Hydrodynamics from gauge/gravity duality

Dam Thanh Son

INT, University of Washington

Plan

- Hydrodynamics
 - Relation to finite-temperature field theory
 - First-order hydrodynamics
 - Second-order hydrodynamics
- Gauge/gravity duality
 - Hydrodynamics as low-energy dynamics of black-brane horizons
 - Second-order transport coefficients from gauge/gravity duality

Refs: R. Baier, P. Romatschke, DTS, A. Starinets, M. Stephanov, arxiv:0712.2451

related work: Bhattacharyya, Hubeny, Minwalla, Rangamani, arxiv:0712.2456; Loganayaram, arxiv:0801.3701

Applications, e.g., elliptic flow in heavy ion collisions

- Applications, e.g., elliptic flow in heavy ion collisions
- Conceptually a much simpler theory than QFT:

- Applications, e.g., elliptic flow in heavy ion collisions
- Conceptually a much simpler theory than QFT:
 - Few d.o.f.
 - Classical: bosonic modes at $\omega \ll T$

- Applications, e.g., elliptic flow in heavy ion collisions
- Conceptually a much simpler theory than QFT:
 - Few d.o.f.
 - Classical: bosonic modes at $\omega \ll T$
 - "Every cook has learned how to use hydrodynamics"

Why gauge/gravity duality

Practical consideration:

- Strong coupling, not treatable by other methods
- Simple calculations

Conceptual consideration:

- Deep connection between QFT and black-hole physics
- Sharp contrast to weak coupling: weak coupling: QFT → kinetic theory → hydro strong coupling: QFT → hydro

Hope: more to be discovered, e.g., for second-order hydrodynamics.

Hydrodynamics as effective theory

Consider a finite-temperature interacting QFT Real-time: close-time-path formalism

$$Z[g_{\mu\nu}^1, g_{\mu\nu}^2] = \int D\psi_1 \, D\psi_2 \, \exp(iS[\psi_1, g_{\mu\nu}^{(1)}] - iS[\psi_2, g_{\mu\nu}^{(2)}])$$

$$\langle T^{\mu\nu}(x)T^{\alpha\beta}(y)\rangle = \frac{\delta^2 \ln Z}{\delta g_{\mu\nu}(x)\delta g_{\alpha\beta}(y)}$$

We want an effective field theory that gives correlators of $T^{\mu\nu}$ at low momenta.

Hydrodynamics: gives $\langle T_{\mu\nu} \rangle$ for any given smooth source $g_{\mu\nu}^1 = g_{\mu\nu}^2$.

Validity: length scales ≫ mean free path

Degrees of freedom

- Chiral perturbation theory: d.o.f. = Goldstone modes
- Hydrodynamics: d.o.f = "collective coordinates" of thermal ensemble For a plasma with no conserved charge:
 - Temperature T(x)
 - Velocity (boost) $u^{\mu}(x)$, $u^2 = -1$

Optional:

- $m{\mu}(x)$ for each conserved charge
- Phases of condensate (superfluid hydrodynamics)
- U(1) magnetic fields (magnetohydrodynamics)

Ideal and first-order

Ideal (zeroth order) hydrodynamics

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu}$$

First-order hydrodynamics (relativistic Navier-Stokes)

$$T^{\mu\nu} = T^{\mu\nu}_{\rm ideal} + \underbrace{\Pi^{\mu\nu}_{\rm viscous\ stress}}$$

Ambiguity of defining u^{μ} beyond leading order: fixed by $u_{\mu}\Pi^{\mu\nu}=0$

$$\Pi^{\mu\nu} = -\eta \nabla^{\langle \mu} u^{\nu \rangle} - \zeta P^{\mu\nu} (\nabla \cdot u)$$

$$P^{\mu\nu} = g^{\mu\nu} + u^{\mu} u^{\nu}$$

$$A^{\langle \mu\nu \rangle} = \frac{1}{2} P^{\mu\alpha} P^{\nu\beta} (A_{\alpha\beta} + A_{\beta\alpha}) - \frac{1}{3} P^{\mu\nu} P^{\alpha\beta} A_{\alpha\beta}$$

Shear viscosity η and bulk viscosity ζ . Affect damping of shear and sound modes.

Second order: Müller-Israel-Stewart

Modified relationship between $\Pi^{\mu\nu}$ and $\nabla^{\mu}u^{\nu}$.

$$(\tau_{\pi}u^{\lambda}\nabla_{\lambda} + 1)\Pi^{\mu\nu} = -\eta\sigma^{\mu\nu}$$

 $au_{\pi}D\ll 1$: equivalent to keeping one next term in derivative expansion

$$\Pi^{\mu\nu} = -\eta \sigma^{\mu\nu} + \eta \tau_{\pi} (u \cdot \nabla) \sigma^{\mu\nu},$$

Matching with AdS/CFT, $\mathcal{N}=4$ SYM

Bjorken flow:
$$\tau_{\pi} = \frac{1 - \ln 2}{6\pi T}$$

sound:
$$\tau_{\pi} = \frac{2 - \ln 2}{2\pi T}$$

This indicates not all second-order terms are taken into account.

Need to include all second-derivative terms consistent with symmetry. After eliminating redundant ones: 16 independent terms

Conformal invariance

Assume fundamental theory is a CFT,

$$T^{\mu}_{\ \mu} = 0$$
 in flat space

In curved space: Weyl anomaly

$$g_{\mu\nu}T^{\mu\nu}\sim R^2_{\mu\nu\alpha\beta}$$
 in curved space

But $R \sim \partial^2 g_{\mu\nu}$: Weyl anomaly reproduced in hydrodynamics only at fourth order in derivatives.

$$\Rightarrow g_{\mu\nu}T^{\mu\nu}=0$$
 for our purposes

First order: $\zeta = 0$,

Second order: 8 possible structures in $\Pi^{\mu\nu}$

Conformal invariance (II)

Further constraint: $T^{\mu\nu}$ transforms simply under Weyl transformation

$$g_{\mu\nu} \to e^{2\omega} g_{\mu\nu}, \qquad T_{\mu\nu} \to e^{6\omega} T_{\mu\nu}$$

8 ightarrow 5 possible structures in $\Pi^{\mu\nu}$

$$\begin{split} \Pi^{\mu\nu}_{\text{2nd order}} &= \eta \pmb{\tau_{\pi}} \left[^{\langle} D \sigma^{\mu\nu\rangle} + \frac{1}{3} \sigma^{\mu\nu} (\nabla \cdot u) \right] + \pmb{\kappa} \left[R^{\langle\mu\nu\rangle} - 2 u_{\alpha} R^{\alpha\langle\mu\nu\rangle\beta} u_{\beta} \right] \\ &\qquad \qquad + \pmb{\lambda_{1}} \sigma^{\langle\mu}{}_{\lambda} \sigma^{\nu\rangle\lambda} + \pmb{\lambda_{2}} \sigma^{\langle\mu}{}_{\lambda} \Omega^{\nu\rangle\lambda} + \pmb{\lambda_{3}} \Omega^{\langle\mu}{}_{\lambda} \Omega^{\nu\rangle\lambda} \end{split}$$

$$D\equiv u^{\mu}
abla_{\mu}$$

$$\sigma^{\mu\nu}=2
abla^{\langle\mu}u^{
u\rangle}$$

$$\Omega^{\mu\nu}=rac{1}{2}(
abla^{\langle\mu}u^{
u\rangle}-
abla^{\langle
u}u^{\mu\rangle}) \qquad ext{vorticity}$$

- κ only in curved space, but affects 2-point function of $T^{\mu\nu}$
- λ_i nonlinear response

Hydrodynamics from AdS/CFT

Main philosophy:

Finite-T field theory in flat space \Leftrightarrow black hole with flat horizon Example: nonextremal D3 metric

$$ds^{2} = \frac{r^{2}}{R^{2}}(-fdt^{2} + d\vec{x}^{2}) + \frac{R^{2}}{r^{2}f}dr^{2}, \qquad f = 1 - \frac{r^{4}}{r_{0}^{4}}$$

• Construct a family of configurations by changing $T \sim r_0/R^2$ and boosting along \vec{x} directions by velocity \vec{u}

$$g_{\mu\nu} = g_{\mu\nu}(z; T, u^{\mu})$$

- Promote T and \vec{u} into fields.
- Require regularity away from $r = 0 \Rightarrow$ hydrodynamic equations

Concretely realized by

Janik, Peschanski, Heller Bhattacharyya, Hubeny, Minwalla, Rangamani

Dynamics of the horizon

Generalizing black hole thermodynamics M, Q,... to black brane hydrodynamics

$$T = T_H(\vec{x}), \qquad \mu = \mu(\vec{x})$$

Dissipation in QFT ⇔ dissipative behavior of black hole horizon ∼ "black-hole membrane paradigm" Damour; Thorne, Price, McDonald

Kinetic coefficents from AdS/CFT

One strategy to find τ_{π} and κ :

- Within hydro: compute some $\langle T^{\mu\nu}T^{\alpha\beta}\rangle$ from linear response theory: response to gravitational perturbations $g_{\alpha\beta} = \eta_{\alpha\beta} + h_{\alpha\beta}$
- Compare with AdS/CFT calculations

Example: for momentum ω , $\vec{k} = (0, 0, k)$

$$\langle T^{xy}T^{xy}\rangle(\omega,k) = P - i\eta\omega + \eta\tau_{\pi}\omega^{2} - \frac{\kappa}{2}(\omega^{2} + k^{2})$$

from that

$$\eta = \frac{s}{4\pi},$$
 universal result

$$au_{\pi} = \frac{2 - \ln 2}{2\pi T}, \qquad \kappa = \frac{\eta}{\pi T}$$

Sound-wave dispersion: Re $\omega = c_s k + \# k^3 \Rightarrow$ the same value for τ_π

Nonlinear coefficients $\lambda_{1,2,3}$

One needs to look beyond small perturbations around thermal equilibrium. λ_1 : can be found from long-time tail of a boost-invariant solution (Janik, Peschanski, Heller):

$$\epsilon(\tau) \sim \frac{1}{\tau^{4/3}} - \frac{2\eta}{\tau^2} + \frac{\#}{\tau^{8/3}}$$
 (0)

Maching the coefficient of $\tau^{-8/3}$ term:

$$\lambda_1 = \frac{\eta}{2\pi T}$$

Bhattacharyya et al. also found

$$\lambda_1 = \frac{\eta}{2\pi T}, \qquad \lambda_2 = -\frac{2\ln 2}{2\pi T}\eta, \qquad \lambda_3 = 0$$

Comparision with Israel-Stewart formalism

- Israel-Stewart equation valid only in hydro regime.
- Frequently terms required by Weyl invariance are thrown away,

$$\langle D\Pi^{\mu\nu}\rangle + \frac{4}{3}\Pi^{\mu\nu}(\nabla \cdot u)$$

(equivalent to ones used by Romatschke & Romatschke). Such terms may be numerically important (U. Heinz's talk)

- In addition, $\lambda_1 = \lambda_3 = 0$ in IS theory; in $\mathcal{N} = 4$ SYM $\lambda_1 \neq 0$ (but $\lambda_3 = 0$).
- Additional terms nonlinear: not important for sound wave propagation, but important for Bjorken expansion

Entropy current

Loganayaram

- One is unable to force the IS Ansatz $s^\mu = u^\mu + (s + \#\Pi_{\alpha\beta}\Pi^{\alpha\beta})$ to have explicitly positive derivative $\partial_\mu s^\mu \sim \Pi^2$
- More generally, s^{μ} has to be a expressed in terms of u^{μ} and its derivatives,

$$s^{\mu} = su^{\mu} + \#u^{\mu}\Pi^{2} + u^{\mu}\omega^{2} + O(u\nabla^{2}u)$$

One can construct a current so that

$$\partial_{\mu}s^{\mu} = \frac{\eta}{2T}\sigma^{\mu\nu}\sigma_{\mu\nu} + \frac{1}{4}(\kappa - 2\lambda_1)\sigma^{\mu}{}_{\nu}\sigma^{\nu}{}_{\lambda}\sigma^{\lambda}{}_{\mu}$$

Generally not explicitly positive, but positive in the hydrodynamic regime: $\sigma^3 \ll \sigma^2$.

Entropy current

Loganayaram

- One is unable to force the IS Ansatz $s^\mu = u^\mu + (s + \#\Pi_{\alpha\beta}\Pi^{\alpha\beta})$ to have explicitly positive derivative $\partial_\mu s^\mu \sim \Pi^2$
- More generally, s^{μ} has to be a expressed in terms of u^{μ} and its derivatives,

$$s^{\mu} = su^{\mu} + \#u^{\mu}\Pi^{2} + u^{\mu}\omega^{2} + O(u\nabla^{2}u)$$

One can construct a current so that

$$\partial_{\mu}s^{\mu} = \frac{\eta}{2T}\sigma^{\mu\nu}\sigma_{\mu\nu} + \frac{1}{4}(\kappa - 2\lambda_1)\sigma^{\mu}{}_{\nu}\sigma^{\nu}{}_{\lambda}\sigma^{\lambda}{}_{\mu}$$

Generally not explicitly positive, but positive in the hydrodynamic regime: $\sigma^3 \ll \sigma^2$.

Suprise: in $\mathcal{N}=4$ SYM $\kappa=2\lambda_1!$

Conclusion

- Hydrodynamic behavior of QFT appears naturally from black hole dynamics
- in a manner much simpler than at weak coupling
- Second order hydrodynamics: 5 additional coefficients in conformal theories (4 in flat space)

Conclusion

- Hydrodynamic behavior of QFT appears naturally from black hole dynamics
- in a manner much simpler than at weak coupling
- Second order hydrodynamics: 5 additional coefficients in conformal theories (4 in flat space)

To be done:

- Gravitational loop effects (1/ N_c): thermal noise + nonlinearity of hydro equation
 - Hydrodynamic long-time tail as quantum gravity Kovtun, Yaffe
- Breaking conformal invariance Buchel
- Second-order transport coefficient at weak coupling, large- N_c QCD, $\mathcal{N}=4$ SYM can one use some kinetic theory?
- Implications for elliptic flow in heavy ion collisions