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Outline

® The role of avalanches in the critical behavior of the
random field Ising model (RFIM).

® Problem 1: Escaping dimensional reduction!

® Problem 2: Are the out-of-equilibrium (hysteresis)
critical point and the equilibrium one in same
universality class?

® The method: Superfield theory and nonperturbative
functional renormalization group (NP-FRG).



The random field Ising model (RFIM)

® Magnetism: lattice hard-spin version

HI{Si s {ha}] = =T > S8, +ZhS

<1,7>

with Ising variables Si= +1 => magnetization m; = <S;>

a quenched random field (e.g., Gaussian): h; = 0, h;h; = Ap §;;
+ coupling to an applied magnetic field H

® Under some coarse-graining: Field theory
Sliesh = Saliel - [ aeto) Sp = [ated J0ole)? + Tote)? + Sola) |

with a real scalar field ¢(x) => classical field ®(x) = < p(x) >
a quenched random ““source” (e.g., Gaussian): h(x) =0, h(z)h(y) = Ap 5D (z —y)
+ coupling to an applied source )




Why are avalanches relevant at all for
equilibrium criticality ¢

® RFIM equilibrium partition function in a given random-field
sample h :

2,17 = / Dip e+ (Sleihl—J, J@)e(x)

® At equilibrium: PM to FM transition (critical point) as a
function of T at constant Ag or as a function of Ag at constant T

® Yet, avalanches are zero-T phenomena!

e But the long-distance (critical) physics at equilibrium is
dominated by sample-to-sample (disorder) fluctuations, not by
thermal fluctuations...



The equilibrium critical point is controlled
by a zero-temperature fixed point

Disorder L

strength Schematic phase (and RG
flow) diagram of the RFIM
for d>2
F
0 ¥ Temperature

¢ Additional exponent for the temperature flow: ¢ > 0

e Two distinct pair correlation functions:
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e For T>0: very slow “activated” critical dynamics.



Dimensional reduction

e Conventional perturbation theory to all orders and the Parisi-Sourlas
supersymmetric approach [PRL '79] both predict that the critical
behavior of the RFIM is the same as that of the pure Ising model in
two dimensions less:

d -> d-2 “dimensional reduction” property

® OK at the upper critical dimension (ducram=6 -> ducpure=4) but

rigorously proven wrong in d=2 and 3! [J.Z. Imbrie '84, J. Bricmont
and A. Kupianen '87]

=> Problem 1



Generic difficulties for theories
of disordered systems

® Due to quenched disorder (h), one loses translational invariance:

Wh|J] = 1In Zy|J] is a random functional of the source =>
* in principle, one needs its whole probability distribution,

* or equivalently, the infinite set of its disorder-averaged
cumulants (recovers translational invariance):

Wi[J] = Wi[J], Wa[J1, J2] = Wi [J1]Wh[Ja]e, - -

® Possible influence of rare events, rare spatial regions or rare
samples: here, at T=0, avalanches!



Effect of avalanches : toy model (d=0 RFIM)
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At T=0, stochastic equation: 55(9) = J + h with: \ )
Yo, ¢
t s
® For equilibrium, select the ground state: | —

The pair correlation function for slightly different sources, ~ “avalanche”
-h| 10

_—

—Y

dcs,n(J +0J)pasn(J —0J) =
dcs,n(J)? + A(J)]6J| + O(6J7)

has a nonanalytic behavior (a “cusp”) when J->0 due to the (“static”) avalanches.

The amplitude of the cusp « second moment of the avalanche size.
[Note: the above p.c.f is given by 0,;6,W2(/1,/2)=> need the full functional dependence]

e Similar for the out-of-equilibrium hysteresis behavior.




Our conclusion

® Dimensional reduction breaks down because of the appearance of
a cusp in the functional dependence of the dimensionless
cumulants(s) of the renormalized random field: same as in the case

of elastic systems in random media [D. Fisher, T. Nattermann, P. Le
Doussal, K. Wiese].

® This is associated with a spontaneous breaking of the (Parisi-
Sourlas) supersymmetry.

e All of this takes place as a consequence of the presence of
avalanches.



Result: N-d phase diagram of the RFO(N)M
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Region IV: Dim. red. predictions O.K. (weak non-analyticity at the fixed pt.)

Regions | and II: Breakdown of dimensional reduction (Spontaneous SUSY

oreaking at finite RG scale; cusp in renormalized second cumulant).



Why a critical dimension dpg if
avalanches are always present?

® Due to avalanches at T=0, there is always a cusp in the
cumulants of the renormalized random field (and the associated
correlation functions).

® However, at criticality, all these functions diverge and under the
RG flow the cusp may be subdominant (irrelevant) near the
fixed point: dpr precisely separates a region (d> dpr) where the
cusp is present but irrelevant from one (d< dpr) where it persists
at the fixed point (in the “dimensionless” quantities).



Why a critical dimension dpgr if
avalanches are always present?

Simple scaling argument at criticality in a system of finite size L

® Avalanche size distribution o< S™7D(

S .
S_)’ with S; o< LY the size
L

of the typical critical avalanches and dfr their fractal dimension.

d— ¢—4+7

® On the other hand, the total magnetization scales as L%

=> Avalanches have an effect at criticality iff dy =

From the NP-FRG, we can compute

the eigenvalue A associated with a d

“cuspy” perturbation around the
fixed point. Then, in general,

d+4-7
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Problem 2

® From numerical studies of the d=3 slowly driven RFIM at T=0:
The out-of equilibrium critical point on the hysteresis curve and
the equilibrium critical point have very similar exponents and
scaling functions. [PerezReche-Vives04,Colaiori et al 04, Liu-Dahmen07,09]

=> Suggests same critical behavior, i.e., same universality class

= e / g
{ Dynamic versus static avalanches:
' ' Magnetization vs applied field at T=0
M oL ] [Liu-Dahmen "06]
Green: Equilibrium curves (ground state)
: 1 Red: Ascending and descending branches
)

of the hysteresis loop

® However: in- versus out-of-equilibrium, not the same value of the
critical disorder, not the same symmetry!!!

® To answer, need RG analysis: Are the two critical phenomena
controlled by the same fixed point of the RG flow?



Replacing the dynamical problem
by a static one: statistics of metastable states

(l)/\

0

/ ( Magnetization vs applied field at T=0
at the value of the disorder Ag for
which the hysteresis curve has
critical point(s).
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e All inside the hysteresis loop: Metastable states (well defined at T=0).

® |n blue: Ground state, relevant for equilibrium.

® |n red: Extremal states with either max (descending branch) or min
(ascending branch) magnetization at a given applied field ] correspond
to the rate-independent hysteresis loop.

=> Describe the out-of-equilibrium criticality by a stat-mech. treatment
of extremal states with no reference to dynamics and history.



Supertfield theory for the statistics
of (metastable) states at T=0

® Metastable states are solution of the stochastic field equation:
5S[p;h+J]  6SB[e
= - —h(z) — J(x) =0

Sl e T

e Build the generating functional of the correlation functions
of the solutions with chosen properties (B '=auxiliary temp.):

2 . R
/Dgp(g 55 gp, h+ J ] det |:5 S[(;O,;L T J]] e—ﬁaS[SO;h—FJ]—I—fm J(x)p(x)
POL

® Select the ground state, with lowest energy (action)

A ) -
Ba =00, J=0: eg., ¢ (r)= log Zy[J, J]
5J( ) Bo—>00,J=0
® Select the extremal states, e.g. with max magnetization
) 5 -
Be =0, J = to0: eg., pMer(x) = ——1log Z|J, J]
5](1‘) Ba=0,J =400




Superfield theory for the statistics
of metastable states (cont’d)

® |ntroduce auxiliary fields ¥ (bosonic) and ¥, ¢ (fermionic):
5[5Sgp,h—|—J /DA [ @z )586<$(};J)FJ]

det O Splel >//D¢Dwefw fw,@ﬁ(x)éjfwffifi,)¢(x/)
0pdp

e Group all fields ©, ¥, ¥, Yina “superfield” ® leaving in a
“superspace”’ x

® |ntroduce copies a=1,...,n of the disordered sample and average over
the random field => Generating functional of a superfield theory:

Z[{J)] = / [[D®, o Srrer (PHHE L L T (@)l

where the conjugate sources are grouped in “supersources” and the
theory has a large group of symmetries and supersymmetries.



The theoretical approach:

Why does one need a
nonperturbative functional RG ?

® RG, because one is interested in the long-distance properties near to
the critical point(s) and in the fixed points that control them.

® Functional, because the influence of the avalanches can only be
described through a singular dependence of the cumulants of the
renormalized disorder on their arguments.

¢ Nonperturbative, because standard perturbation theory completely fails
(dimensional reduction), and because the behavior changes at a nontrivial
critical dimension dpr.



Nonperturbative (functional, exact) RG

Sketch for the equilibrium @* theory
[Wilson, Polshinski, Wetterich]

® Progressive account of the fluctuations on longer length scales
(shorter momenta) through the introduction of an infrared regulator
in the generating functional of the connected correlation functions:

1 Ri(@)

Skle] = Sgle] + §/Rk(q2)s@(—q)s&(q) g
Wi|J] = log / D e~ Selel+ [, I (@)e(@) \

K q

® Via Legendre transform: Effective average action (Gibbs free energy
at the IR scale k)

1 oWy

Cule) = ~Wildl + [ J@)oo) = 5 [ Rul@®)o(-a)ola) 6 =< p >= "k

q

with: Tp=p[¢] = Sg[¢] (mean — field) — T'i—g[¢] = I'[¢] (exact)



Nonperturbative, functional, exact RG (contd)

e Exact functional RG flow equation for the effective average action:

0°T';[@]
09(q)0d(q’)

—1
0xl'[0] = % / akRk(q%(r,?) @) Rk> with T} 6] =
q —q,q

e Nonperturbative approximation scheme:

0= [ {Un(0(@) + 321000 + -}
=> RG flow equations for the functions Ux(®) and Z(P)

® Introduce scaling dimensions to cast the RG equations in a
dimensionless form:

U~k ug, Z ~ k™" 21, ¢ ~ K920 0 1 = log(k/A)

=>|0iur(p) = Buly] Fixed point describing criticality & scaling
Oz (@) = B.[p] s solution with the “beta functions” = 0.

® Very efficient! (quantum field theory, stat phys, condensed matter)



NP-FRG in a superfield formalism

® The program: apply the NP-FRG to the multi-copy supertfield
theory, but recall...

* Quenched disorder => heterogeneity and sample-dependent
functionals => need to work with the cumulants of the
random functionals: Ty, — T'p1[®1], Tpo[®1, Po], - -

* Avalanches lead to a nonanalytic functional dependence in
the cumulants of the renormalized disorder.

* The outcome must be formulated for physical fields, not
superfields: &, — ¢,



NP-FRG in a superfield formalism

® Major simplification: Asymptotically, only one state (extremal for
hysteresis, ground state for equilibrium) is relevant for each copy.

=> Property of the superfield theory that allows one to derive
exact RG equations for functionals of the physical fields only.

=> Exact hierarchy of functional RG flow equations for the
(physical) cumulants:  Oxl'k1[@1] = -+ -, Oklk2|@1, P2] = -+ -, ete.

These exact RG equations are identical for the equilibrium
(ground state) and out-of-equilibrium (extremal states) cases.

=> Same set of fixed points!

® But, the initial conditions of the flow at the microscopic scale A
(mean-field description) are different: Z, symmetry (¢ -> -&) for
equilibrium (pc=Jc = 0), no Z, symmetry for hysteresis (P, Jc # 0).

=> Check that the flows go to the same (Z> symmetric) fixed point.



NP-FRG: approximation scheme

e Nonperturbative SUSY-compatible truncation:

Pald] = [ {Uk0(@) + 5 Zu(0(a) Do)}
Cialor. 62) = [ Vi61(2).62(a)), Tipoz =0

® Scaling dimensions for a zero-temperature fixed point:
U, — J, ~ pld=2ntn/2 7 kT — ¢ ~ kT2
Ay = 0p,09,Vie ~ k=277, t =log(k/A)

=> | Opuy (@) = Bur ], Orzi(@) = B:[¢]
010k (01, p2) = Bslp1, 2]

® Choose the initial conditions (dichotomy to find the critical manifold),
the dimension d, and SOLVE!



lllustration: Results for d=4 and d=5.5

NP-FRG flow of the renormalized mass u”«(¢) in d=4 [left] and d=5.5 [right]
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The initial condition is asymmetric (red) but it flows to a symmetric
fixed point (black) that is exactly the same one obtained for the flow
in the equilibrium case.

The same is found for the other functions zx(¢p) and dk(p1,P>).



lllustration: Results for d=4 and d=5.5

Flow of the 2 “anomalous dimensions” with broken (d=4,
left) or unbroken (d=5.5, right) dimensional reduction
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Also: Good agreement with simulation results in d=3,4



Conclusion

® Avalanches are crucial to explain the breakdown of
dimensional reduction for the RFIM at criticality.

® For a theoretical description of scale-free avalanches, one
needs a functional RG. In the case of the RFIM, the FRG

must also be nonperturbative.

® The equilibrium and out-of-equilibrium (hysteresis) critical
points of the RFIM are in the same universality class.

References: |. Balog, M. Tissier, G.T., PRB 89, 104201(2014);
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Results

Above dpr = 5.15: no cusp in 6k (1, v2) & dim.reduction
Below dpr: cusp in dx(p1, p2) & breakdown of dim. reduction

Dimensionless cumulant of disorder at fixed point in d=3
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Parisi-Sourlas supersymmetric approach

e At T=0, generating functional of the correlation functions:

- 05SB[¢] 02Sp|¢]
Zh[J,J]—/ngé[ : —h—J]| o e

If unique solution of SFE, usual manipulations:

Introduce auxiliary fields (b( ), ¥(x), ¥(x), then average over disorder;
Introduce a superspace with 2 Grassmann coordinates £ = (x, 0, 0),

a superlLaplacian Agg = 82 + A0+,
a superfield ®(z) = ¢(z) + 0y (z) + ¥(x)0 + 00¢(x), super-etc...

® Generating functional obtained from a superfield theory

Ssusy | P :/{—%q’(@ASS@(@ﬂL%@( )? + 4,(I)( z)* }

[, J(x)¢p(z)

® Invariant under SUSY (super-rotations in superspace)
=> |leads to “dimensional reduction”: RFIM in d dim. is
equivalent to pure theory in d-2. Beautiful, but wrong!!




