Defects in disordered solids: building blocks for avalanches?

Manning group and collaborators

- Manning group (SU)
 - Sven Wijtmans
 - Dapeng "Max" Bi
 - Giuseppe Passucci
 - Craig Fox
 - Contact: <u>mmanning@syr.edu</u>
- Liu Group (UPenn)
 - Andrea Liu
 - Sam Schoenholz
 - Carl Goodrich
- Soft Matter Theory (SU)
 - Jorge Lopez
 - Jennifer Schwartz
 - Cristina Marchetti
 - Xingbo Yang

- Schoetz-Collins lab
 - Eva-Maria Schoetz (UCSD)
 - Marcus Lanio (Princeton)
 - Jared Talbot(Princeton)
 - Ramsey Foty (Princeton)
 - Mal Steinberg(Princeton)
- Henderson Group (SU)
 - Jay Henderson
 - Megan Brasch
 - Richard Baker
- SUNY Upstate Medical
 - Chris Turner
 - Nick Deakin
 - Jeff Amack
 - Guangliang Wang
 - Agnik Dasgupta

Motivation: what leads to catastrophic failure in disordered solids?

W. Johnson Group, Caltech

F. M. Chester and J. S. Chester, *Tectonophys.* 295, 1998. Is there a basic unit of deformation in disordered solids? What is it? How do they interact to form avalanches?

 Liquids: rearrangements can occur anywhere

 Crystalline solids: rearrangements occur at dislocations

Theoretical framework for solids

• The dynamical matrix describes linear response — harmonic approximation for a spring network

- For an ordered solid, phonons are eigenmodes of the Dynamical Matrix
 - eigenvalues give phonon frequencies
 - matrix is small for crystals (lots of symmetry)

Yes, but we're interested in plasticity – that's a nonlinear response

e.g. ordered solids flow via dislocations, locations where geometric order parameter is small.

Linear modes identify defects!

Barker and Sievers, Rev. Mod. Phys. 47 (1975)

spring constant for the defect

Plan: do the same thing in disordered solids

problem: disordered solids are horrible and messy

Dynamical Matrix for disordered solids

• Simulated frictionless 2D soft repulsive discs

$$V(r) = \begin{cases} \dot{i} & \frac{\theta}{2} & \dot{i} & \frac{\theta}{2} & \dot{i} & \frac{\theta}{2} & \dot{i} & r \in S \\ \dot{i} & \frac{\theta}{2} & \dot{i} & \frac{\theta}{2} & r \in S \\ \dot{i} & 0 & r > S \end{cases}$$

- Dynamical matrix (DM):
 - Much larger: Nd by Nd
 - ignores changes to nearest neighbor contacts

$$m\ddot{u} = Mu$$

$$M_{iajb}_{i \neq j} = \frac{ \sqrt{2}V(|r_i - r_j|)}{\sqrt{2}r_{ia}\sqrt{2}r_{jb}}$$

All solids have a Debye regime in their density of states

L. E. Silbert, A. J. Liu, S. R. Nagel, PRL 95, 098301 ('05

Debye regime

But these aren't just plane waves!

Correlation between short-time vibrations and rearrangements

Widmer-Cooper and Harrowell, PRL 96 185701 (2006)

- Black spots: long time propensity (particle rearrangements)
- colormap: local Debye Waller factor (soft vibrational modes)

Correlation between lowest energy mode and particle rearrangement

Quasi-localized mode

Rearrangement at higher strain

Normal modes analyzed at 10⁻⁶ units of strain from plastic rearrangement

Does the lowest energy mode determine the rearrangement?

Initial particle rearrangement is only the same as lowest mode close to rearrangement

Original soft spot algorithm:

- Identify clusters of localized excitations inside Debye regime
 - characteristic length scale and energy scale
 - matches rearrangement locations
 - also works in 2D experimental colloidal systems
- Cons:
 - does not identify directions of displacements
 - does not allow energy barrier calculations
 - systematic errors at low packing fractions

MLM and A. J. Liu PRL 107 108302 (2011)

K. Chen, MLM, P. J. Yunker, W. G. Ellenbroek, Z. Zhang, A. J. Liu, and A. G. Yodh. *PRL* **107** 108301 (2011)

Problem:

extended modes are messy, so it is difficult to filter them

long range elastic tails "pollute" our basic units of deformation

Idea: Add an artificial term to the energy that acts as a high pass filter:

 $\tilde{V} = u^T \tilde{M} u$

Particles no longer at a minimum of this new energy functional, but can still calculate eigenvectors of this new (symmetric, real) matrix

New method: Change the dynamical matrix by adding a mechanical high pass filter

$$\tilde{V} = u_i M_{ij} u_j + K_{lk} (\tilde{u}_l - \tilde{u}_k)^2$$

$$\tilde{u}_k = \sum_{i}^{N} u(x_i) e^{-(x_i - ka)^2 / \sigma^2}$$

$$\tilde{V} = u_i \tilde{M}_{ij} u_j$$

$$\tilde{M}_{ij} = M_{ij} + \tilde{K}_{ij}$$

$$\text{"Augmented Matrix (AM)"}$$

$$\tilde{K}_{ij} = K_{lk} \left(e^{-(x_i - la)^2/\sigma^2} e^{-(x_j - la)^2/\sigma^2} - 2e^{-(x_i - la)^2/\sigma^2} e^{-(x_j - ka)^2/\sigma^2} + e^{-(x_i - ka)^2/\sigma^2} e^{-(x_j - ka)^2/\sigma^2} \right)$$

Data shown for 2500-particle systems at packing fraction of 0.90 generated by infinite temperature quenches

Is it acting as a high-pass filter? Test on "pure" plane waves

Is it acting as a high-pass filter? In real jammed packings

Yes, low frequency plane waves are shifted to higher frequencies

It works! Eigenvectors (DM) vs. defects (AM)

Unweighted sum of lowest 30 modes

"Great, now all we have to do is show that the AM modes have lower energy barriers than the DM modes, and we're done!"

Xu, N., Vitelli, V., Liu, A. J., & Nagel, S. R. (2009).

Definitions for a "new state"

- Different contact network (Xu et al)
- Different contact network (rattlers excluded)
- More than two particles with new contacts
- Cutoff on largest (average) particle displacement between old state and new state
- Cutoff on difference in energy between old state and new state
- Mark Robbins (with inertia kinetic energy increases rapidly)

Finally, AM vs. DM energy barrier

Localized modes generically cost more energy

One slide (sort of) about avalanches

Conclusions:

- Our mechanical high-pass filter:
 - generates truly localized modes (in same places as soft spots)
 - first method to isolate mode frequencies, directions, energy barriers for structural defects
- Strongly supports hypothesis that localized structural defects hybridize with phonon-like modes in disordered solids
- Energy barriers are higher for localized excitations compared to quasi-localized excitations
 - long-range quadrupolar tails lower energy barriers
 - somewhat artificial reaction coordinate (different from nudged rubber band, etc.)
- Still open: what is the best way to think about this?
 - elastically interacting localized defects OR
 - extended defects

five minutes about the boson peak

What sets the "edge" of the Debye regime? The Boson Peak

Sometimes defined as "an excess of modes above the Debye prediction" in the density of states:

Boson peak modes are extended and disordered

Surprise!

Boson peak modes look almost identical

MLM and A. J. Liu PRL 107 108302 (2011)

Introduce Boson Peak Wigner Matrix: (BPW)

- Symmetric
- Off-diagonal elements: mean μ and variance σ^2
- On-diagonal elements: mean -N μ and variance $N\sigma^2$

THIS matches the boson peak!!

What happens for sparse matrices with coordination number z?

Conclusions

- We propose a new random matrix definition of the Boson Peak, defined by eigenvector statistics
 - new Boson Peak Wigner Matrix (BPW) universality class
 - this also explains the dependence of boson peak location on pressure/packing fraction

http://arxiv.org/abs/1307.5904

One slide about biological tissues

CHEAT SHEET: Average energy barrier height ~ yield stress

inverse perimeter modulus r ~ strain rate

preferred perimeter $p_0 \sim$ density

Bi, Lopez, Schwarz, MLM submitted(2014)

Funding and Thanks

- Thanks for your attention!
- **Collaborators:**
 - Sven Wijtmans
 - Andrea Liu (UPenn)
 - Max Dapeng Bi
- Funding:
 - NSF BMMB CMMI-1334611
 - NSF DMR CMMT-1352184
 - Alfred P. Sloan Foundation

- Soft Interfaces IGERT (DGE-1068780)

http://www.phy.syr.edu/~mmanning/