Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Müller

Motivations

Boltzmann Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

Comparison of Boltzmann Kinetics with Quantum Dynamics for Relativistic Quantum Fields

Markus Michael Müller

Nonequilibrium Phenomena in Cosmology and Particle Physics
Kavli Institute for Theoretical Physics, UCSB
St. Barbara CA
February 28, 2008

Outline

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivation

Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

- Motivations
- Boltzmann Kinetics
- Quantum Dynamics
- Comparison of Numerical Solutions
- Conclusions and Outlook

Motivations for going into the subject

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivations

Boltzmann Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

The situation

- Many interesting phenomena in particle physics and cosmology require the description of systems out of thermal equilibrium.
- Very often, such nonequilibrium situations are treated by means of (approximations to) Boltzmann equations.
- However, Boltzmann equations are only a classical approximation to the quantum thermalization process described by Kadanoff-Baym equations.

An obvious question

How reliable are Boltzmann equations as compared to Kadanoff-Baym equations?

Boltzmann Equation

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivation

Boltzmann Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

for a spatially homogeneous system in the framework of a real scalar Φ^4 quantum field theory:

$$\partial_{t}n(t,\mathbf{k}) = \frac{\lambda^{2}\pi}{48} \int \frac{d^{3}p}{(2\pi)^{3}} \int \frac{d^{3}q}{(2\pi)^{3}} \int d^{3}r \left[\frac{1}{E_{k}E_{p}E_{q}E_{r}} \times \delta\left(\mathbf{k} + \mathbf{p} - \mathbf{q} - \mathbf{r}\right) \quad \delta\left(E_{k} + E_{p} - E_{q} - E_{r}\right) \right] \times \left(\underbrace{\left(1 + n_{\mathbf{k}}\right)\left(1 + n_{\mathbf{p}}\right)n_{\mathbf{q}}n_{\mathbf{r}}}_{\text{gain term}} - \underbrace{n_{\mathbf{k}}n_{\mathbf{p}}\left(1 + n_{\mathbf{q}}\right)\left(1 + n_{\mathbf{r}}\right)}_{\text{loss term}} \right]$$

Momentum conservation

Energy conservation

Isotropy: 9 dimensional integral ⇒ 2 dimensional integral. Important for numerics! [Dolgov, Hansen, Semikoz (1997)]

Complete Schwinger-Keldysh Propagator

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivation

Boltzman Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

Definition

$$G(x,y) = \langle T_{\mathcal{C}} \{ \Phi(x) \Phi(y) \} \rangle$$

The index \mathcal{C} denotes time ordering along the closed Schwinger-Keldysh real-time contour.

Decomposition [Aarts, Berges (2001)]

$$G(x,y) = G_F(x,y) - \frac{i}{2} \operatorname{sign}_{\mathcal{C}} \left(x^0 - y^0 \right) G_{\varrho}(x,y)$$

- Statistical propagator ⇒ effective particle number
- Spectral function ⇒ thermal mass, decay width

Effective Energy and Particle Number Densities

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivations

Boltzmann Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

Free-field ansatz [Berges (2002)]

Effective kinetic energy density:

$$\omega^{2}\left(t,k\right) = \left(\frac{\partial_{x^{0}}\partial_{y^{0}}G_{F}\left(x^{0},y^{0},k\right)}{G_{F}\left(x^{0},y^{0},k\right)}\right)_{x^{0}=y^{0}=t}$$

Effective particle number density:

$$n(t,k) = \omega(t,k) G_F(t,t,k) - \frac{1}{2}$$

Advantages of these definitions

- They furnish a particle number density which thermalizes.
- They do not rely on any quasi-particle assumption.
- They comprise conserved charges, if present in the theory.

Kadanoff-Baym Equations

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivation:

Boltzmanı Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

for a spatially homogeneous and isotropic system in the framework of a real scalar Φ^4 quantum field theory:

$$\begin{split} \left[\partial_{x^{0}}^{2} + k^{2} + M^{2} \left(x^{0} \right) \right] G_{F} \left(x^{0}, y^{0}, k \right) \\ &= \int_{0}^{y^{0}} dz^{0} \, \Pi_{F} \left(x^{0}, z^{0}, k \right) G_{\varrho} \left(z^{0}, y^{0}, k \right) \\ &- \int_{0}^{x^{0}} dz^{0} \, \Pi_{\varrho} \left(x^{0}, z^{0}, k \right) G_{F} \left(z^{0}, y^{0}, k \right) \end{split}$$

Effective mass:
$$M^2(x^0) = m^2 + \cdots$$

Nonlocal self-energy:
$$\Pi(x^0, z^0, k) = -$$

Internal lines represent the complete Schwinger-Keldysh propagator!

Initial Conditions

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivations

Boltzman Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

- All initial conditions correspond to the same (conserved) average energy density.
- The initial conditions IC1 and IC2 correspond to the same initial total particle number.

[Manfred Lindner, MMM (2006)]

Universality

[Manfred Lindner, MMM (2006)]

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivation:

Boltzmanr Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

Chemical Equilibration

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülleı

Motivation

Boltzman Kinetics

Dynamic

Comparison of Numerical Solutions

Conclusions and Outlook

Equilibrium particle number densities

E(**p**) / m_{th}

Boltzmann

- Full Universality
- Chemical Equilibration
- Restricted Universality
- No Chemical Equilibration

[Manfred Lindner, MMM (2006)]

Separation of Time Scales

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivations

Boltzmanr Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

[Manfred Lindner, MMM (2006)]

Generalization to fermionic theories $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ symmetric Yukawa model

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivation

Boltzmann Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

$\lambda \left(\Phi_a \Phi_a\right)^2 + i \eta \bar{\Psi} \Phi_a \left(\sigma_a P_R - \sigma_a^\dagger P_L\right) \Psi$

Effective scalar mass:

$$M^2\left(x^0\right)=m^2+\cdots$$

Nonlocal Self Energies:

scalars:
$$\Pi\left(x^0, z^0, k\right) = \cdots$$

fermions:
$$\Sigma(x^0, z^0, k) =$$

Generalization to fermionic theories

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivation

Boltzmann Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

Kadanoff-Baym Equations [Manfred Lindner, MMM (2008)]

- Full universality [Berges et al. (2003)]
- Quantum-chemical equilibration [Berges et al. (2003)]
- Prethermalization [Berges et al. (2004)]

Boltzmann equations [Manfred Lindner, MMM (2008); MMM (2006)]

- Restricted universality
- Classical, but no quantum-chemical equilibration
- No separation of time scales

Conclusions

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivation

Boltzmann Kinetics

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions

Quantum Dynamics (Kadanoff-Baym equations)

- take memory and off-shell effects into account.
- respect full universality.
- include chemical equilibration.
- separate time scales between kinetic and chemical equilibration.

Classical Kinetics (Standard Boltzmann equations)

- do not take memory and off-shell effects into account (molecular chaos for quasi-particles).
- comprise fake constants of motion.
- respect only a restricted universality.
- do not include quantum chemical equilibration, and therefore
- cannot separate time scales between kinetic and chemical equilibration.

Outlook

Renormalization of the 2PI effective action for a real scalar $\lambda \Phi^4/4!$ theory at three-loop order

Boltzmann Kinetics vs. Quantum Dynamics

Markus Michael Mülle

Motivations

Boltzmann

Quantum Dynamics

Comparison of Numerical Solutions

Conclusions and Outlook

Standard approximate perturbative renormalization

A18: $\lambda = 18$, $m_B^2 = -6.87 m_R^2$

A24: $\lambda = 24$, $m_B^2 = -9.49 \ m_R^2$

Exact nonperturbative renormalization at zero temperature

E18: $\lambda_R = 18$, $\lambda_B = 37.18$, $m_B^2 = -14.39$ m_R^2

E24: $\lambda_R = 24$, $\lambda_B = 63.43$, $m_B^2 = -25.14$ m_R^2

