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OMORI LAW
Inserire figure m>2.5 wekly rate e Omori decay
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OMORI LAW

Aftershock sequences

The majority of events in seismic catalogs are aftershocks!
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OMORI LAW
Fusakichi Omori published his work on the aftershocks of earthquakes, in which he stated 
that aftershock frequency decreases by roughly the reciprocal of time after the main shock.

   

The modified version of Omori's law, now commonly used, was proposed by Utsu in 1961,
With typical values of p [0.75:1.5].

   

   

n ( t )=
k
t

n ( t )=
k

( t+c ) p
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In 1932 Wadati published a paper entitled “On the frequency distribution of 
earthquakes”. In the paper he proposed a power law distribution for the eneergy 
and used Japanese data to estimate the exponent. 
The paper received poor attention because the title was vague. 

In 1935 in the first paper on the instrumental magnitude Richter proposed a fast 
decay of the shocks number for large magnitude. 

In 1941 Guttenberg-Richter proposed an exponential distribution. 

Power law in the size distribution

N (m ) ∼10 -bm m∼ 3/2 log10 ( E ) ⇒ N E∼ -1-2/3b b≃1

E∝ S Power law distribution of erathquake sizes



09/29/14 Non-equilibrium 14 KITP

Power law in the size distribution

 Number of earthquakes per year worldwide and in Southern California   
 

GUTENBERG-RICHTER LAW: P(m) ≅10-b m

POWER LAW for Size distribution P(S) ≅ S-1-b2/3

Using m= (2/3) log
10

(S)
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Productivity law
 

In 1970 Utsu observed that the number of aftershocks is exponential with the mainshock   
magnitude 

N aftershocks∼ 10αm m∼3/2 log10 ( E )⇒ N aftershocks E∼ 1+2 /3α α≃1

Helmstetter, 2003



09/29/14 Non-equilibrium 14 KITP

1894

Omori law Gutenberg-Richter 
 law

Productivity 
law

TIME AXIS
1894 1932-35 1970

Spatial 
Clustering

1980



09/29/14 Non-equilibrium 14 KITP

I  
The earthquakes are clustered in space along hierarchical fault structures 
[ Kagan-Knopoff 1980]

Spatial clustering

Aftershocks are preferentially 
localized close in spaxe to the 
mainshock
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Spatial clustering

I  
Aftershock linear density



09/29/14 Non-equilibrium 14 KITP

1894

Omori law Gutenberg-Richter 
 law

Energy-spatio-temporal 
correlations

TIME AXIS
1894 1932-35 2000-

Productivity 
law

1970

Spatial 
Clustering

1980



09/29/14 Non-equilibrium 14 KITP

1894

Omori law Gutenberg-Richter 
 law

1980

Burridge-Knopoff 
model

Self-organized criticality

TIME AXIS
1894 1932-35

PHYSICAL MODELS

Energy-spatio-temporal 
correlations

2000-

Productivity 
law

1970

Spatial 
Clustering

1980

1967



09/29/14 Non-equilibrium 14 KITP

I Burridge-Knopoff model
A seismic fault is described as an elastic string everywhere in contact with a 
frictional surface which retards the motion.

It is a simple but quite realistic description of 
a real sesimic fault that is an elastic medium 
under shear in contact with a rough surface.
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I Burridge-Knopoff model
A seismic fault is described as an elastic string everywhere in contact with a 
frictional surface which retards the motion.

Stick-Slip behavior Energy distribution
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It is probably the first time that the concept of “avalanche” is 
proposed in the seismological context.
It is just a chain-reaction model 

Otsuka (chain-reaction) model
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It is probably the first time that the concept of “avalanche” is 
proposed in the seismological context.
It is just a chain-reaction model 

Otsuka model

Seismic fault viewed as patches that may fail and trigger other 
patches to fail with some probability and so on
Extensions by Vere-Jones 1976, Kagan 1982
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I

The sand pile model paradox
Bak -Tang-Wiesenfeld

A common explanation for power laws in 
the size distribution
(see also Self-organized branching processes
Zapperi et al. 1995)

Self-organized critical models

Temporal corellations are absent in the sand-pile model
Many extensions have been proposed to include temporal 
correlations....
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Looking at the recording of a seismic station, earthquakes usually appear as isolated 
pulses. This is due to the fact that the duration of an earthquake  is much smaller than 
the average temporal distance between events.
For istance, for m=2 earthquake typical duration is 0.1 sec whereas typical temporal 
distances are larger than 1 minute.

Point-Process approach

Temporal clustering was clearly 
evident already with data available 
at the beginning of the 60's

TRIGGER POINT-PROCESS (Vere-Jones)
Cluster centres Poisson distributed in time would be regarded as ``ancestors'', and the 
cluster members as the first generation ``offsprings''. Clearly, the scenario can be iterated 
any number of times, and we can talk of n-th ordering clustering processes corresponding to 
the n-th generation offsprings. 
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Seismic rate: number of events for unit of time 

Triggering Point-Process

λ is the fundamental quantity in seismic forecasting since it is 
proportional to the probability to have a future earthquake on the 
basis of the previous historical information 

λ ( t,∣[ ti ] )  =μ +G ( t−t i )

Generalization including also time and space

λ ( E,r,t,∣{E i ,ri ,t i })  =μ ( E,r )+G ( E,r,t,∣{E i ,ri ,t i })
Macroscopic approach: an earthquake is viewed as just one 
point in a 5-dimensional space. All the details (the duration, the 
spatial extension.....) are neglected
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Epidemic time aftershock sequence model

Empirical laws (Omori law, GR law, Productivity law and spatial 
clustering) are implemented to model the kernel G

λ ( E,r,t,∣{E i ,ri ,t i })  =μ ( E,r )+G ( E,r,t,∣{E i ,ri ,t i })

The sum extends to all previous
 earthquakes

G ∝∑ E−β E i
β'

(t−ti )
−p (

r−ri

E i
γ

+d z)
−δ
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Epidemic time aftershock sequence (ETAS) model

Can be viewed as a branching process

λ ( E,r,t,∣[ H i ] )  =μ+∑ E− β E i
β'

(t−t i )
−p (

r−r i

E i
γ

+d z)
−δ

time
1s
t

time
2nd

time
3rd

time
4th

Totally different approach with respect to the Otsuka model 
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Epidemic time aftershock sequence (ETAS) model

Probably the most efficient tool actually available for seismic forecasting.

Notwistanding its simiplicity many non trivial patterns arise because of 
the many body interaction.
 
http://www.corssa.org/articles/themev/zhuang_et_al_c/zhuang_et_al_c.pdf 
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Triggering Point-Process from a physical 
perspective

Stress

Distance

The term G(E,r,t|E
i
,r

i
,t

i
) describes interaction between two earthquakes

An earthquake 
modifies the stress 
filed in the 
surrounding area 
rising the probability 
of subsequent 
shocks

Stress

Distance

time Some relaxation 
mechanism is 
present so that 
stress released 
evolves in time

Stress

Distance

time
Uniform stress 
increases at costant 
rate because of 
tectonic drive

σ i (r−r i ,t−t i )

σ B (r,t )
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Triggering Point-Process from a physical 
perspective

Earth Crust Elasticity

σ TOT ( r,t )=σ B (r,t )+∑ σ i (r−r i ,t−t i )
Seismic rate and stress relationship (Beeler and Lockner [2003])

λ ( r,t )∝σ̇TOT (r,t ) σ̇TOT ≪1if

λ ( r,t )∼ exp [σ TOT (r,t ) ] σ̇TOT ≫1if

After mainshock relaxation shear rate evolves slowly

λ ( r,t )=μ (r )+∑ λ i (r−r i ,t−t i )
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Triggering Point-Process from a physical 
perspective

Explitely including the energy

λ ( E,r,t ) =μ ( E,r )+∑ G ( E,r−r i ,t−t i∣E i )
The sum extends over all previuos earthquakes and G becomes a two-
point correlation function, i.e. The probability that at time t an event is 
triggered by a previous one occured at time t

i
. 
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The correlation function in the ETAS model

 FACTORIZATION

G ( E,t−t i ,r−r i∣E i )=P ( E )Q (E i )T (t −t i ) R (r−ri )
EMPIRICAL LAWS FOR P,Q,T,R

P(E) ≅Ε -1-b2/3          Gutenberg-Richter law
Q(E) ≅Ε -1-α2/3          Productivity law
T(t) ≅(t+c)-p           Omori law
R(x) ≅x-δ                   spatial clustering
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The correlation function G within a scaling approach

 without he hypothesis of 
FACTORIZATION

G ( E,t−t i ,r−r i∣E i )

Relevant time and temporal scales in the process

Stress

Distance

Stress

Distance

time
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The correlation function G within a scaling approach

 without he hypothesis of 
FACTORIZATION

G ( E,t−t i ,r−r i∣E i )

Relevant time and temporal scales in the process

Stress

Distance

Stress

Distance

time

L
i L i∝ E i

γ∝10
0.5m i
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The correlation function G within a scaling approach

 without he hypothesis of 
FACTORIZATION

G ( E,t−t i ,r−r i∣E i )

Relevant time and temporal scales in the process

Stress

Distance

Stress

Distance

time

L
i L i∝ E i

γ∝10
0.5m i

τ characteristic 
relaxation time
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The correlation function G within a scaling approach

 Rewriting G in terms of all scales in the process

G ( E,t−t i ,r−r i∣E i )=F ( L,δt,δr,Li ,τ ) Where 
is the typical length
of the triggered event

L∝ E γ
∝100 . 5m
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The correlation function G within a scaling approach

 Rewriting G in terms of all scales in the process

G ( E,t−t i ,r−r i∣E i )=F ( L,δt,δr,Li ,τ ) Where 
is the typical length
of the triggered event

L∝ Eξ
∝100 .5m

SCALE INVARIANCE ASSUMPTION
Introducing a scaling factor a

F ( L,δt,δr,Li ,τ )≃ a−2− γ F ( L
a

,
δt
aγ

,
δr
a

,
L i

a
,

τ
aγ )

Where γ is a scaling exponent
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The correlation function G within a scaling approach

Setting a=L
i F ( L,δt,δr,Li ,τ )≃ L i

−2−γ H ( L
L i

,
δt
L i

γ
,

δr
Li

,
τ
L i

γ )
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Different mainshock magnitudes M=2,3,4,5

EMPIRICAL VERIFICATIONS OF THE SCALING 
HYPOTHESIS  

Aftershock 
spatial 
density
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Lippiello et al, PRL 2009

Different mainshock magnitudes M=2,3,4,5,6

AFTERSHOCK SPATIAL DENSITY DISTRIBUTION

R (r−r i )=( r−ri

L i

+d z)
−δ

SPACE-ENERGY SCALING
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Omori decay in experimental catalogs

Different colors are different mainshock magnitudes
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Omori decay in experimental catalogs

Different colors are different mainshock magnitudes

Lippiello et al, GRL 2007

T (t−ti )=(
t −t i

L i
γ

+c)
−p

TIME-ENERGY SCALING

With γ=2
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DYNAMICAL SCALING IN SEISMICITY

Magnitude Distribution 

G=M i
−2 F ( M

M i

,
( t−t i )

M i

,
(r−ri )

M i
1/2 )

ρ ( M )=∫ d Δt i∫ d Δr i G ( L,Δt i ,Δr i∣M i )=F1 ( M
M i

)
setting F 1 ( x )= ( x+d )−1

ρ ( M )=( M
M i

+d )
−1

The costant d is 
necessary for 
normalization

For convenience 
let us introduce 
the quantity 
M=L2=10-m



09/29/14 Non-equilibrium 14 KITP

DYNAMICAL SCALING IN SEISMICITY

Gutenberg-Richter law is recovered and also productivity law with the condition α=b. 
GR law and productivity are not independent laws.

ρ ( M )∝10−m10
miRemembering that M i=10

mi

We have ignored the costant d that however plays an important role introducing non trivial 
correlations.

DYNAMICAL SCALING IN SEISMICITY
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DYNAMICAL SCALING IN SEISMICITY

OMORI law 

ρ ( Δt i )=∫ dM∫ d Δr i G ( M,Δti ,Δr i∣M i )=F2( Δt i

M i
)

setting F 2 ( x )=( x+c )−1

ρ ( Δt i )=( Δt i

M i

+c)
−1

The costant c is necessary for normalization

Omori law is recovered and also productivity law.
The scaling analysis reveals that also Omori behavior and Productivity law are not 
independent.

DYNAMICAL SCALING IN SEISMICITY
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DYNAMICAL SCALING IN SEISMICITY

OMORI law 

ρ ( Δt i ) M≃ i ( Δt i )
−1∝10

mi ( Δt i )
−1

Omori law is recovered and also productivity law.
The scaling analysis reveals that also Omori behavior and Productivity law are not independent.

A COMMON ORIGIN FOR POWER LAWS IN SEISMIC OCCURRENCE

Remembering that M i=10
mi
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Numerical simulations

G∝ h(
t−t i

c10
b (mi−m )

,
r−ri

(t− t i )
1 /γ )

G∝( t−t i )
1/γ (

t−t i

c 10
b (mi−m)

+1)
−1

(
r−r i

(t−t i )
1/ γ

+1)
−μ

λ ( E,r,t ) =μ ( E,r )+∑ G ( E,r−r i ,t−t i∣E i )
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Linear Density distribution

Lippiello et al, PRL 2009
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Magnitude correlations

Magnitude Distribution 

ρ ( M )=( M
M i

+d )
−1 The costant d is 

necessary for 
normalization

The importance of magnitude correlations for seismic 
forecasting
The presence of correlations between subsequent earthquake magnitudes provides 
a first answer to the question concerning the existence of premonitoring indications 
on the subsequent earthquake magnitude. Magnitude correlations, indeed, imply 
that earthquake occurrence modify physical properties in such a way to influence 
the subsequent earthquake magnitude. The understanding of these modifications 
represent a possible tool to predict features of the next seismic event. 
In the opposite scenario, magnitudes are not affected by preexisting phyiscal 
properties and therefore, magnitudes are totally uncorrelated. 

Experimetal evidences: Lippiello et al. 2007,....,2012



09/29/14 Non-equilibrium 14 KITP

Linear Density distribution and stress diffusion

The agreement between experimental and numerical
results supports the validity of the scaling relation

which implies that the evolution in time of stress is consistent with a 
diffusion equation.

Δr∝ ΔtH with H=1/ γ≈0 .5

Static stress diffusion has been proposed has one of the main 
mechanisms responsible of aftershock triggering

The very good fit of numerical simulations support this conclusion:
Numerical results are obtained with H=0.47
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Stress diffusion

FREED, Nature 2002
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Stress diffusion

Stress transfer between faults through viscous relaxation may be a general cause of 
earthquake clustering. For example, Lynch et al. (2003) suggest that seismicity on a northern 
and southern San Andreas–type fault system can become coupled by the transfer of stress 
through lower crustal flow. Chèry et al. (2001) appeals to a similar stress transfer process to 
explain a sequence of three M > 8 earthquakes that occurred in Mongolia during a 52-year 
period despite great distances (400 km) that separate the events. And in a global review of 
the relative distance and time delay separating pairs of earthquakes, Marsan & Bean (2003) 
found that seismic activity diffuses away from an earthquake as the delay time increases 
following its occurrence, which they attributed to viscous diffusion of stress in the upper 
mantle.
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OPEN QUESTIONS

- Is it possible to recover the observed scaling invariance in 
physical models for seismic occurrence?

-  Is it the same scaling invariance observed in other physical 
processes?

- Is it possible to develop a theory to explain the origin of scaling 
invariance?

- Is it possible to develop a branching model that combines the 
microscopic chain-reaction model to the triggering models?
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