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•  Granular materials are the combination of discrete solid (macroscopic) particles 

•  many interesting phenomena - can we understand them all together?   

 history, slow relaxation, creep, shear-localization, “avalanches”, … 

 jamming “point” – and shear jamming 

•  Everywhere in nature/industry and used in day-to-day life. 

	  Examples: 	  

Introduction 	  



Overview – where do we start?	  

- Jam-packed systems      … not a (single) jamming point … 
 
- Simplest model system (linear, no friction, no cohesion, no walls) 

                  
- no(?) dynamics, jiggling, granular temperature, Brownian dynamics 
   
- microstructure+dilatancy+anisotropy+history 
	  



DEM (Discrete element method) = MD	  
Develop force – delta (overlap) interaction relation, when two entities interact 

δ

nf

Linear (Hookean); Simplest  
	  

Exclude:  
nonlinear elastic  
nonlinear plastic 
Friction 
Cohesive 

Solve Newton’s equation of motion	  



Simplest Model System	  

-‐ 	  3D	  (true)	  tri-‐axial	  periodic	  box	  

-‐	  Linear	  visco-‐elas8c	  contact	  model	  

	  

-‐ 	  Strain	  controlled	  

-‐ 	  Quasi-‐sta8c	  deforma8on	  

-‐ 	  Polydisperse	  spheres	  

-‐ 	  Fric8onless	  samples	  

-‐ 	  No	  gravity	  	  

-‐ 	  Homogeneous	  /	  no	  walls	  
	  

.
δγδ += knf



Material parameters	  

	  	  	  	  	  Parameter	   	  	  	  	  	  	  	  	  Symbol	   	  	  	  	  Material	  A	  

Number	  of	  Par-cles	   	  	  	  	  	  	  	  	  N	   	  	  	  	  	  N=	  21^3	  

Average	  radius	   	  	  	  	  	  	  	  	  <r>	   	  	  	  <r>	  =	  1	  mm	  

Polydispersity	   	  	  	  w	  =rmax/rmin	   	  	  	  	  	  	  	  	  	  	  3	  

Par-cle	  density	   	  	  	  	  	  	  	  	  	  ρ	   	  ρ=	  2000	  [kg/m3]	  

Normal	  s-ffness	   	  	  	  	  	  	  	  	  	  kn	   kn	  =5.108	  [kg/s2]	  

Normal	  Viscosity	   	  	  	  	  	  	  	  	  	  	  γ	   	  	  	  	  	  1	  [kg/s]	  

Background	  viscosity	   	  	  	  	  	  	  	  	  	  γb	  	   	  	  	  	  0.1	  [kg/s]	  



Overview – where do we stand?	  

 
- all complexities are removed! 
 
- what remains? 

 	  



Overview – where do we stand?	  

 
- all complexities are removed! 
 
- what remains? 

  
 microstructure! 



Overview – where do we stand?	  

 
- all complexities are removed! 
 
- what remains? 

  
 microstructure! 

  … and its history / protocol dependence …	  



Sample Preparation – from the beginning! 
	  

tapping … => accepted procedure … 



Sample Preparation – from the beginning! 
	  

Isotropic Compression and de-compression 



(cyclic) isotropic deformation	  

-  Intermediate cyclic over-compression (amplitude 0.73)  
-  red: 1st cycle … blue: 100th cycle … 
 



Sample Preparation – from the beginning! 
	  

Isotropic Compression and de-compression 



Main Experiments 
	  Two	  types	  of	  deforma8on:	  

Cyclic	  isotropic	  (de-‐)compression	   	  	  	  	  	  	  	  	  	  	  	  	  Cyclic	  deviatoric	  (volume-‐conserving)	  shear	  



Main Experiment 1 - Cyclic	  isotropic	  over-‐compression	   
	  

Choose a un-jammed state.  
Perform cyclic isotropic (de-)compression for M=100 cycles. 
 
Perform for different over-compression amplitudes. 

Measure the jamming point 

	  N.	  Kumar	  and	  S.	  Luding,	  preprint	  (2014);	  O.I.	  Imole	  et	  al.	  KONA	  (2013)	  



Main Experiment 1 - Cyclic	  isotropic	  over-‐compression	   
	  

- For higher over-compression, jamming point is higher 
 
- Jamming point increases (KWW stretched exponential function). 
 
 
 
- Minimum value is achieved 



Evolution of isotropic jamming points 

!"J , i = "SJ +#max "i
max "SJ $1( )%

αmax=0.02 



Message 1	  

response of microstructure to isotropic deformations! 
 
- a new state variable is needed! 
- proposal: use the jamming “point” itself as state variable! 



Message 1	  

response of microstructure to isotropic deformations! 
 
- a new state variable is needed! 
-  proposal: use the jamming “point” itself as state variable! 

System with C*=Ziso=6 (frictionless), at p => 0 
 at different densities for different protocols (same material) 

 
jamming “point” slowly increases! 



Cons-tu-ve	  model	  for	  Pressure	  	  

p = p !,...( )



Isotropic	  compression	  –	  Pressure	  	  



Isotropic	  compression	  –	  Pressure	  	  



Cons-tu-ve	  model	  for	  Pressure	  	  

!v = " ln v
vc
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linear J 



What’s	  the	  point?	  

!v = " ln v
vc
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There are some material constants (depend on polydispersity, friction) 
Like:  

p0, ! p <<1, C0 = 6, C1," ! 0.56, g3 !O 1( ), !r, !v, ... and ... vc



What’s	  the	  point?	  
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There are some material constants (depend on polydispersity, friction) 
Like:  

p0,C0 = 6, g3 !O 1( )

How to calibrate/measure them – done … 
(some of them are even known analytically) 

p0, ! p <<1, C0 = 6, C1," ! 0.56, g3 !O 1( ), !r, !v, ... and ... vc



Isotropic	  de-‐compression	  M=1;	  effect	  of	  fric-on	  



Isotropic	  de-‐compression;	  effect	  of	  fric-on	  



Polydispersity	  and	  	  
whats	  the	  difference	  between	  

ISO	  and	  SHEAR?	  

 0.635
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! c

w
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DEV
Eq. (15) in Ogarko & Luding (2012)

Figure 7: Evolution of jamming point νc with polydispersity w for the deformation modes considered.
Corresponding solid lines are the theoretical predictions for different modes using Eq. (11). Note that the
fit is applied only to w > 1.2, since local crystallization (Ogarko & Luding, 2012; Schröder-Turk et al.,
2010) might happen at lower polydispersity causing νc values much higher than the disordered, random
prediction.

(11) to the three deformation modes, and in Fig. 7 we show the prediction for hard spheres together
with the νc simulation data for the three modes, and the fitting curves, where the parameters ν0c and
ν∞c are presented in Table 2. Besides the quantitative disagreement due to the difference between hard
and soft spheres, both systems show a very similar trend, the predictions working well for all the three
modes. The simulations in Ogarko & Luding (2012), leading to Eq. (11), were carried out by very slow
isotropic compression from the low density collisional regime, where the fluctuation velocities were not
relaxed as done in this study. The strong kinetic energy fluctuations represent a type of ‘tapping’ that
allows the system to relax to better packed configurations with larger νc. The data in Fig. 7 from Ogarko
& Luding (2012) thus represents an upper limit of optimal compaction, which is not reached by e.g.
slow over-compression to νmax = 0.82. Eq. (11) can then capture the evolution of νc with polydispersity,
irrespective of the deformation modes, when the fit parameters are properly defined. This interesting
feature shows that νc acts as a state variable, able to describe the configuration of the assembly and thus
represent its history, as also reflected by the overlaps in Fig. 4.

4.2.2 Coordination Number

It has been shown in Göncü et al. (2010); Imole et al. (2013) that under isotropic deformation, the
corrected coordination number, C∗ follows the power law:

C∗(ν) = C0 + C1

(
ν

νc
− 1

)α

, (12)

where C0 = 6 is the isostatic value in the frictionless case. α and C1 are fit parameters, while we use
νc from p∗ extrapolation analysis as input value, leading to one less fit parameter for C∗. We observe a
very small variation (3 %) of α with polydispersity and deformation modes (Imole et al., 2013) but for
simplicity we set it to a fixed value of 0.60 in this work (Peyneau & Roux, 2008). Only C1 is then the
residual free fit parameter.

In Figs. 5(d – f), we compare the evolution of the corrected coordination number C∗ as a function
of volume fraction ν during isotropic, uniaxial and after deviatoric loading and show its dependence on
polydispersity. The behavior is qualitatively similar for all the three deformation paths: contacts close
and the coordination number increases with increasing volume fraction. Moreover, for the three modes,
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Tapping	  “isotropic”	  
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BC	  “isochoric”	  +	  tapping	  

p 

Φ ΦJ 



p 

Φ ΦJ 

BC	  “isochoric”	  +	  tapping	  



Main Experiment 2 – Shear	  (volume-‐conserving)	  

Choose un-jammed states (with different preparation history). 
 
Perform deviatoric (volume conserving) shear deformation to strain 0.28. 
 
Measure the shear strain needed to jam the system. 

2 => 3 cyclic: see later … 



Main Experiment 2 – Shear	  (volume-‐conserving)	  

Three stages observed: Shear Unjammed à Fragile à Shear jammed 
 
Minimum volume fraction, below which incite shear is needed to jam the system. 
 
 
 

How does it look for many different histories?	  

For one over-compression 
 amplitude (one history). 



Message 2	  

response of microstructure to isotropic deformations! 
- a new state variable is needed! 
- isotropic deformation leads to an increase of ΦJ (slow) 
 
response of microstructure to deviatoric/shear deformations! 
-  no new state variable is needed! 
-  deviatoric deformation leads to a decrease of ΦJ (fast) 



Connecting the two Experiments	  

- Combining the two history-dependencies,  
 by superposing the two limit experiments: isotropic and pure shear deformation. 

-  Rate of increase in the jamming point by isotropic deformation  
    is much slower than the rate of decrease by pure shear. 

-  Ultimate lower bound, defined as the shear-jamming density … minimal jamming point reached 
 



Main Experiment 2.5 – Shear	  (volume-‐conserving)	  

How to measure the shear strain needed to jam the system, based on different history. 
 
- Using percolation method (when strong force chain is percolated through the whole system) 

 



Jamming by application of shear 



Jamming diagram with memory 
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i.e. pressure-dilatancy 
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BC	  “isochoric”	  shear-‐reversal	  
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i.e. shear un-jamming 
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finite N, p + tiny ε 
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Connecting the two Experiments	  

- Combining the two history-dependencies,  
 by superposing the two limit experiments: isotropic and pure shear deformation. 

-  Rate of increase in the jamming point by isotropic deformation  
    is much slower than the rate of decrease by pure shear. 

-  Ultimate lower bound, defined as the shear-jamming density … minimal jamming point reached 
 



Predictive power – cyclic isotropic deformation	  

- Intermediate cyclic over-compression (amplitude 0.73) for 100 cycles. 
 

- Well predicted isotropic - pressure and coordination number (during loading and un-loading). 
-  Only by adding motion of jamming-point in the constitutive model. 
- Curves saturate for large cycles for loading and un-loading and is also predicted.	  



Predictive power – cyclic pure shear deformation	  

- Cyclic shear for 3 cycles (after the first loading, system forgets history). 
 

-  Quantities like – fraction of non-rattlers, coordination number, pressure –  
by mainly modifying the constitutive model with non-constant jamming point. 



Something for experimentalists	  

Measuring jamming points from the accessible macroscopic quantities – easiest pressure J 

During isotropic deformation at three different amplitudes, and extracting it from pressure. 
Comparison with the theoretical framework	  



Something for experimentalists	  

Measuring jamming points from the accessible macroscopic quantities – easiest pressure J 

During shear deformation, and extracting it from pressure, coordination number. 
Comparison with the theoretical framework	  
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The image cannot be displayed. Your computer may not have enough memory to 
open the image, or the image may have been corrupted. Restart your computer, and 
then open the file again. If the red x still appears, you may have to delete the image 
and then insert it again.

Evolution of jamming points with history 



Summary 
there is: 
- dilatancy in frictionless packings (Jean-Noel) 
- elasticity (reversible) plasticity (irreversible) (Bulbul) 
- shear-jamming in frictionless packs (Bob) 
- new isotropic-state-variable! (for macro-view) 
=> the jamming density Φ(H ) 

  … or an other related quantity 
- energy-landscape model explains all J 
 
open issues? 
- system size dependence? (Corey?) 



Explanation – Energy landscape	  

 - Isotropic deformation – leads to an increase in local and total  jamming point, while the shear 
deformation decreases it. 
- Deeper valleys with higher barriers, can be achieved with higher over-compression. 
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Compaction:  
A minimal model 

Stefan Luding 
Particle Technology 
DelftChemTech, TUDelft 
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Overview 

u Experiment (O. Pouliquen, Marseille) 
u & Model (developed during my visit) 
u Results 

•  Slow compaction 
•  Cyclic compaction 

u Summary 
u Next steps ? 
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Experiments 
u Dense, monodisperse periodic shear 
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Model 

u Packing: 
n  Local configuration? 
n  Energy landscape 
n  Potential energy → Density 

u Particles: 
n  Explore the energy landscape 
n  Random walk = Sinai Diffusion 
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Model 
n    
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Slow compaction 
u Experiment vs. model simulation 

min

mean min

1 E V
V V

ν −= −
−
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Cyclic compaction 

u One Tap/Shear = Monte Carlo step 
u Tapping Amplitude = Temperature 
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Cyclic compaction 

u    
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Summary 
u Minimal (?) model  
u Define configuration energy landscape 
u Tap/Shear = Explore landscape 
u Experimental phenomenology  
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Next Steps 

u How to get the energy landscape ? 
u Temperature = ? 
u Monte Carlo time-scale ? 
u Correlations ? 
u Energy landscape as function of  

    system parameters ? 


