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Heavy-ion collision timescales and “epochs” @ RHIC
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Heavy-ion collision timescales and “epochs” @ LHC

Semi-hard particle production
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Determining plasma initial conditions

• The fact that hydrodynamic modeling of RHIC collisions seems to
describe the elliptic flow, v2, for pT < 2 GeV has been taken as
evidence for early isotropization/thermalization of the QGP.

• Early ideal hydro fits indicate τiso = 0.6 fm/c (Kolb et al); however,
recent results (Romatschke et al) seem to indicate that larger
τiso ∼ 2 fm/c are also consistent with low-pT elliptic flow.

• Hydro results depend on initial conditions and also details of the
late-time modeling of the plasma lifetime: hadronization
prescription (Cooper-Frye), viscous hadronic phase, nuclear
resonance “feed-downs”, radial flow, etc.

• It would be better to have observables which were primarily
sensitive to the first 1-2 fm/c (and not dependent on fully 3d
viscous hydro simulations + . . . ).
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Hydro Results 1
http://online.itp.ucsb.edu/online/partcosmo08/romatschke/oh/60.html
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Hydro Results 2
http://online.itp.ucsb.edu/online/partcosmo08/romatschke/oh/60.html

Preliminary
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What does theory have to say?

• The weak-coupling QCD “bottom-up” thermalization scenario

predicted τtherm = α
−13/5

s Q−1
s . [Baier, Mueller, Son, Schiff]

• Assuming αs = 0.3 at RHIC energies this implies τtherm = 2− 3 fm/c
and at LHC energies that τtherm = 1 − 2 fm/c.

• Nonabelian chromo-Weibel plasma instabilities will accelerate
thermalization but it is currently unknown by precisely how much.
[Mrowczynski, Strickland, Romatschke, Arnold, Lenaghan, Moore, Rebhan, Yaffe,

Venugopalan, Dumitru, Nara, Bödeker, Rummukainen, Fukushima, Gelis, McLerran, Berges,

Sexty, Scheffler, . . .]

• AdS/CFT → time should scale inversely with the temperature of
the extra-dimensional black hole so it should be τtherm <

∼ #1 fm/c.
Question of formation of the black hole itself from anisotropic initial
state is very much unsolved. AdS/QCD? Initial Conditions?
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E&M Probes to determine plasma isotropization time

• Can we experimentally determine when/if the plasma becomes
locally isotropic in momentum-space?

• Need observables which provide complementary ways of probing
early-time dynamics.

• Ideal candidates for this are E&M observables, eg photon and
dilepton emission.

• Dependence of photon rate on anisotropy has been evaluated to
LO (Schenke and MS, hep-ph/0611332); rates folded over model
evolution are forthcoming.

• Dilepton spectra contain more information since one can study
production as a function of invariant pair mass (photon virtuality)
and transverse momentum.
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Dileptons from an Anisotropic Plasma

• The dilepton rate d4R/d4p depends on plasma
anisotropy and the angle of the dilepton pair with
respect to the anisotropy (beam) axis.   

q̄

q l+

l -

• To leading order it can be obtained using anisotropic momentum
space distributions of the form

f q,q̄(p,x) = f q,q̄
iso

(

p2

T + (1 + ξ)p2

L

)

• ξ = 0 gives isotropic plasma and ξ = 10 corresponds to a squish
by a factor of approximately three along the longitudinal
momentum direction.

〈p2

T 〉

2〈p2

L〉
∼ 1 + ξ

M. Martinez and MS, arXiv:0709.3576, PRL (in press).
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Dilepton rate depends on degree of QGP anisotropy
Central Forward

M/T = 1

P  /T = 1
T
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Momentum Space Anisotropy Time Dependence
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Phenomenological model parameters
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Model: Break evolution into two pieces

1) τ <
∼ τiso - 1d free streaming

〈p2

T 〉 ∼ 2Q2

s 〈p2

L〉 ∼ 1/τ2

ξ(τ) =
1

2
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T 〉/〈p
2

L〉 − 1
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ξ(τ) =

(

τ

τ0

)2
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lim
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E(τ) → E0

(τ0

τ

)

“T”(τ) = T0 ∼ 〈 pT 〉

In the limit τiso → ∞ the system undergoes

indefinite longitudinal free streaming.

2) τ >
∼ τiso - 1d ideal hydro
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In the limit τiso → τ0 the system begins ideal

1d hydrodynamic flow “instantly”.

M. Martinez and MS, arXiv:0709.3576, PRL (in press).
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Space-time evolution incorporating anisotropies (LHC)
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• γ = 2 ⇒ “width” of 0.4 fm/c.

• τiso → τ0 : “instant”
isotropization/thermalization.

• τiso → ∞ : never isotropizes;
1d free-streaming.

Michael Strickland p. 14



LHC Predictions - Dileptons vs M with backgrounds
T0 = 845 MeV, τ0 = 0.088 fm/c, γ = 2, Tc = 160 MeV

Cuts: pT > 8 GeV

M. Martinez and MS, arXiv:0709.3576, PRL (in press).
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LHC Predictions - Dileptons vs PT with backgrounds
T0 = 845 MeV, τ0 = 0.088 fm/c, γ = 2, Tc = 160 MeV

Cuts: 0.5 < M < 1 GeV

M. Martinez and MS, arXiv:0709.3576, PRL (in press).
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RHIC Predictions - Dileptons vs M with backgrounds
T0 = 370 MeV, τ0 = 0.26 fm/c, γ = 2, Tc = 160 MeV

Cuts: pT > 4 GeV
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M. Martinez and MS, forthcoming.
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RHIC Predictions - Dileptons vs PT with backgrounds
T0 = 370 MeV, τ0 = 0.26 fm/c, γ = 2, Tc = 160 MeV

Cuts: 0.5 < M < 1 GeV
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Conclusions

• We need more observables which are sensitive to the initial 1-2
fm/c of the plasma lifetime. Dileptons seem to be promising.

• We now have simple models which allow us to calculate the effect
of anisotropies on experimental observables, eg jet and E&M
signatures. More to come . . .

• Our dilepton results show a window from pT ∼ 2 - 6 GeV where it
may be possible to determine much-needed information about the
initial 1 fm/c of the QGP’s lifetime.

• TODO: Calculation of NLO rate underway; inclusion of possible
chemical non-equilibrium (effect will remain but overall rates will
be modified); modification of jet-medium production due to
early-time anisotropies; . . .
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Latest RHIC Experimental Results
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Enhancement seen at low invariant masses.
PHENIX collaboration, arXiv: 0706.3034.
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Latest RHIC Experimental Results

Enhancement concentrated at low transverse momentum, pT < 1 GeV.

Alberica Toia, PHENIX collaboration, arXiv:0706.3034, arXiv:0802.0050.
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Model - Smaller Gamma

Can take larger transition widths, say γ = 0.05.
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LHC Results - Model variation

T0 = 845 MeV, τ0 = 0.088 fm/c, Tc = 160 MeV
Cuts: 0.5 < M < 1 GeV

Model Variation: 0.05 < γ < 10

M. Martinez and MS, arXiv:0709.3576, PRL (in press).
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LHC Results - Time scales

T0 = 845 MeV, τ0 = 0.088 fm/c, Tc = 160 MeV
Cuts: 0.5 < M < 1 GeV

M. Martinez and MS, arXiv:0709.3576, PRL (in press).
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Cause for despair

Naive application of resummed finite-temperature perturbation theory
to thermodynamics fails to converge at any reasonable temperature so
should we abandon it?
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Cause for (limited) hope

4d Lattice "Pure Glue" (Boyd et al)

   Hard Thermal Loop
   Perturbation Theory
   (Andersen, Braaten, 
   Petitgirard, MS)

NLO Approximately 

Self-Consistent

HTL Phi-Derivable

(Blaizot, Iancu, Rebhan)
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What about strong-coupling AdS/CFT?

Strong-coupling calculations in N = 4 SUSY theories show that the
high-energy photon rate is insensitive to whether you take the weak or
strong coupling limits. [Caron-Huot, Kovtun, Moore, Starinets, Yaffe, arXiv:hep- th/0607237]
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