Anisotropic QCD plasmas

Dietrich Bödeker (Bielefeld U), Kari Rummukainen (Oulu U)

Nonequilibrium Phenomena in Cosmology and Particle Physics (Conference)

Anisotropic plasmas

Two causes of anisotropy

- 1. Production in very narrow region, $\gamma \sim 1000~{\rm for}~1{\rm TeV/A}$
- 2. weak coupling

experimental signal \Rightarrow wQCD

Momentum anisotropy

 $\tau \lesssim Q^{-1}$: production of "hard" gluons with

 $p \sim Q$

(isotropic momentum distribution)

free expansion in *z*-direction \rightarrow

 $p_z \ll p_\perp$

while $p_z \sim p_\perp$ in equilibrium

Plasma instabilities

anisotropic plasmas are unstable [Weibel,...], small fluctuations grow exponentially

instability for weak field initial conditions

probably no true instability

momenta mostly \perp beam direction

they help thermalization through isotropization

Which modes are unstable

characteristic momentum of anisotropic particles Q unstable modes $k^2\sim m^2\ ,\qquad m^2\sim Ng^2fQ^2$ $m\ll Q\qquad {\rm for}\qquad f\ll \frac{1}{g^2N}$

unstable modes are soft

strong anisotropy:

 \exists unstable modes with $k \gg m$

Effect of unstable modes on hard gluons

randomly oriented domains of long wavelength gluon fields

hard gluon momenta perform random walk

 $\Rightarrow p_z$ -broadening, isotropization

more efficient than elastic scattering

What we would like to know

how fast does the system isotropize?

How large do the unstable modes grow?

1) until non-linearities kick in? $(gA \sim k)$ not sufficient for fast isotropization

2) until rapid isotropization?

What we would like to know

what is f(p) between m and Q? cascading from m to higher psimilar to Kolmogorov wave turbulence g^{q^2} lattice results indicate $f \propto 1/p^2$ [Arnold,Moore] Boltzmann equation calculation gives 1/p [Mueller,Shoshi,Wong]

what happens for strong anisotropy?

Numerical simulations of QCD plasma instabilities

classical field approximation for soft gluon fields

eikonal approximation for hard gluons, "hard loop approximation"

neglecting

- expansion
- back-reaction on hard gluon momentum distribution

Simulation of strongly anisotropic plasmas

system with "hard" classical particles + soft classical fields

neglect bending of hard particle momenta "hard loop approximation"

$$(D_{\mu}F^{\mu\nu})^{a} = g \int \frac{d^{3}p}{(2\pi)^{3}} v^{\nu} f^{a},$$

$$(v \cdot Df)^a + gv^{\mu}F^a_{\mu i}\frac{\partial \bar{f}}{\partial p^i} = 0$$

we use the W field method, SU(2) gauge group

$$W^{a}(x, \boldsymbol{v}) \equiv 4\pi g \int_{0}^{\infty} \frac{dpp^{2}}{(2\pi)^{3}} f^{a}(x, \boldsymbol{v}p)$$

Simulation of strongly anisotropic plasmas

we expand $W,\ \bar{f}$ in spherical harmonics

$$ar{f}(poldsymbol{v}) = \sum_{l}^{L_{\mathrm{asym}}} ar{f}_l(p) Y_{l0}(oldsymbol{v})$$

$$W(x, \boldsymbol{v}) = \sum_{l,m}^{L_{\max}} W_{lm}(x) Y_{lm}(\boldsymbol{v})$$

3+1 dim theory with many fields

Simulation of strongly anisotropic plasmas

for each L_{asym} we try to maximally localize the distribution along the xy-plane

propellor shaped distribution asymmetry parameter $\xi^2 \equiv \frac{v_z^2}{v^2}$ $\xi = 0.5, \dots, 0.015$ one needs $L_{\text{max}} > L_{\text{asym}}$

Results: energy growth for weak anisotropy

little growth beyond weak field regime lattice UV modes far from saturated consistend with Arnold, Moore, Yaffe ($L_{asym} = 6$)

Results: growth of energy for strong anisotropy

quasi-exponential growth beyond weak field regime how far does it continue when $a \rightarrow 0$?

What is going on?

unstable modes for $|\boldsymbol{k}|$ up to

$$k_{\max} \sim \frac{m_0}{\xi} \gg m_0$$

large ξ enhances energy density at non-abelian saturation

$$\varepsilon \sim \frac{k_{\perp}^2}{g^2} \int dk^z k^z \sim \frac{m_0^4}{g^2 \xi^2}$$

enhancement factor = $67 (L_{asym} = 28)$

cannot account for 3 orders of magnitudes

Coulomb gauge spectrum

16

Average momentum

Mon May 29 10:41:43 2006

$$t = 12/m_0$$

$$t = 24/m_0$$

$$t = 28/m_0$$

$$t = 29/m_0$$

$$t = 31/m_0$$

$$t = 34/m_0$$

$$t = 36/m_0$$

$$t = 39/m_0$$

$$t = 42/m_0$$

$$t = 45/m_0$$

Summary

- expanding systems of gluons produced in HIC is anisotropic
- anistropy causes plasma instabilities in weak coupling
- unstable modes grow to large field amplitudes with $f\gtrsim 1/g^2$
- they affect the isotropization
- growth of instabilities beyond naive saturation bound for strong anisotropy
- $\bullet\,$ energy growth in very thin sheets $\perp\,$ beam axis

Open questions

- what is the mechanism for saturation?
- at which amplitude does saturation occur for strong anisotropy?
- what is the spectrum of the UV cascade?
- is there a universal parametric result for the thermalization time and temperature?