
Avalanches and Functional 
Renormalization Group: 

Same universality class for the 
critical behavior in and out 

of equilibrium in a quenched 
random field

Gilles Tarjus (LPTMC, CNRS-Univ. PARIS 6)

Matthieu Tissier (LPTMC), Ivan Balog (Physics Institute, Zagreb)

KITP 14



• The role of avalanches in the critical behavior of the 
random field Ising model (RFIM).

• Problem 1: Escaping dimensional reduction!

• Problem 2: Are the out-of-equilibrium (hysteresis) 
critical point and the equilibrium one in same 
universality class?

• The method: Superfield theory and nonperturbative 
functional renormalization group (NP-FRG).
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The random field Ising model (RFIM)

•Magnetism: lattice hard-spin version

with a real scalar field φ(x)  =>  classical field Φ(x) = < φ(x) >
a quenched random ``source’’ (e.g., Gaussian):
+ coupling to an applied source J

h(x) = 0, h(x)h(y) = ∆B δ(d)(x− y)

•Under some coarse-graining: Field theory

S[ϕ;h] = SB [ϕ]−
�

x
h(x)ϕ(x); SB =

�
ddx

�
1

2
(∂ϕ(x))2 +

τ

2
ϕ(x)2 +

u

4!
ϕ(x)4

�

with Ising variables Si = ±1  =>  magnetization mi = <Si>
    a quenched random field (e.g., Gaussian):

+ coupling to an applied magnetic field H

hi = 0, hihj = ∆B δij

H[{Si}; {hi}] = −J
�

<i,j>

SiSj +
�

i

hiSi



Why are avalanches relevant at all for 
equilibrium criticality ?

•At equilibrium: PM to FM transition (critical point) as a 
function of T at constant ΔB or as a function of ΔB at constant T

•Yet, avalanches are zero-T phenomena!

•But the long-distance (critical) physics at equilibrium is 
dominated by sample-to-sample (disorder) fluctuations, not by 
thermal fluctuations...

•RFIM equilibrium partition function in a given random-field 
sample h :

Zh[J ] =

�
Dϕ e−

1
T (S[ϕ;h]−

�
x J(x)ϕ(x))



The equilibrium critical point is controlled 
by a zero-temperature fixed point 

density f can be written in the form f = Jf̃(T/J, h/J,H/J). Let us imagine to carry
out the RNG coarse–graining transformation, with length scale factor b, corresponding to a
reduction in the number of degrees of freedom by a factor bd. The transformation generates a
flow in the space of the naive scaling fields T/J, h/J , and H/J , which eventually terminates
in one of the fixed points of the system. The existence of three fixed point will be assumed
(Fig. 4), in addition to the trivial, high temperature fixed point:
(i) A totally unstable “thermal” fixed point C at T = Tc, H = h = 0 (the random field is a
relevant perturbation, see our discussion in 3.2) .
(ii) A fixed point R at T = H = 0 and h = hR which is unstable in two, but stable in one
directions and is therefore a critical point.
(iii) A totally stable fixed point F at T = h = H = 0, which corresponds to the low
temperature phase for d > dl.

C

F

H/J

T/J

h/J

R
hR

Figure 4: Schematic renormalization group flow of the random field Ising model

In general the RNG procedure generates also new terms in the Hamiltonian. We will
assume, that these terms are irrelevant in the RNG–sense and can therefore be neglected.

In order to calculate the critical behavior we have to linearize the RNG flow close to
the fixed point R. The eigenvalues and eigenvectors of the linearized RNG–transformation
deliver the critical exponents and scaling fields. Phenomenological arguments concerning
the RNG flow suggest

T

J
, τ =

1

J
(h − hR) + c

T

J
and

H

J
(23)

as the scaling fields. Close to the fixed point R J , τ and H transform under the RNG
coarse graining as

J → J ′ = J b yJ

τ → τ ′ = τ b yτ

H → H ′ = H b yH .
(24)
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Temperature0

Disorder
 strength Schematic phase (and RG 

flow) diagram of the RFIM 
for d>2

• Additional exponent for the temperature flow:   

• Two distinct pair correlation functions:

• For T>0: very slow “activated” critical dynamics.

θ > 0

< φ(x) >< φ(x�) > ∼ 1

|x− x�|d−4+η̄
, with θ = 2 + η − η̄,

< φ(x)φ(x�) > − < φ(x) >< φ(x�) > ∼ T

|x− x�|d−2+η



Dimensional reduction

• Conventional perturbation theory to all orders and the Parisi-Sourlas 
supersymmetric approach [PRL ’79] both predict that the critical 
behavior of the RFIM is the same as that of the pure Ising model in 
two dimensions less:

    d -> d-2 ‶dimensional reduction″ property

• OK at the upper critical dimension (duc,RFIM=6 -> duc,pure=4) but 
rigorously proven wrong in d=2 and 3! [J.Z. Imbrie ’84, J. Bricmont 
and A. Kupianen ’87]

                             => Problem 1



Generic difficulties for theories 
of disordered systems

• Due to quenched disorder (h), one loses translational invariance:

                                is a random functional of the source =>

✴ in principle, one needs its whole probability distribution,

✴ or equivalently, the infinite set of its disorder-averaged 
cumulants (recovers translational invariance):

• Possible influence of rare events, rare spatial regions or rare 
samples: here, at T=0, avalanches!

W1[J ] = Wh[J ], W2[J1, J2] = Wh[J1]Wh[J2]|c, · · ·

Wh[J ] = lnZh[J ]



ϕ

SB

At T=0, stochastic equation:                              with:
δSB(φ)

δφ
= J + h

• For equilibrium, select the ground state:

The pair correlation function for slightly different sources,

has a nonanalytic behavior (a ‶cusp″) when J->0 due to the (‶static″) avalanches. 

The amplitude of the cusp ∝ second moment of the avalanche size.
[Note: the above p.c.f is given by ∂J1∂J2W2(J1,J2)=> need the full functional dependence]

• Similar for the out-of-equilibrium hysteresis behavior.

J

ϕGS,h

0
‶avalanche″

-h

Effect of avalanches : toy model (d=0 RFIM)

φGS,h(J + δJ)φGS,h(J − δJ) =

φGS,h(J)2 +A(J)|δJ |+O(δJ2)



Our conclusion

• Dimensional reduction breaks down because of the appearance of 
a cusp in the functional dependence of the dimensionless 
cumulants(s) of the renormalized random field: same as in the case 
of elastic systems in random media [D. Fisher, T. Nattermann, P. Le 
Doussal, K. Wiese].

• This is associated with a spontaneous breaking of the (Parisi-
Sourlas) supersymmetry.

• All of this takes place as a consequence of the presence of 
avalanches.



Region IV: Dim. red. predictions O.K. (weak non-analyticity at the fixed pt.) 

Regions I and II: Breakdown of dimensional reduction (Spontaneous SUSY 

breaking at finite RG scale; cusp in renormalized second cumulant).
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• Due to avalanches at T=0, there is always a cusp in the 
cumulants of the renormalized random field (and the associated 
correlation functions).

• However, at criticality, all these functions diverge and under the 
RG flow the cusp may be subdominant (irrelevant) near the 
fixed point: dDR precisely separates a region (d> dDR) where the 
cusp is present but irrelevant from one (d< dDR) where it persists 
at the fixed point (in the ‶dimensionless″ quantities).

Why a critical dimension dDR if 
avalanches are always present?



Simple scaling argument at criticality in a system of finite size L

• Avalanche size distribution                                             the size

of the typical critical avalanches and df their fractal dimension. 

• On the other hand, the total magnetization scales as 

     => Avalanches have an effect at criticality iff 

From the NP-FRG, we can compute 
the eigenvalue λ  associated with a 
‶cuspy″ perturbation around the 
fixed point. Then, in general,

Why a critical dimension dDR if 
avalanches are always present?
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previously derived in our nonperturbative functional RG
approach of the RFIM15 (see also footnote 2). The pre-
diction is confirmed at the upper (see above) and lower
critical dimensions. For the latter, dlc = 2, one indeed
expects the avalanches to be compact even at criticality
and their fractal dimension therefore to be equal to the
spatial dimension, df = d = 2 (see also Ref.31). As the
dimension of the field is equal to zero, dφ = 0 (and η̄ = 2),
the equality in Eq. (14) is satisfied. (Note that the re-
sults at the lower and upper critical dimensions apply to
both the equilibrium and out-of-equilibrium critical be-
havior of the RFIM66.) Beside this, direct measurements
or computations of the avalanche exponent df are un-
fortunately scarce. We therefore suggest that, as done
for models of an elastic interface in a disordered environ-
ment20,21,29 and for the out-of-equilibrium, metastable
behavior of the driven RFIM25,31–33, systematic studies
of the avalanches and of the cumulants of the effective
(renormalized) disorder would be worthwhile, e.g. in the
ground state of the RFIM, and would allow a direct test
of the predictions made on the basis of the functional
RG.

Finally, for the statistics of dilute branched polymers,
so long as dimensional reduction applies, η̄ = 2η and is
negative. In consequence, d− dφ = d+4− η̄ > d+4. As
the fractal dimension df should also be less than the di-
mension d of space67, one can see that df ≤ d < (d+4)/2
when d ! 4. From the condition on the scaling of the
avalanches in Eq. (15), we therefore obtain that dimen-
sional reduction applies, at least, when d ≤ 4 and in
the vicinity of the upper critical dimension duc = 8 (see
above); the existence of an intermediate range of dimen-
sions characterized by dimensional reduction breakdown
is highly unlikely. This is of course in agreement with
the known results according to which dimensional reduc-
tion (to the Lee-Yang edge singularity, or equivalently to
the universal repulsive gas singularity, in two fewer di-
mensions) is always valid in the case of dilute branched
polymers11,12.

To summarize, we have related the breakdown of “di-
mensional reduction” to the scaling characteristics of
“avalanches”. The former is the formal property ac-
cording to which the critical behavior in the presence
of quenched disorder is the same as that of the clean sys-
tem in two dimensions less and is found within conven-
tional perturbation theory in models whose long-distance
physics is controlled by a zero-temperature fixed point,
whereas the latter are large-scale physical events taking
place in the relevant configuration of the system (ground
state in equilibrium or metastable state out of equilib-
rium) under the variation of an external source. This
provides a solution to the puzzle of why dimensional re-
duction breaks down in some models and not in others,
in some range of dimensions and not for others.

Note finally that at small but nonzero temperature,
there are no avalanches and the variation of the relevant
configuration of the system under a change of the exter-
nal source is continuous, except possibly in mean-field
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FIG. 2: Fractal dimension df of the largest typical avalanches
versus space dimension d for the RFIM at the equilibrium crit-
ical point, as predicted by Eq. (14) (in the region “noDR”)
and Eq. (15) (in the region “DR”) and the nonperturbative
functional RG. The numerical resolution of the RG flow equa-
tions becomes extremely difficult in low dimension, typically
for d ! 2.9 and when approaching dDR ! dcusp ! 5.15 so
that we have no result for these ranges of d. The filled cir-
cles indicate the known values at the lower and upper criti-
cal dimensions. The crosses are the numerical estimates for
the out-of-equilibrium critical behavior of the driven RFIM in
d = 325,31,33 and the square that for the equilibrium behav-
ior25. The dashed line is the upper bound (df ≤ d).

models. The nonanalyticities in the functional depen-
dence of the cumulants of the renormalized disorder and
of the associated Green’s functions are then rounded in
“thermal boundary layers”14,51–53. In systems at equi-
librium, these boundary layers are linked to the pres-
ence of low-energy excitations that may also take place
on large scales at and near criticality and are described
as “droplets”54,55. The relation between droplets and
avalanches in disordered systems is by itself a very in-
teresting topic, which however we have not considered
here. In any case, this underscores that properties such as
dimensional reduction and its breakdown or avalanches
crucially depend on the system being at zero tempera-
ture or having its critical behavior controlled by a zero-
temperature fixed point.
[Nonperturbative functional RG for the RFIM]
We summarize here the main features of the nonper-

turbative functional RG description of the equilibrium
critical behavior of RFIM developed in Refs.13–15 as well
as its extension to compute the stability of the zero-
temperature fixed point against nonanalytic perturba-
tions.
The central quantity is the so-called “effective average

action” Γk
46,56 in which only fluctuations of modes with

momentum larger than an infrared cutoff k are effectively
taken into account. In the language of magnetic systems,
Γk is the Gibbs free-energy functional of the local order
parameter field obtained after a coarse-graining down to
the (momentum) scale k. The effective average action
obeys an exact RG equation under the variation of the
infrared cutoff k46,56.

∝ S−τD(
S

SL
), with SL ∝ Ldf

Ld− d−4+η
2

df =
d+ 4− η

2

df =
d+ 4− η

2
− λ



• From numerical studies of the d=3 slowly driven RFIM at T=0: 
 The out-of equilibrium critical point on the hysteresis curve and
 the equilibrium critical point have very similar exponents and 
 scaling functions. [PerezReche-Vives04,Colaiori et al 04, Liu-Dahmen07,09]

=> Suggests same critical behavior, i.e., same universality class

• However: in- versus out-of-equilibrium, not the same value of the 
critical disorder, not the same symmetry!!!

• To answer, need RG analysis: Are the two critical phenomena 
controlled by the same fixed point of the RG flow?
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Random Field Ising Model In and Out of Equilibrium

Yang Liu and Karin A. Dahmen
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

(Dated: May 12, 2008)

We present numerical studies of zero-temperature Gaussian random-field Ising model (zt-GRFIM)
in both equilibrium and non-equilibrium. We compare the no-passing rule, mean-field exponents
and universal quantities in 3D (avalanche exponents, fractal dimensions and anisotropy measures)
for the equilibrium and non-equilibrium transition. We show compelling evidence that these two
transitions belong to the same universality class.

PACS numbers: 02.60.Pn, 75.10.Nr, 75.60.Ej, 64.60.Fr

As a prototypical model for magnets with quenched
disorder, the random-field Ising Model (RFIM) has been
intensively studied during the last thirty years [1]. Never-
theless, some theoretically and experimentally important
questions are still not answered. For example, it is still
controversial whether the non-equilibrium and equilib-
rium transitions of the zero-temperature RFIM belong
to the same universality class. It has been found that
within the error bars, some critical exponents of these
two transitions seem to match in 3D [2, 3, 4] and even
in 4D [4, 5, 6]. Also, the 6 − ε expansion for the critical
exponents of the non-equilibrium transition maps to all
orders in ε onto that of the equilibrium case [7], though
the 6− ε expansion in equilibrium has been controversial
for decades [8]. Recently, renormalization group type ar-
guments were suggested to conjecture that the critical
points in these two transitions correspond to the same
fixed point in a more general parameter space [9, 10].
More interestingly, it has been shown that the ground
state (GS) and the demagnetized state (DS) have the
same exponents and scaling functions associated with the
disorder dependent magnetization, i.e. M(R) curve [11].
We also notice that the critical exponents and scaling
functions calculated from the demagnetization curve and
the associated avalanche noise seem to match those ob-
tained from the saturation loop, which suggests that the
two non-equilibrium transitions belong to the same uni-
versality class [12].

In this paper, we report new results which indicate that
the equilibrium (ground state) and non-equilibrium (sat-
uration loop) transitions belong to the same universality
class. This is rather unexpected since in non-equilibrium
the system has history dependence while in equilibrium
it doesn’t, see Fig. 1. We also address some previous
studies which came to the opposite conclusion.

The RFIM is defined by the Hamiltonian

H = −
∑

<i,j>

J sisj −
∑

i

(H + hi) si (1)

where the spins si = ±1 sit on a D-dimensional hypercu-
bic lattice with periodic boundary conditions. To model
disorders, quenched fields hi are randomly chosen from
a Gaussian distribution with mean zero and variance R.

-1

 0

 1

-2  0  2
H

M

FIG. 1: Equilibrium (green-dashed) and non-equilibrium
(red-solid) magnetization curves of the zt-GRFIM with sys-
tem size 323 and various values of disorder: below, at and
above Rc. (Req

c = 2.270 ± 0.004 [13] and Rneq
c = 2.16 ±

0.03 [4].) The thicker the line, the higher the disorder.

The temperature is set to zero and the external field H
is increased adiabatically slowly from −∞ to ∞. Shown
in Fig. 1 are the magnetization curves with different dis-
orders. The non-equilibrium magnetization curves (hys-
teresis loops) are calculated using the local metastable
dynamics, i.e. each spin flips deterministically when its
effective local field heff

i = J
∑

j sj + hi + H changes sign.
Three different algorithms to simulate this dynamics are
described in Ref. 14. The equilibrium magnetization
curves (GS evolutions) are obtained by using the effi-
cient algorithm reported in Ref. 15, 16. This algorithm
is essentially based on the fact that the GS energy has a
convexity property which allows for estimates of the fields
H where the magnetization jumps. To get the exact GS
for a given disorder R at external field H , the RFIM GS
problem is mapped onto the min-cut/max-flow problem
in combinatorial optimization, which can be solved via
the so-called push-relabel algorithm [17]. In both equi-
librium and non-equilibrium, avalanches are associated
with the magnetization jump during the magnetization
process. Spin clusters are connected regions of flipped
spins, formed by the aggregation of avalanches.

Before we show any numerical results about these two
transitions, we show two extra similarities beyond critical

Dynamic versus static avalanches:
Magnetization vs applied field at T=0

[Liu-Dahmen ’06]
Green: Equilibrium curves (ground state)
Red: Ascending and descending branches 

of the hysteresis loop

Problem 2



Replacing the dynamical problem 
by a static one: statistics of metastable states

Magnetization vs applied field at T=0
at the value of the disorder ΔB for 
which the hysteresis curve has 
critical point(s).

-J
C

0 J
C J

-φ
C

0

φ
C

φ

V

V

• All inside the hysteresis loop: Metastable states (well defined at T=0).

• In blue: Ground state, relevant for equilibrium.

• In red: Extremal states with either max (descending branch) or min 
(ascending branch) magnetization at a given applied field J correspond 
to the rate-independent hysteresis loop.

=> Describe the out-of-equilibrium criticality by a stat-mech. treatment
     of extremal states with no reference to dynamics and history.

• However: out versus in equilibrium, not same value of critical 
disorder, not same symmetry!!!

• To answer: renormalization group (RG) analysis. Are the two 
critical phenomena controlled by the same fixed point of the 
RG flow?



Superfield theory for the statistics 
of (metastable) states at T=0

• Metastable states are solution of the stochastic field equation:

• Build the generating functional of the correlation functions 
     of the solutions with chosen properties (βa

-1=auxiliary temp.): 

• Select the ground state, with lowest energy (action)

• Select the extremal states, e.g. with max magnetization

δS[ϕ;h+ J ]

δϕ(x)
=

δSB [ϕ]

δϕ(x)
− h(x)− J(x) = 0

Zh[J, Ĵ ] =

�
Dϕ δ

�δS[ϕ;h+ J ]

δϕ

�
det

�
δ2S[ϕ;h+ J ]

δϕδϕ

�
e−βaS[ϕ;h+J]+

�
x Ĵ(x)ϕ(x)

βa → ∞, Ĵ = 0 : e.g., ϕGS(x) =
δ

δĴ(x)
logZh[J, Ĵ ]

����
βa→∞,Ĵ=0

βa = 0, Ĵ → ±∞ : e.g., ϕMax(x) =
δ

δĴ(x)
logZh[J, Ĵ ]

����
βa=0,Ĵ→+∞



Superfield theory for the statistics 
of metastable states (cont’d)

Z[{Ja}] =
� �

a

DΦa e
−Ssuper[{Φa}]+

�
a

�
x Ja(x)Φa(x)

ϕ̂ ψ, ψ̄

ϕ, ϕ̂,ψ, ψ̄ Φ

• Introduce auxiliary fields     (bosonic) and          (fermionic):

• Group all fields                   in a ‶superfield″     leaving in a 
‶superspace″ x

• Introduce copies a=1,...,n of the disordered sample and average over 
the random field => Generating functional of a superfield theory:

 where the conjugate sources are grouped in ‶supersources″ and the 
 theory has a large group of symmetries and supersymmetries.

δ
�δS[ϕ;h+ J ]

δϕ

�
→

�
Dϕ̂e−

�
x ϕ̂(x) δS[ϕ;h+J]

δϕ(x)

det

�
δ2SB [ϕ]

δϕδϕ

�
→

� �
DψDψ̄e

�
x

�
x� ψ̄(x)

δ2SB [ϕ]

δϕ(x)δϕ(x�)ψ(x�)



The theoretical approach:
Why does one need a 

nonperturbative functional RG ?

• RG, because one is interested in the long-distance properties near to 
the critical point(s) and in the fixed points that control them.

• Functional, because the influence of the avalanches can only be 
described through a singular dependence of the cumulants of the 
renormalized disorder on their arguments.

• Nonperturbative, because standard perturbation theory completely fails 
(dimensional reduction), and because the behavior changes at a nontrivial 
critical dimension dDR.



Nonperturbative (functional, exact) RG
Sketch for the equilibrium φ4 theory

[Wilson,Polshinski,Wetterich]

• Progressive account of the fluctuations on longer length scales 
(shorter momenta) through the introduction of an infrared regulator 
in the generating functional of the connected correlation functions:

• Via Legendre transform: Effective average action (Gibbs free energy 
at the IR scale k)

with: 

Sk[ϕ] = SB [ϕ] +
1

2

�

q
Rk(q

2)ϕ(−q)ϕ(q)

q

Rk !q"

k

k2

Figure 2.2: A typical cut-off function in the effective
average action approach.

should lead to Γk. Let us follow this program and see
that there is a subtlety. We thus define

Wk[B] = log Zk[B] (2.23)

which is the Helmoltz free energy, up to the −kBT term
that plays no role in what follows. The Legendre trans-
form of Wk is defined by

Γ′
k[M ] + Wk[B] =

∫

BM (2.24)

where the magnetization M(x) is, by definition the av-
erage of φ(x) and is therefore :

M(x) =
δWk

δB(x)
. (2.25)

Of course, for k → 0, Rk → 0, Wk → W and thus
Γ′

k → Γ= Gibbs free energy of the system. However,
it is easy to show that Γ′

Λ[M ] #= H [M ] contrarily to
what is expected, see Eq.(2.16). This comes from the
∆Hk=Λ term, which is large. Thus, we prefer to work
with a modified free energy where the Rk term has been
subtracted in Γk.[32] We define

Γk[M ] + Wk[B] =

∫

BM −
1

2

∫

q
Rk(q)MqM−q . (2.26)

The Rk term in Eq.(2.26) does not spoil the limit k → 0
since in this limit it vanishes ∀q. Let us now show that
Eq.(2.26) is the correct definition of Γk leading to the
limit Γk=Λ[M ] = H(M), Eq.(2.17).

2.1.3 An integral representation of Γk

and the limit k → Λ

We start from the definition of Zk, Eq .(2.18) and from
the definition of Γk, Eq.(2.26). We deduce by differenti-
ation (see, 3.3.2 )

Bx =
δΓk

δMx
+

∫

y
Rk(x − y)My . (2.27)

Thus, by substituting Eq.(2.26) and Eq.(2.27) into the
defintion of Wk we obtain :

e−Γk[M ] =

∫

Dφ exp

(

−H [φ] +

∫

x

δΓk

δMx
(φx − Mx)

)

.

exp

(

−
1

2

∫

x,y
(φx − Mx) Rk(x − y) (φy − My)

)

(2.28)

If we choose a function Rk(q) that diverges for all q as
k → Λ then, in this limit :

exp

(

−
1

2

∫

(φx − Mx)Rk(x − y) (φy − My)

)

∼ δ(φ−M)

(2.29)
that is, it behaves as a functional Dirac delta. Therefore,

Γk[M ] → H [φ = M ] as k → Λ (2.30)

if the cut-off Rk is such that it diverges in this limit. If
Rk does not diverge and is only very large,

Γk=Λ ∼ H . (2.31)

2.2 The exact RG equation and
its properties

The RG equation on Γk, sometimes called Wetterich’s
equation, that is the differential equation ∂kΓk = f(Γk)
is derived in detail in the Appendix, section 3.3.2. The
strategy is to obtain first an evolution equation for Zk,
then to deduce the equation on Γk. It writes

∂kΓk =
1

2

∫

q
∂kRk(q)

(

Γ(2)
k [M ] + Rk

)−1

q,−q
(2.32)

where Rk(x, y) = Rk(x − y). The inverse
(

Γ(2)
k [M ] + Rk

)−1

q,−q
has to be understood in the opera-

tor sense. It is convenient in practice to rewrite Eq.(2.32)

26

Wk[J ] = log

�
Dϕ e−Sk[ϕ]+

�
x J(x)ϕ(x)

Γk[φ] = −Wk[J ] +

�

x
J(x)φ(x)− 1

2

�

q
Rk(q

2)φ(−q)φ(q); φ =< ϕ >=
δWk

δJ

Γk=Λ[φ] � SB [φ] (mean− field) → Γk=0[φ] = Γ[φ] (exact)



Nonperturbative, functional, exact RG (cont’d)

• Exact functional RG flow equation for the effective average action:

• Nonperturbative approximation scheme:

 => RG flow equations for the functions Uk(ϕ) and Zk(ϕ)

• Introduce scaling dimensions to cast the RG equations in a 
dimensionless form: 

   =>                            Fixed point describing criticality & scaling  
                                   is solution with the ‶beta functions″ = 0.

• Very efficient! (quantum field theory, stat phys, condensed matter)
 

∂kΓk[φ] =
1

2

�

q
∂kRk(q

2)

�
Γ(2)
k [φ] +Rk

�−1

−q,q

with Γ(2)
k,qq� [φ] =

δ2Γk[φ]

δφ(q)δφ(q�)

Γk[φ] =

�

x

�
Uk(φ(x)) +

1

2
Zk(φ(x))[∂φ(x)]

2 + · · ·
�

Uk ∼ kd uk, Zk ∼ k−η zk, φ ∼ k(d−2+η)/2 ϕ, t = log(k/Λ)

∂tuk(ϕ) = βu[ϕ]

∂tzk(ϕ) = βz[ϕ]



NP-FRG in a superfield formalism

•The program: apply the NP-FRG to the multi-copy superfield 
theory, but recall...

✴ Quenched disorder => heterogeneity and sample-dependent 
functionals =>  need to work with the cumulants of the 
random functionals:

✴ Avalanches lead to a nonanalytic functional dependence in 
the cumulants of the renormalized disorder.

✴ The outcome must be formulated for physical fields, not 
superfields: 

Γk → Γk1[Φ1], Γk2[Φ1,Φ2], · · ·

Φa → φa



NP-FRG in a superfield formalism

• Major simplification: Asymptotically, only one state (extremal for 
hysteresis, ground state for equilibrium) is relevant for each copy.

  => Property of the superfield theory that allows one to derive 
 exact RG equations for functionals of the physical fields only.

  => Exact hierarchy of functional RG flow equations for the 
       (physical) cumulants:

These exact RG equations are identical for the equilibrium 
(ground state) and out-of-equilibrium (extremal states) cases.

                       => Same set of fixed points!

• But, the initial conditions of the flow at the microscopic scale Λ 
      (mean-field description) are different: Z2 symmetry (ϕ -> -ϕ) for 
      equilibrium (ϕc = Jc = 0), no Z2 symmetry for hysteresis (ϕc, Jc ≠ 0). 

 => Check that the flows go to the same (Z2 symmetric) fixed point.

∂kΓk1[φ1] = · · · , ∂kΓk2[φ1,φ2] = · · · , etc.



NP-FRG: approximation scheme

• Nonperturbative SUSY-compatible truncation: 

• Scaling dimensions for a zero-temperature fixed point:

=>

 

• Choose the initial conditions (dichotomy to find the critical manifold), 
 the dimension d, and SOLVE! 

Γk1[φ] =

�

x

�
Uk(φ(x)) +

1

2
Zk(φ(x))[∂φ(x)]

2
�

Γk2[φ1,φ2] =

�

x
Vk(φ1(x),φ2(x)), Γk,p>2 = 0

∂tu
��
k(ϕ) = βu�� [ϕ], ∂tzk(ϕ) = βz[ϕ]

∂tδk(ϕ1,ϕ2) = βδ[ϕ1,ϕ2]

U �
k − Jc ∼ k(d−2η+η̄)/2, Zk ∼ k−η, φ− φc ∼ k(d−4+η̄)/2,

∆k = ∂φ1∂φ2Vk ∼ k−2η+η̄, t = log(k/Λ)



Illustration: Results for d=4 and d=5.5
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NP-FRG flow of the renormalized mass u’’k(φ) in d=4 [left] and d=5.5 [right]

4

renormalized random field, the ansatz takes the form

Γ(1)
k1;x1

[φ] = U ′
k(φ(x1)) +

δ

δφ(x1)

{1
2
Zk(φ(x1))[∂φ(x1)]

2
}

Γ(11)
k2;x1,x2

[φ1,φ2] = ∆k(φ1(x1),φ2(x2)),
(4)

with the higher-order cumulants set to zero. For con-
creteness, we focus on the critical point along the as-
cending branch of the hysteresis loop, with Jc > 0. After
insertion in the hierarchy of exact RG equations [Eq. (3)
and its higher-order counterparts], the above ansatz pro-
vides three coupled flow equations for U ′

k(φ), which de-
scribes the renormalized source as a function of mag-
netization, the so-called “field-renormalization” function
Zk(φ), and the second cumulant of the renormalized ran-
dom field ∆k(φ1,φ2).
These flow equations are supplemented by an initial

condition at the microscopic (UV) scale k = Λ. It corre-
sponds to a mean-field approximation where only some
coarse-graining over short-ranged fluctuations has been
carried out (see e.g. [27]). The crucial point is that
the bare action has no Z2 symmetry around the out-
of-equilibrium critical point. The initial condition can
then be taken with the same form as in Eq. (4) with
ZΛ = 1, ∆Λ = ∆B, and U ′

Λ(φ) generically given by
U ′
Λ(φ) = JΛ + rΛφ+ λΛ

2 φ2 + uΛ
3! φ

3 + vΛ
4! φ

4, where higher-
order terms can be dropped as they do not change the
universal properties.
To cast the RG flow equations in a dimensionless form

that allows one to investigate the critical physics at long
length scales, one must introduce scaling dimensions.
This is the second operation of any RG transforma-
tion. Near a zero-temperature fixed point, the renor-
malized temperature is irrelevant and is characterized
by an exponent θ > 0.18,19 One then has the follow-
ing scaling dimensions: Zk ∼ k−η, φ − φc ∼ k(d−4+η̄)/2,
U ′
k − Jc ∼ k(d−2η+η̄)/2, ∆k ∼ k−(2η−η̄), where φc and Jc

respectively denote the values of the magnetization and
the magnetic field at the out-of-equilibrium critical point
(see above), and the exponents θ, η and η̄ are related
through θ = 2 + η − η̄.
Due to the lack of Z2 inversion symmetry, two relevant

parameters must be fine-tuned to reach the critical point.
In practice, we account for the additional condition by
defining a displaced field variable φ̃ = φ−φr,k where φr,k

is fixed such that the third derivative of the renormalized
potential is zero all along the flow: U ′′′

k (φr,k) = 0. If
indeed the critical system flows to a fixed point where Z2

symmetry is restored, then φr,k flows to the critical value
φc and U ′

k(φr,k) flows to Jc in the limit k → 0.
Using lower-case letters, u′′

k, zk, δk, ϕ̃, to denote the
dimensionless counterparts of U ′′

k , Zk,∆k, φ̃, the dimen-
sionless form of the flow equations can be symbolically
written as

∂tu
′′
k(ϕ̃) = βu′′,k(ϕ̃), ∂tzk(ϕ̃) = βz,k(ϕ̃),

∂tδk(ϕ̃1, ϕ̃2) = βδ,k(ϕ̃1, ϕ̃2) ,
(5)

where the beta functions in the right-hand sides them-
selves depend on u′′

k, zk, δk and their derivatives. As al-
ready stressed above, these flow equations are the same
as for the RFIM at equilibrium; they are given in Ref. [24]
and not reproduced here. The nonperturbative RG equa-
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FIG. 2: Nonperturbative RG evolution of the dimension-
less “mass” function u′′

k(ϕ̃) for d = 5.5 > dDR ! 5.1 (a) and
d = 4 < dDR (b). The initial condition (in red) is asym-
metric, but the asymmetry gradually decreases along the flow
and vanishes at the fixed point (black curve). Furthermore,
the fixed-point function for u′′

k(ϕ̃) is identical to that for the
equilibrium critical point.

tions can be solved for any spatial dimension d and a
variety of initial conditions (yet two parameters must be
fine-tuned to reach the critical fixed point). In all cases,
we find that the flow leads to the Z2 symmetric fixed
point already derived for the equilibrium critical point.
We illustrate the outcome for two cases (see Fig. 2): one
is above the critical dimension for dimensional-reduction
breakdown, dDR $ 5.1,23,24 and is therefore exactly de-
scribed by the d → d− 2 dimensional-reduction property
; the other is below dDR and does not follow dimensional
reduction. In both situations, one can clearly see that
the asymmetry of u′′

k(ϕ̃) eventually decreases and van-
ishes when reaching the fixed point. (The same is ob-
served for the other functions zk(ϕ̃) and δk(ϕ̃, ϕ̃) but is
not displayed here.) The Z2 symmetry is thus asymptot-
ically restored and the fixed point exactly coincides with
that found for the equilibrium criticality.

The conclusion is that the critical behaviors of the
RFIM in and out of equilibrium are in the same univer-
sality class, with the same critical exponents, the same
scaling functions and the same avalanche-size distribu-
tion. This gives a solid theoretical foundation to the em-
pirical numerical findings. Along the way, the above de-
velopments also prove that the in- and out-of-equilibrium
critical behaviors of fluids in a disordered porous ma-
terial, which are both described by non Z2 symmet-
ric theories,36 are in this same universality class. Our
present work therefore unifies a very large class of col-
lective phenomena in and out of equilibrium that involve
interactions and disorder.

The initial condition is asymmetric (red) but it flows to a symmetric 
fixed point (black) that is exactly the same one obtained for the flow 
in the equilibrium case. 
The same is found for the other functions zk(φ) and δk(φ1,φ2).



Illustration: Results for d=4 and d=5.5
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Flow of the 2 ‶anomalous dimensions″ with broken (d=4, 
left) or unbroken (d=5.5, right) dimensional reduction 
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Also: Good agreement with simulation results in d=3,4 



• Avalanches are crucial to explain the breakdown of 
dimensional reduction for the RFIM at criticality.

• For a theoretical description of scale-free avalanches, one 
needs a functional RG. In the case of the RFIM, the FRG 
must also be nonperturbative.

• The equilibrium and out-of-equilibrium (hysteresis) critical 
points of the RFIM are in the same universality class.

References:   I. Balog, M. Tissier, G.T., PRB 89, 104201(2014); 
G.T., M. Baczyk, M. Tissier, PRL 110, 135703 (2013); 

M. Tissier, G.T., PRL 107, 041601 (2011); PRB 85, 104202 and 104203 (2012).

Conclusion
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Dimensionless cumulant of disorder at fixed point in d=3
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•At T=0, generating functional of the correlation functions:

If unique solution of SFE, usual manipulations: 
Introduce auxiliary fields                               , then average over disorder;
Introduce a superspace with 2 Grassmann coordinates                       ,
a superLaplacian                                        ,
a superfield                                                                         , super-etc...

•Generating functional obtained from a superfield theory

• Invariant under SUSY (super-rotations in superspace)
=> leads to ‶dimensional reduction″: RFIM in d dim. is 
equivalent to pure theory in d-2. Beautiful, but wrong!!

x = (x, θ, θ)

Φ(x) = φ(x) + θψ(x) + ψ(x)θ + θθφ̂(x)

φ̂(x), ψ(x), ψ(x)

∆SS = ∂2
µ +∆B∂θ∂θ

Parisi-Sourlas supersymmetric approach

Zh[J, Ĵ ] =

�
Dφ δ
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δφ
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2
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