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Plan
Hydrodynamics

Relation to finite-temperature field theory
First-order hydrodynamics
Second-order hydrodynamics

Gauge/gravity duality
Hydrodynamics as low-energy dynamics of black-brane horizons
Second-order transport coefficients from gauge/gravity duality

Refs: R. Baier, P. Romatschke, DTS, A. Starinets, M. Stephanov, arxiv:0712.2451

related work: Bhattacharyya, Hubeny, Minwalla, Rangamani, arxiv:0712.2456;
Loganayaram, arxiv:0801.3701
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Why hydrodynamics
Applications, e.g., elliptic flow in heavy ion collisions
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Why hydrodynamics
Applications, e.g., elliptic flow in heavy ion collisions

Conceptually a much simpler theory than QFT:
Few d.o.f.
Classical: bosonic modes at ω � T

“Every cook has learned how to use hydrodynamics”
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Why gauge/gravity duality
Practical consideration:

Strong coupling, not treatable by other methods

Simple calculations

Conceptual consideration:

Deep connection between QFT and black-hole physics

sharp contrast to weak coupling:
weak coupling: QFT → kinetic theory → hydro
strong coupling: QFT → hydro

Hope: more to be discovered, e.g., for second-order hydrodynamics.
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Hydrodynamics as effective theory
Consider a finite-temperature interacting QFT
Real-time: close-time-path formalism

Z[g1
µν , g

2
µν ] =

Z

Dψ1Dψ2 exp(iS[ψ1, g
(1)
µν ] − iS[ψ2, g

(2)
µν ])

〈Tµν(x)Tαβ(y)〉 =
δ2 lnZ

δgµν(x)δgαβ(y)

We want an effective field theory that gives correlators of Tµν at low momenta.

Hydrodynamics: gives 〈Tµν〉 for any given smooth source g1
µν = g2

µν .

Validity: length scales � mean free path
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Degrees of freedom
Chiral perturbation theory: d.o.f. = Goldstone modes

Hydrodynamics: d.o.f = “collective coordinates” of thermal ensemble
For a plasma with no conserved charge:

Temperature T (x)

Velocity (boost) uµ(x), u2 = −1

Optional:

µ(x) for each conserved charge

Phases of condensate (superfluid hydrodynamics)

U(1) magnetic fields (magnetohydrodynamics)
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Ideal and first-order
Ideal (zeroth order) hydrodynamics

∇µT
µν = 0 Tµν = (ε+ P )uµuν + Pgµν

First-order hydrodynamics (relativistic Navier-Stokes)

Tµν = Tµν
ideal + Πµν

|{z}

viscous stress

Ambiguity of defining uµ beyond leading order: fixed by uµΠµν = 0

Πµν = −η∇〈µuν〉 − ζPµν(∇· u)

Pµν = gµν + uµuν

A〈µν〉 =
1

2
PµαP νβ(Aαβ + Aβα) −

1

3
PµνPαβAαβ

Shear viscosity η and bulk viscosity ζ. Affect damping of shear and sound modes.
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Second order: Müller-Israel-Stewart
Modified relationship between Πµν and ∇µuν .

(τπu
λ∇λ + 1)Πµν = −ησµν

τπD � 1: equivalent to keeping one next term in derivative expansion

Πµν = −ησµν + ητπ(u · ∇)σµν ,

Matching with AdS/CFT, N = 4 SYM

Bjorken flow: τπ =
1 − ln 2

6πT

sound: τπ =
2 − ln 2

2πT

This indicates not all second-order terms are taken into account.

Need to include all second-derivative terms consistent with symmetry. After
eliminating redundant ones: 16 independent terms
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Conformal invariance
Assume fundamental theory is a CFT,

Tµ
µ = 0 in flat space

In curved space: Weyl anomaly

gµνT
µν ∼ R2

µναβ in curved space

But R ∼ ∂2gµν : Weyl anomaly reproduced in hydrodynamics only at fourth order in
derivatives.

⇒ gµνT
µν = 0 for our purposes

First order: ζ = 0,

Second order: 8 possible structures in Πµν
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Conformal invariance (II)
Further constraint: Tµν transforms simply under Weyl transformation

gµν → e2ωgµν , Tµν → e6ωTµν

8 → 5 possible structures in Πµν

Πµν
2nd order = ητπ

»

〈Dσµν〉 +
1

3
σµν(∇· u)

–

+ κ
h

R〈µν〉 − 2uαR
α〈µν〉βuβ

i

+ λ1σ
〈µ

λσ
ν〉λ + λ2σ

〈µ
λΩν〉λ + λ3Ω

〈µ
λΩν〉λ

D ≡ uµ∇µ

σµν = 2∇〈µuν〉

Ωµν =
1

2
(∇〈µuν〉 −∇〈νuµ〉) vorticity

κ only in curved space, but affects 2-point function of Tµν

λi nonlinear response
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Hydrodynamics from AdS/CFT
Main philosophy:

Finite-T field theory in flat space ⇔ black hole with flat horizon
Example: nonextremal D3 metric

ds2 =
r2

R2
(−fdt2 + d~x2) +

R2

r2f
dr2, f = 1 −

r4

r40

Construct a family of configurations by changing T ∼ r0/R
2 and boosting

along ~x directions by velocity ~u

gµν = gµν(z;T, uµ)

Promote T and ~u into fields.

Require regularity away from r = 0 ⇒ hydrodynamic equations

Concretely realized by
Janik, Peschanski, Heller
Bhattacharyya, Hubeny, Minwalla, Rangamani
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Dynamics of the horizon

unperturbed horizon

r

x

perturbed horizon
T ∼ r0 = r0(~x)

Generalizing black hole thermodynamics M , Q,...
to black brane hydrodynamics

T = TH(~x), µ = µ(~x)

Dissipation in QFT ⇔ dissipative behavior of black hole horizon ∼ “black-hole
membrane paradigm” Damour; Thorne, Price, McDonald
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Kinetic coefficents from AdS/CFT
One strategy to find τπ and κ:

Within hydro: compute some 〈TµνTαβ〉 from linear response theory:
response to gravitational perturbations gαβ = ηαβ + hαβ

Compare with AdS/CFT calculations

Example: for momentum ω, ~k = (0, 0, k)

〈T xyT xy〉(ω, k) = P − iηω + ητπω
2 −

κ

2
(ω2 + k2)

from that

η =
s

4π
, universal result

τπ =
2 − ln 2

2πT
, κ =

η

πT

Sound-wave dispersion: Reω = csk + #k3 ⇒ the same value for τπ
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Nonlinear coefficientsλ1,2,3

One needs to look beyond small perturbations around thermal equilibrium.
λ1: can be found from long-time tail of a boost-invariant solution (Janik,
Peschanski, Heller):

ε(τ) ∼
1

τ4/3
−

2η

τ2
+

#

τ8/3
(0)

Maching the coefficient of τ−8/3 term:

λ1 =
η

2πT

Bhattacharyya et al. also found

λ1 =
η

2πT
, λ2 = −

2 ln 2

2πT
η, λ3 = 0
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Comparision with Israel-Stewart formalism
Israel-Stewart equation valid only in hydro regime.

Frequently terms required by Weyl invariance are thrown away,

〈DΠµν〉 +
4

3
Πµν(∇· u)

(equivalent to ones used by Romatschke & Romatschke). Such terms may
be numerically important (U. Heinz’s talk)

In addition, λ1 = λ3 = 0 in IS theory; in N = 4 SYM λ1 6= 0 (but λ3 = 0).

Additional terms nonlinear: not important for sound wave propagation, but
important for Bjorken expansion
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Entropy current
Loganayaram

One is unable to force the IS Ansatz sµ = uµ + (s+ #ΠαβΠαβ) to have
explicitly positive derivative ∂µs

µ ∼ Π2

More generally, sµ has to be a expressed in terms of uµ and its derivatives,

sµ = suµ + #uµΠ2 + uµω2 +O(u∇2u)

One can construct a current so that

∂µs
µ =

η

2T
σµνσµν +

1

4
(κ− 2λ1)σ

µ
νσ

ν
λσ

λ
µ

Generally not explicitly positive, but positive in the hydrodynamic regime:
σ3 � σ2.
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Entropy current
Loganayaram

One is unable to force the IS Ansatz sµ = uµ + (s+ #ΠαβΠαβ) to have
explicitly positive derivative ∂µs

µ ∼ Π2

More generally, sµ has to be a expressed in terms of uµ and its derivatives,

sµ = suµ + #uµΠ2 + uµω2 +O(u∇2u)

One can construct a current so that

∂µs
µ =

η

2T
σµνσµν +

1

4
(κ− 2λ1)σ

µ
νσ

ν
λσ

λ
µ

Generally not explicitly positive, but positive in the hydrodynamic regime:
σ3 � σ2.

Suprise: in N = 4 SYM κ = 2λ1!
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Conclusion
Hydrodynamic behavior of QFT appears naturally from black hole dynamics

in a manner much simpler than at weak coupling

Second order hydrodynamics: 5 additional coefficients in conformal theories
(4 in flat space)
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Conclusion
Hydrodynamic behavior of QFT appears naturally from black hole dynamics

in a manner much simpler than at weak coupling

Second order hydrodynamics: 5 additional coefficients in conformal theories
(4 in flat space)

To be done:

Gravitational loop effects (1/Nc): thermal noise + nonlinearity of hydro
equation

Hydrodynamic long-time tail as quantum gravity Kovtun, Yaffe

Breaking conformal invariance Buchel

Second-order transport coefficient at weak coupling, large-Nc QCD, N = 4
SYM can one use some kinetic theory?

Implications for elliptic flow in heavy ion collisions

Hydrodynamics from gauge/gravity duality – p.17/17


	Plan
	Why hydrodynamics
	Why gauge/gravity duality
	Hydrodynamics as effective theory
	Degrees of freedom
	Ideal and first-order
	Second order: M"uller-Israel-Stewart
	Conformal invariance
	Conformal invariance (II)
	Hydrodynamics from AdS/CFT
	Dynamics of the horizon
	Kinetic coefficents from AdS/CFT
	Nonlinear coefficients $lambda _{1,2,3}$
	Comparision with Israel-Stewart formalism
	Entropy current
	Conclusion

