kernel"
some applications

LOSS OF MEMORY

THERMALIZATION

first results by Berges and Cox (2000):

- take different initial conditions (or density matrices) with the total energy density identical
- independence of initial conditions at late times

3-loop expansion in $\lambda \phi^{4}$ in $1+1$ dimensions
time evolution of different momentum modes $F(t, t ; p)$

Precision Tests

Classical 2PI approximation

- 2PI approach in classical statistical field theory
- possibility to compare with "exact" solution
- sampling of initial conditions + numerical integration of classical equation of motion
example of classical limit: three-loop approximation

$$
\begin{aligned}
\Sigma_{\rho}(x, z) & =-\frac{\lambda^{2}}{2} \rho(x, z)\left[F^{2}(x, z)-\frac{1}{12} \rho^{2}(x, z)\right], \\
\Sigma_{F}(x, z) & =-\frac{\lambda^{2}}{6} F(x, z)\left[F^{2}(x, z)-\frac{3}{4} \rho^{2}(x, z)\right]
\end{aligned}
$$

classically:

$$
\Sigma_{\rho}^{\mathrm{cl}}(x, z)=-\frac{\lambda^{2}}{2} \rho(x, z) F^{2}(x, z) \quad \Sigma_{F}^{\mathrm{cl}}(x, z)=-\frac{\lambda^{2}}{6} F^{3}(x, z)
$$

NONEQUILIBRIUM INITIAL CONDITIONS

TSUNAMI

- Gaussian initial conditions far from equilibrium
- specify $F\left(t, t^{\prime} ; \mathbf{p}\right), \partial_{t} F\left(t, t^{\prime} ; \mathbf{p}\right), \partial_{t} \partial_{t^{\prime}} F\left(t, t^{\prime} ; \mathbf{p}\right)$ at $t=t^{\prime}=0$ in terms of initial particle number $n(\mathbf{p})$

- easily implemented in exact and 2PI dynamics

Precision Tests

- tsunami initial conditions
- equal-time correlation function: 'particle number'
- high energy density: compare quantum and classical evolution
- evolution from 2PI- $1 / N$ expansion in agreement with 'exact' evolution, also for late times.
- reliable description of both early and late times
- capable of describing equilibration

Precision Tests

G.A. \& Berges

2PI-1/ N expansion
unequal-time correlation function

- Monte Carlo: sample of 80.000 initial conditions
- 2PI-1/ N : one (expensive) numerical solution
- quantitative agreement for larger N

Precision Tests

G.A. \& Berges

$2 \mathrm{PI}-1 / N$ expansion assume ansatz

$$
G(t, 0 ; \mathbf{p}) \sim e^{-\gamma t} \cos m t
$$

fit γ and m

- compare classical 2PI with classical exact
- quantitative agreement for larger N
- compare classical 2PI with quantum 2PI
- quantum \neq classical!

(NOT) KINETIC THEORY

G.A. \& Berges

- separation of fast and slow variables
- effective particle number distribution is evolving fast and wildly

(NOT) KINETIC THEORY

G.A. \& Berges

- self-consistent evolution of the spectral function $\rho\left(t, t^{\prime} ; \mathbf{p}\right)$
- no quasiparticle approximation
- Wigner transform: $\rho\left(t, t^{\prime} ; \mathbf{p}\right) \rightarrow \rho\left(\omega, \mathbf{p} ; X^{0}\right)$

$$
X^{0}=\left(t+t^{\prime}\right) / 2
$$

- quasiparticle peak
- non-zero width
- slowly evolving

Et cetera

much more work has been done:

- quick establishment of equation of state (prethermalization)
- fermions
- momentum anisotropy
- (tachyonic) preheating
- warm inflation
- renormalization
e cold atoms

TrAnsPORT

FINAL STAGES

unified picture:

- dynamics far from equilibrium with 2PI truncations
- system will (eventually) equilibrate and thermalize
precise question:
- which scattering processes are certainly included?
- which scattering processes are certainly not included?

Transport

FINAL STAGES

- final stages of evolution
- dynamics of nearly conserved quantities
- hydrodynamic modes are slowest
- energy-momentum
- charges
evolve according to "low-energy effective field theory" hydrodynamics

Near equilibrium: transport coefficients

Kubo relations and linear response
electrical conductivity:
shear viscosity:

$$
\begin{aligned}
\sigma & =\left.\frac{1}{6} \frac{\partial}{\partial \omega} \rho^{i i}(\omega, \mathbf{0})\right|_{\omega=0} \\
\eta & =\left.\frac{1}{20} \frac{\partial}{\partial \omega} \rho_{\pi \pi}(\omega, \mathbf{0})\right|_{\omega=0}
\end{aligned}
$$

spectral densities:

$$
\begin{aligned}
& \rho^{\mu \nu}(\omega, \mathbf{p})=\int d^{4} x e^{i p x}\left\langle\left[j^{\mu}(x), j^{\nu}(0)\right]\right\rangle_{\mathrm{eq}} \\
& \rho_{\pi \pi}(\omega, \mathbf{p})=\int d^{4} x e^{i p x}\left\langle\left[\pi_{i j}(x), \pi_{i j}(0)\right]\right\rangle_{\mathrm{eq}}
\end{aligned}
$$

with $j^{\mu}=\bar{\psi} \gamma^{\mu} \psi, \pi_{i j}=T_{i j}-\frac{1}{3} \delta_{i j} T_{k}^{k}=\partial_{i} \phi \partial_{j} \phi-\frac{1}{3} \delta_{i j} \partial_{k} \phi \partial_{k} \phi$
transport coefficients
slope of current-current spectral functions at $\omega=0$

NEAR EQUILIBRIUM: TRANSPORT COEFFICIENTS

G. A. and J. M. Martinez Resco
imaginary part of correlators of bilocal operators
2PI effective action as generating functional:

generates ladder diagrams:

with kernel or rung:

$$
\Lambda_{i j ; k l}=4 i \frac{\delta^{2} \Gamma_{2}}{\delta G^{i j} \delta G^{k l}}=2 \frac{\delta \Sigma_{i j}}{\delta G^{k l}}
$$

kernel (and self energy) determined by Γ_{2}

Near equilibrium: transport coefficients

DRESSED PROPAGATORS

- pinching poles:

$$
\lim _{\omega \rightarrow 0} \rho^{i i}(\omega, \mathbf{0})=4 e^{2} \omega \int \frac{d^{4} p}{(2 \pi)^{4}} n_{F}^{\prime}\left(p^{0}\right) G_{R}(p) G_{A}(p)
$$

	p^{0}
$\times \quad$	propagators in the loop carry the same momentum, product of retarded (R) and advanced (A) propagators
	\qquad with bare propagators ill-defined

NEAR EQUILIBRIUM: TRANSPORT COEFFICIENTS

DRESSED PROPAGATORS

- pinching poles:

$$
\lim _{\omega \rightarrow 0} \rho^{i i}(\omega, \mathbf{0})=4 e^{2} \omega \int \frac{d^{4} p}{(2 \pi)^{4}} n_{F}^{\prime}\left(p^{0}\right) G_{R}(p) G_{A}(p)
$$

propagators in the loop carry the same momentum, product of retarded (R) and advanced (A) propagators

- inclusion of thermal width $\Gamma \sim 1 / N$ required
\Rightarrow finite collision time/mean free path in a medium resummed nonperturbatively

Near equilibrium: transport coefficients

RUNGS AND LADDER DIAGRAMS

- $O(N)$ model

- large N_{f} QED/QCD

+ subleading terms in the $1 / N$ expansion

Near equilibrium: transport coefficients

RUNGS AND LADDER DIAGRAMS

- $O(N)$ model

- large N_{f} QED/QCD

+ subleading terms in the $1 / N$ expansion
typical ladder diagrams:

NEAR EQUILIBRIUM: TRANSPORT COEFFICIENTS

RUNGS AND LADDER DIAGRAMS

- $O(N)$ model

- large N_{f} QED/QCD

+ subleading terms in the $1 / N$ expansion
- power counting
- positive powers of N : closed scalar or fermion loops and pairs of propagators with pinching poles
- negative powers of N : vertices
all contributions to LO in $1 / N$ expansion
- subleading terms: cannot be neglected for self-consistent dynamics far from equilibrium

Transport

PRECISE QUESTION

which scattering processes are (not) included?

- 3-loop expansion in $g \phi^{3}+\lambda \phi^{4}$ theory

- kernel

- a lot of scattering processes

Transport

PRECISE QUESTION

- 2-loop approximation: (iterated)

- sum of squares of $2 \rightarrow 2$ scattering processes

$$
|\mathcal{M}|^{2} \sim g^{4}\left[|G(s)|^{2}+|G(t)|^{2}+|G(u)|^{2}\right]
$$

- 3-loop approximation:

- square of sum of $2 \rightarrow 2$ scattering processes (+ subleading vertex corrections)

$$
|\mathcal{M}|^{2} \sim\left|\lambda+g^{2}[G(s)+G(t)+G(u)]\right|^{2}
$$

- interference included

TrANSPORT

PRECISE QUESTION

- 2-loop or large N_{f} expansion in QED

- coupled integral equations:

Transport

PRECISE QUESTION

- scattering kernel

- weak coupling in the leading log approximation (transport coefficient $\sim 1 / e^{4} \ln 1 / e$)
- rung $1 \Rightarrow t$-channel Coulomb scattering
- rung $2 \Rightarrow$ Compton scattering, pair annihilation

Transport

PRECISE QUESTION

- scattering kernel

- weak coupling in the leading log approximation (transport coefficient $\sim 1 / e^{4} \ln 1 / e$)
- rung $1 \Rightarrow t$-channel Coulomb scattering
- rung $2 \Rightarrow$ Compton scattering, pair annihilation
- leading order large N_{f} QED:
- rung 1 and $4 \Rightarrow$ Coulomb scattering in all channels (no interference)

Transport

SUMMARY

scalars/fermions (with current truncations):

- most transport coefficients correct to LO
- notable exception: bulk viscosity calzetta and Hu
gauge theories (two loop truncations):
- correct to leading log
- correct at leading order in large N_{f}
- full leading order requires use of 3PI effective action (Carrington et al)

OUTLOOK

done:

- scalars/fermions: most formal aspects studied
- some applications
- gauge theories: formal developments in progress
to do:
- more applications for scalars/fermions possible
- gauge theories: more formal developments
- gauge theories: numerical implementation and tests

