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Introduction

e Granular materials are the combination of discrete solid (macroscopic) particles

* many interesting phenomena - can we understand them all together?
history, slow relaxation, creep, shear-localization, “avalanches”, ...
jamming “peint” — and shear jamming

* Everywhere in nature/industry and used in day-to-day life.

Examples:




Overview — where do we start?

- Jam-packed systems ... hot a (single) jamming point ...
- Simplest model system (linear, no friction, no cohesion, no walls)
- no(?) dynamics, jiggling, granular temperature, Brownian dynamics

- microstructure+dilatancy-+anisotropy-+history



DEM (Discrete element method) = MD

Develop force — delta (overlap) interaction relation, when two entities interact

Linear (Hookean); Simplest

>0

Solve Newton’s equation of motion

mit; = Fj + Z F,‘j

Exclude:
nonlinear elastic
nonlinear plastic
Friction
Cohesive

JEN:j#i



Simplest Model System

- 3D (true) tri-axial periodic box

- Linear visco-elastic contact model
M =kS+yS

- Strain controlled

- Quasi-static deformation

- Polydisperse spheres

- Frictionless samples

- No gravity

- Homogeneous / no walls



Material parameters

Number of Particles N N=21"3
Average radius <r> <r>=1mm
Polydispersity w=r, . /r.. 3
Particle density o) p= 2000 [kg/m?3]
Normal stiffness kn k" =5.108 [kg/s?]
Normal Viscosity v 1 [kg/s]

Background viscosity yP° 0.1 [kg/s]



Overview — where do we stand?

- all complexities are removed!

- what remains?
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Overview — where do we stand?

- all complexities are removed!
- what remains?
microstructure!

... and 1ts history / protocol dependence ...



Sample Preparation — from the beginning!

tapping ... => accepted procedure ...



Sample Preparation — from the beginning!

Isotropic Compression and de-compression
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(cyclic) 1sotropic deformation

Intermediate cyclic over-compression (amplitude 0.73)
red: 18t cycle ... blue: 100th cycle ...
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Sample Preparation — from the beginning!

Isotropic Compression and de-compression
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Main Experiments

Two types of deformation:
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Main Experiment 1 - Cyclic isotropic over-compression

Choose a un-jammed state.
Perform cyclic 1sotropic (de-)compression for M=100 cycles.

[1max

Perform for different over-compression amplitudes.  @;

Measure the jamming point M 4 Ji= O J(¥\ T. (*‘)‘Iz',nax)

N. Kumar and S. Luding, preprint (2014); O.l. Imole et al. KONA (2013)



Main Experiment 1 - Cyclic isotropic over-compression
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- For higher over-compression, jamming point is higher

- Jamming point increases (KWW stretched exponential function).




Evolution of isotropic jamming points
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Message 1

response of microstructure to isotropic deformations!

- a new state variable 1s needed!
- proposal: use the jamming “point” itself as state variable!



Message 1

response of microstructure to isotropic deformations!

- a new state variable 1s needed!
- proposal: use the jamming “point” itself as state variable!

System with C*=Z. =6 (frictionless), at p =>0

1SO

at different densities for different protocols (same material)

jamming “point” slowly increases!



Constitutive model for Pressure

p=p(v,.)



Isotropic compression — Pressure
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Isotropic compression — Pressure
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Constitutive model for Pressure

linear ©

p=m(—e) L= m(—e)] P = 2E =(po(—e)[1 — pp(—ev)]

E, =—ln(l]
VC




What’s the point?

*k ch A \%
P = C =po(—ev)[1 — ’Vp(_g\f)] €, :_ln@

There are some material constants (depend on polydispersity, friction)
Like:

Py ¥, <<1,C,=6,C,,a=056,g,~0(1),9,,0,,..and ... v,



What’s the point?

*k ch A \%
P = C =po(—ev)[1 — ’Vp(_g\f)] €, :_ln@

There are some material constants (depend on polydispersity, friction)
Like:

Py ¥, <<1,C,=6,C,,a=056,g,~0(1),9,,0,,..and ... v,

How to calibrate/measure them — done ...
(some of them are even known analytically)

Po-C, =6,8,=0(1)



Isotropic de-compression M=1; effect of friction
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Isotropic de-compression; effect of friction
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Polydispersity and

whats the difference between
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Isotropic (de)compression
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Isotropic (de)compression
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Tapping “isotropic”




Tapping “isotropic”




BC “isobaric” + tapping

P




BC “isobaric” + tapping
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BC “isochoric” + tapping

P,




BC “isochoric” + tapping

P,




Main Experiment 2 — Shear (volume-conserving)
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Choose un-jammed states (with different preparation history).

Perform deviatoric (volume conserving) shear deformation to strain 0.28.

Measure the shear strain needed to jam the system.



Main Experiment 2 — Shear (volume-conserving)

Three stages observed: Shear Unjammed -> Fragile = Shear jammed

Minimum volume fraction, below which incite shear is needed to jam the system.
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How does it look for many different histories?



Message 2

response of microstructure to isotropic deformations!
- a new state variable is needed!

- 1sotropic deformation leads to an increase of @, (slow)

response of microstructure to
- no new state variable 1s needed!
deformation leads to a decrease of @, (fast)




Connecting the two Experiments
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- Combining the two history-dependencies,
by superposing the two limit experiments: i1sotropic and pure shear deformation.
- Rate of increase in the jamming point by isotropic deformation
1s much slower than the rate of decrease by pure shear.
- Ultimate lower bound, defined as the shear-jamming density ... minimal jamming point reached



Main Experiment 2.5 — Shear (volume-conserving)

How to measure the shear strain needed to jam the system, based on different history.

-Using percolation method (when strong force chain is percolated through the whole system)




Jamming by application of shear
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e, Jamming diagram with memory
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BC “isochoric” shear




BC “isochoric” shear




BC “isochoric” shear

l.e. pressure-dilatancy




BC “isochoric” shear




BC “isobaric” shear




BC “isobaric” shear




BC “isobaric” shear




BC “isobaric” shear

i.e. dilatancy




BC “isobaric” shear




BC “isochoric” shear-jamming
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BC “isochoric” shear-jamming
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BC “isochoric” shear-jamming

P,




BC “isochoric” shear-reversal

i.e. shear un-jamming
P,




BC “isobaric” shear-jamming
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BC “isobaric” shear-jamming

P,




BC “non-isobaric” shear-jamming
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NOW — we are elastic
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NOW — we are elastic

finite N, p + tiny ¢
P,




Connecting the two Experiments
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- Combining the two history-dependencies,
by superposing the two limit experiments: i1sotropic and pure shear deformation.
- Rate of increase in the jamming point by isotropic deformation
1s much slower than the rate of decrease by pure shear.
- Ultimate lower bound, defined as the shear-jamming density ... minimal jamming point reached



Predictive power — cyclic isotropic deformation

- Intermediate cyclic over-compression (amplitude 0.73) for 100 cycles.
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-Well predicted isotropic - pressure and coordination number (during loading and un-loading).
- Only by adding motion of jamming-point in the constitutive model.
-Curves saturate for large cycles for loading and un-loading and 1s also predicted.



Predictive power — cyclic pure shear deformation

Cyclic shear for 3 cycles (after the first loading, system forgets history).
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- Quantities like — fraction of non-rattlers, coordination number, pressure —
by mainly modifying the constitutive model with non-constant jamming point.



Something for experimentalists

Measuring jamming points from the accessible macroscopic quantities — easiest pressure ©
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During isotropic deformation at three different amplitudes, and extracting it from pressure.
Comparison with the theoretical framework



Something for experimentalists

Measuring jamming points from the accessible macroscopic quantities — easiest pressure ©
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During shear deformation, and extracting it from pressure, coordination number.
Comparison with the theoretical framework



Evolution of jamming points with history
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Summary
there is:
- dilatancy in frictionless packings (Jean-Noel)
- elasticity (reversible) plasticity (irreversible) (Bulbul)
- shear-jamming in frictionless packs (Bob)
- new isotropic-state-variable! (for macro-view)
=> the jamming density ®(H )
... or an other related quantity
- energy-landscape model explains all ©

open issues?
- system size dependence? (Corey?)




Explanation — Energy landscape

Energy

- Isotropic deformation — leads to an increase in local and total jamming point, while the shear
deformation decreases it.




Compaction:
A min) model

Stefan Ludlng ‘
Particle Technology

DelftChemTech, TUDelft

A

15.10.2014 ]. Dresden Geomes 2002



Overview

¢ Experiment (O. Pouliguen, Marselille)
¢ & Model (developed during my visit)

¢ Results
. Slow compaction
. Cyclic compaction

¢ Summary
¢ Next steps ?

15.10.2014 ]. Dresden Geomes 2002



Experiments

¢ Dense, monodisperse periodic shear
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¢ Packing:
m Local configuration?
m Energy landscape
m Potential energy — Density

¢ Particles:
m Explore the energy landscape
s Random walk = Sinai Diffusion

15.10.2014 ]. Dresden Geomes 2002
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Slow compaction

¢ Experiment vs. model simulation - /
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Cvclic compaction

initial 0
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¢ One Tap/Shear = Monte Carlo step
¢ Tapping Amplitude = Temperature
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Summary

¢ Minimal (?) model

¢ Define configuration energy landscape
¢ Tap/Shear = Explore landscape

¢ Experimental phenomenology

15.10.2014 ]. Dresden Geomes 2002



Next Steps

¢ How to get the energy landscape
¢ Temperature = ?

¢ Monte Carlo time-scale ?

¢ Correlations ?

¢ Energy landscape as function of

system parameters&

ey,

15.10.2014 ]. Dresden Geomes 2002 V




