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Motivations for going into the subject
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e The situation

Dynamics @ Many interesting phenomena in particle physics and
Mark y
arkus

Michae! Miller cosmology require the description of systems out of
thermal equilibrium.

Motivations

@ Very often, such nonequilibrium situations are treated
by means of (approximations to) Boltzmann equations.

@ However, Boltzmann equations are only a classical
approximation to the quantum thermalization process
described by Kadanoff-Baym equations.
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An obvious question

How reliable are Boltzmann equations as compared to
Kadanoff-Baym equations?




Boltzmann Equation
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vs. Quantum for a spatially homogeneous system in the framework of a
Wl real scalar * quantum field theory:
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X ((1 + ) (1 + np) ngne — nknp (14 ng) (1 + nr)>

gain term loss term
Momentum conservation Energy conservation

Isotropy: 9 dimensional integral = 2 dimensional integral.
Important for numerics! [poigoy, Hansen, Semikoz (1997)



Complete Schwinger-Keldysh Propagator
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Quantum
Dynamics

G(x,y) =(Tc{®(x)®(y)})

The index C denotes time ordering along the closed
Schwinger-Keldysh real-time contour.

Decomposition [aarts, Berges (2001)]

i,
G(x,y) = Gr (x,y) — gsigne (x* = y°) G, (x.y)

@ Statistical propagator = effective particle number
@ Speciral function = thermal mass, decay width




Effective Energy and Particle Number Densities

Boltzmann "
Kinetics Free-field ansatz [serges (2002)]
vs. Quantum

Dynamics Effective kinetic energy density:
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Effective particle number density:

Quantum
Dynamics

n(t,k) = w (t, k) G (1, 1, K) —%
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Advantages of these definitions

@ They furnish a particle number density which thermalizes.

@ They do not rely on any quasi-particle assumption.

@ They comprise conserved charges, if present in the theory.
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Kadanoff-Baym Equations

Boltzmann

Kinetics for a spatially homogeneous and isotropic system in the framework of a
vs. Quantum real scalar * quantum field theory:

[Bfo + K>+ M? (XO)] Gr (xo,yo, k)

0
- jdz0 Me (xo,zo,k) G, (Zo,yo,k)
Quantum ’ 0

Bynamics 7 jdzo n, (XO’ZOJ() Gr (Zo,yoa k)
0
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\ ]

Effective mass: M? (x°) = m? + - -‘e'- -
Nonlocal self-energy: M (x°,2°, k) = - -¢ - - .‘,. -
A .

Internal lines represent the complete Schwinger-Keldysh propagator!



Initial Conditions
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Comparison
of Numerical
Solutions

[Manfred Lindner, MMM (2006)]
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@ Allinitial conditions correspond to the
same (conserved) average energy density.

@ The initial conditions IC1 and |C2 correspond to the
same initial total particle number.



Universality
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Chemical Equilibration
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@ Chemical Equilibration @ No Chemical Equilibration

[Manfred Lindner, MMM (2006)]



Separation of Time Scales
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Generalization to fermionic theories

SU(2). x SU(2)r x U(1)s-. symmetric Yukawa model
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Effective scalar mass:

M? <x°> =m +--te--

Comparison
of Numerical
Solutions

Nonlocal Self Energies:

scalars: I‘I(xo,zo,k> = --Q--

fermions: Z(xo,zo,k> = R




Generalization to fermionic theories
Cont.
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Kadanoff—Baym Equations [Manfred Lindner, MMM (2008)]

o Full Universality [Berges et al. (2003)]
@ Quantum-chemical equilibration iserges et al. (2003
@ Prethermalization serges et al. (2004

Comparison
of Numerical
Solutions

Boltzmann equations [Manfred Lindner, MMM (2008); MMM (2006)]
@ Restricted universality
@ Classical, but no quantum-chemical equilibration
@ No separation of time scales




Conclusions
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Binetice Quantum Dynamics (Kadanoff-Baym equations)
vs. Quantum

Dynamics

@ take memory and off-shell effects into account.
Markus

Michael Maller @ respect full universality.

@ include chemical equilibration.

@ separate time scales between kinetic and chemical equilibration.

Classical Kinetics (Standard Boltzmann equations)

@ do not take memory and off-shell effects into account
(molecular chaos for quasi-particles).

Conclusi q .
I @ comprise fake constants of motion.

@ respect only a restricted universality.
@ do not include quantum chemical equilibration, and therefore

@ cannot separate time scales between kinetic and chemical
equilibration.




Outlook

Renormalization of the 2P| effective action for a real scalar A®* /4! theory at

three-loop order
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Dynamics A18: A =18, m& = —6.87 m%
A24: \ =24, m3 = —9.49 m3,

Standard approximate perturbative renormalization

Exact nonperturbative renormalization at zero temperature
£18: Ag =18, \g = 37.18, m3 = —14.39 m?,
E24: \g =24, \g = 63.43, m3 = —25.14 m?,
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