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Defects in disordered solids: building 
blocks for avalanches?

M. Lisa Manning, 
Syracuse University KITP 10/10/2014
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Motivation: what leads to catastrophic 
failure in disordered solids?

W. Johnson Group, Caltech
F. M. Chester and J. S. Chester, 

Tectonophys. 295, 1998.

Bulk metallic glasses Granular fault gouge



• Liquids: 
rearrangements 
can occur 
anywhere

• Crystalline solids: 
rearrangements 
occur at 
dislocations

Is there a basic unit of deformation in 
disordered solids?  What is it? How do 

they interact to form avalanches?



Theoretical framework for solids
• The dynamical matrix describes linear response

– harmonic approximation for a spring network

• For an ordered solid, phonons are eigenmodes of 
the Dynamical Matrix
– eigenvalues give phonon frequencies
– matrix is small for crystals (lots of symmetry)

  

m ˙ ̇ u = Mu

   

M
iajb =

¶2V (| ri - rj |)

¶ria¶r
jb Xi ≠ j



Yes, but we’re interested in plasticity –
that’s a nonlinear response

e.g. ordered solids flow via dislocations, 
locations where geometric order 

parameter is small.

www.crystalmaker.com
paradis.stanford.edu

site.uri-geller.com



Linear modes identify defects!
Barker and Sievers, Rev. Mod. Phys. 47 (1975)
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Particle packing Sum of lowest vibrational modes

experiment

simulations

Chen et al, 
PRE 88, 
022315 
(2013)

MLM



Plan: do the same thing in 
disordered solids

problem: disordered solids are 
horrible and messy



Dynamical Matrix for disordered solids

• Simulated frictionless 2D soft repulsive discs

• Dynamical matrix (DM):
– Much larger: Nd by Nd
– ignores changes to nearest neighbor contacts
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All solids have a Debye regime in their density 
of states

D(ω)

L. E. Silbert, A. J. Liu, S. R. Nagel, PRL 95, 098301 (’05

Decreasing  pressure

Debye 
(~wd-1)



Debye regime

But these aren’t just plane waves!



Correlation between short-time 
vibrations and rearrangements

Widmer-Cooper and Harrowell, PRL 96 185701 (2006)

• Black spots: long time propensity (particle rearrangements)
• colormap: local Debye Waller factor (soft vibrational modes)



Correlation between lowest energy 
mode and particle rearrangement

• Local failure under shear (L. M. Manning)

• Two-level systems?
Quasi-localized mode Rearrangement at higher strain

Normal modes analyzed at 10-6 units of strain from plastic rearrangement 

BEFORE AFTER



Does the lowest energy mode 
determine the rearrangement?
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Original soft spot algorithm:

• Identify clusters of localized 
excitations inside Debye 
regime
– characteristic length scale and 

energy scale
– matches rearrangement 

locations
– also works in 2D experimental 

colloidal systems

• Cons: 
– does not identify directions of 

displacements
– does not allow energy barrier 

calculations
– systematic errors at low 

packing fractions

K. Chen, MLM, P. J. Yunker, W. G. Ellenbroek, Z. Zhang, 
A. J. Liu, and A. G. Yodh.  PRL 107 108301 (2011)

(a) (b) (c)

MLM and A. J. Liu PRL 107 108302 (2011) 



Problem:

extended modes are messy, so it is 
difficult to filter them 

long range elastic tails “pollute” our 
basic units of deformation



Idea: Add an artificial term to the 
energy that acts as a high pass filter:

=

V = uT Mu

Particles no longer at a minimum of 
this new energy functional, but can 
still calculate eigenvectors of this 
new (symmetric, real) matrix



New method:  Change the dynamical matrix by 
adding a mechanical high pass filter

Data shown for 2500-particle systems at packing fraction of 0.90 generated by 
infinite temperature quenches

“Augmented 
Matrix (AM)”



Is it acting as a high-pass filter?
Test on “pure” plane waves

Yes, though 
not 
perfect.
We choose 
g=5 for the 
rest of the 
simulations 
shown 
here.
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Is it acting as a high-pass filter?
In real jammed packings

Yes, low frequency plane waves are shifted to higher frequencies
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It works!
Eigenvectors (DM) vs. defects (AM)



Unweighted sum of lowest 30 modes

AugmentedNormal



“Great, now all we have to do is 
show that the AM modes have lower 
energy barriers than the DM modes, 

and we’re done!”

Vmax

New state

Vmax New state



Energy Barriers

Xu, N., Vitelli, V., Liu, A. J., & Nagel, S. R. (2009). 

New state =
new contact 
network



Definitions for a “new state”

• Different contact network (Xu et al)

• Different contact network (rattlers excluded)

• More than two particles with new contacts

• Cutoff on largest (average) particle 
displacement between old state and new state

• Cutoff on difference in energy between old 
state and new state

• Mark Robbins (with inertia – kinetic energy 
increases rapidly)



Definitions for a “new state”
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Finally, AM vs. DM energy barrier

$?%!!!



Localized modes generically cost 
more energy



One slide (sort of) about avalanches
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Conclusions:
• Our mechanical high-pass filter: 

– generates truly localized modes (in same places as soft spots) 
– first method to isolate mode frequencies, directions, energy 

barriers for structural defects

• Strongly supports hypothesis that localized structural 
defects hybridize with phonon-like modes in disordered 
solids

• Energy barriers are higher for localized excitations 
compared to quasi-localized excitations
– long-range quadrupolar tails lower energy barriers
– somewhat artificial reaction coordinate (different from nudged 

rubber band, etc.)

• Still open:  what is the best way to think about this?
– elastically interacting localized defects OR
– extended defects 



five minutes about the boson 
peak



What sets the “edge” of the Debye 
regime? The Boson Peak

Sometimes defined as “an excess of modes above the 
Debye prediction” in the density of states:

Polymers (Jain & Pablo JCP 2004) Sodium silicate glass (Chumakov
et al PRL 2011)



Boson peak modes are extended and 
disordered
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Surprise! 

• Boson peak modes look almost identical
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Introduce Boson Peak Wigner Matrix: 
(BPW)

– Symmetric

– Off-diagonal elements: mean μ and variance σ2

– On-diagonal elements: mean -Nμ and variance Nσ2
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THIS matches 
the boson 
peak!!



What happens for sparse matrices 
with coordination number z?

D(ω)

L. E. Silbert, A. J. Liu, S. R. Nagel, PRL 95, 098301 (’05

Jammed packings

Decreasing z

sparse positive definite random matrices

http://arxiv.org/abs/1307.5904

http://arxiv.org/abs/1307.5904
http://arxiv.org/abs/1307.5904


Conclusions

• We propose a new random matrix definition of 
the Boson Peak, defined by eigenvector 
statistics

– new Boson Peak Wigner Matrix (BPW) universality 
class

– this also explains the dependence of boson peak 
location on pressure/packing fraction

http://arxiv.org/abs/1307.5904

http://arxiv.org/abs/1307.5904
http://arxiv.org/abs/1307.5904


One slide about biological tissues

CHEAT SHEET:
Average energy barrier 
height ~ yield stress

inverse perimeter 
modulus r ~ strain rate

preferred perimeter p0 ~ 
density

Bi, Lopez, Schwarz, MLM submitted(2014)
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