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POINT-PROCESS MODELS
1985 2008

PHYSICAL MODELS
1967 1972 1987

Burctl‘idlge-KHOpoff Otsuka model | Self-organized criticality
mode
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OMORI LAW hoip et

Inserire figure m>2.5.wekly rate e Omori decay &
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OMORI LAW | .

Aftersriock sequences*

Southern California 1984-2003
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Thesmajority of events in seismic catalogs are aftershocks!

SeisMath 1P 2013 11/07/2013



OMORI LAW

Fusakichi Omori published his work on the aftershocks of earthquaI'(es,.in which he stated
that aftershock frequency decreases by .roughly the reciprocal of‘time after the main shock.

The modified version-of Omori's law, now commonly used, was proposed by Utsu in 1961,
With typical valiues of p [0.75:1.5].
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Power law in the size distribution

Nlm|~10"" m~3/21og, | E|=> N~E"?"" b=1

‘ Power law distribution of erathquake sizes
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Power law in the size distribution.

Number of earthquakes per year worlgwide and in Seuthern California

GUTENBERG-RICHTER LAW: P(m) (110 ™
POWER LAW for Size distribution P(S) OO0 S-1+2°
Using m= (2/3) log, (S)
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TIME AXIS

1932-35 1970

=4 Productivity g
rallaw
A e
- --;-
..'JI..-# .
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Productivity law

In 1970 Utsu observed that the'iumber of aftershocks is exponegtial-with the mainshock
magnitude 1,

am 3
Naﬁershocks ~ 10 m~3/2 lOg IO(E ):> Naﬁershocks ~E1+2 7

J

—_
=]

seismicity rate {day_1}
rate of triggered earthquakes (o)

* cumulative magnitud-é distriéution {};(]

10° 10 100 10 3 35 4 45 5 55 6 65 7 75
time after mainshock (days) mainshock magnitude

Helmstetter, 2003
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TIME AXIS
1932-35 1970 1980

=*Productivity ' Spatial
madlaw Clustering
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| | " 1
=

Spati'al clustering

H - g " I |
The €arthquakes are clustered ipspace along hierarchical fault structures
[ Kagan-Knopoff 1980] = H "

Aftershocks are preferentially
localized close in spaxe to the
mainshock
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Spatial clustering
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TIME AXIS
1932-35 1970 1980

2000-

Omori law

,:! 2 T et

Energy-spatio-temporal
correlations
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Burridge-Knopoff
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Burridge-Knopoff mo-del -

A seismic fault is describedi@s-ah elastic string everywhere in contacizwith a
frictional surface yihi€h retards the motion. s Ty Bl

'I
It is @ simple but quite realistic description of
a real sesimic fault that is an elastic medium

under shear in contact with a rough surface.
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Burridge-Knopoft mddel T

A seismiic fault is described;@s-an elastic string everywhere in contac{ywith a
frictional surface yhi€h retards the motion. s R

... Stick-Slip behavior wf e o, Energy diStribUtioﬁ
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Burridge-Knopoff g Otsuka model
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-

Otsuka (chain-reaction) model*;,

(1]

It is probably the first, fime‘that the concept of “avalancher is
proposed in éheseismological contekt. ekt
JtisijEst a chain-reaction moéet;, ™

appadvice.com Otsuka, Zisin 1971
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Otsuka model e

It is probably the firstdime that the concept of “avalancher is
proposed in éhe'seismological context. Ear "
It.is jist @ chain-reaction moc'JIeII,, .

TONGA & HERMADEC 5.
CENTRAL AS|A EASTERN EURQPE
FlJl SOLOMOMN HEW GUINEA

MAGMITUDE Otsuka, Zisin 1971

Seismic fault viewed as patches that may fail and trigger other
patches to fail with some probability and so on
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PHYSICAL MODELS
1967 1972 1987

4 8
Bur(;idlge-Knopoff Otsuka model | Self-organized criticality
mode
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|I sl -
=1

Self—of'ganlzed’crltlcal modelﬁ

The sand pile maglel p'a"radox 2

Bak -TangiWWiesenfeld o T K
Feuif i .|-.' g |

_ e e
A com e@hnation for power laws inf’_..
the#iZddistribution e

(see also Self-orgamszed branching processes

Zapperl etal. 1995)
q -

;I'I.gmpb"ral corellations are absent ift the sand-pile model
b Many extensions have been proposed to include temporal
cetfelations....
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PHYSICAL MODELS
1967 1972 1987

Burctl‘idlge-KHOpoff Otsuka model | Self-organized criticality
mode
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Point-Process-approach :

Looking at the recording.of a sei8mic station, earthquakes usually appear as idblated
pulses. This is dueitd the fact that the duratjon of ap-earthquakeéigishiuch smaller than
thesaveradc temporal distance betweensevents;

For istance; for m=2.earthquake typical@uration is 0.1 sec whereas typical temporal
distance$ alre'llarg@r- than 1 minute.

Temporal clustering was clearly
evident already with data available
at the beginning of the 60's

=
=
=

=
=)
=)
=]
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Triggering Point-Procéss

Seismic rate: number of even#s for unit of time . r

e[t =ut6[t-t,

A is the fundamentat quantity in seismic forecasting since it is

proportienal to the probability to have a future earthquake on the
"sbasis of the previous historical information

LErL

Macroscopic approach: an earthquake is viewed as just one
point in a 5-dimensional space. All the details (the duration, the

spatial extension.....) are neglected
09/29/14 Non-equilibrium 14 KITP




POINT-PROCESS MODELS
1985

Point-Process ETAS model

models

PHYSICAL MODELS
1967 1972 1987

Burctl‘idlge-KHOpoff Otsuka model | Self-organized criticality
mode
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Epidemic time aftershock sequefice model
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iIdemic time aftershock se uence E S) model

Can be viewed as a branching process

time
1s O () O O
t N
time
\N time

3rd Ny "\ >
T/\j e #

4th O O

Totally different approach with respect to the Otsuka model
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I| = =

e
EDIdemIC time aftershock sequence ({ (ETAS) model

Probably thg:mo#st efficient tool act_y,allygqéilable foilseigm'ic forecasting.
o if® = i

NotW|stand q,g its-simiplicity maf§ non trivial patterns arise because of
the ma‘n eraction. e

e
http.//www.corssa.o rg/adieles/themev/zhuang_et_al_c/zhuang_et_al_c.pdf

-

.
" .

’ et a

-
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POINT-PROCESS MODELS
1985 2008

PHYSICAL MODELS
1967 1972 1987

Burctl‘idlge-KHOpoff Otsuka model | Self-organized criticality
mode
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Triggering Point-Process from a“physical
perspective

The term G(E,rt[E, r,t) describessnteraction between two earthquakes
11

"An €arthquake

modifies the stress

filed injihe

surrounding area

rising the probability

of subsequent

shocks

Distance

Some relaxationgi
mechanism is
present so that
stress released
evolves in time

Stress time

Distance

Uniform stress
Stress iIncreases at costant
rate because of
tectonic drive

oB(r,t)

Distance Non-equilibrium 14 KITP



Triggering Point-Process from a“physical
PoRspEsiive; .,

Earth Crust Elasticity. .. =i = Tk

UTOT(V,Z):OB(F,I)+ZOl-(V-Fi,I-Zl-)

Seismic*rate and stress relationship (Beeler and Lockner [2003])

1t~ eXplUTOT(r,t” if 6, >l

After mainshock relaxation shear rate evolves slowly

/l(r,t)=ﬂr+z/1ir—ri,t—ti
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Triggering Point- Process from a*physical
persoectlve = :

Explitely inclUding the energy-
JErt =y(E,r)+Z ¢ E,r—ri,t—ti\Ei)

Ihe sum extends over all previuos earthquakes and G becomes a two-
peint correlation function, i.e. The probability that at time t an event is

triggered by a previous one occured at tir'rlle .
j*a i
L‘ | O |
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The correlatlon"fanclztlon in tha}E'EKS model
ol LT ¥ ! g 4
T A T il

AN AN

EMPIRICAI:'I:K\?VS FOR P,Q,T,R

v
“P(E) CE"+2%  Gutenberg-Richter law
Q(E) O&"<2?  Productivity law g~
Td) [i(t+c)™ Omori law
R(xLEIx 5 spatial clustering
Ca

o
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The correlation function G within.a scaling approach

Distance
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The correlation function G within.a scaling approach

Distance
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The correlation function G within.a scaling approach

T characteristic
relaxation time

09/29/14 Non-equilibrium 14 KITP

Distance



=

The correlation function G within.a scaling approach

>
lu ll
ir

1 1a0.5m
Where LxEc]l

Is the typical length
of the triggered event
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1 =1 0. m H
i -

The correlatlon function G within.a §.c_:allng approach

a1}
. :

(1a0.5m
Where LxE o]l

Is the typical length
of the triggered event

Where vy is a scaling exponent
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II by _._1#

The correlation function G within.a scaling approach
i ra)

Lo o

Rl 7 00 =L | =~
.-'.'I'EJI v L L? L L?
.;,,.I.*_ a.‘
P.HI...I'"- -F"'-I
r

09/29/14 Non-equilibrium 14 KITP



EMPIRICAL VERIFICATIONS OFE-THE SCALING
HYPOTHESIS =~

Aftershock
spatial
density

]
Ar (km)
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AFTERSHOCK SPATIAL DENSITY DISTRIBUTION

Different mainshock magnltudes I\/I 2 3 4.5,6

0,001 0,01 10

Lippiello et al, PRL 2009

SPACE-ENERGY SCALING

Non-equilibrium 14 KITP




Different colors are different mainshock magnitudes
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Omori decay in experimental catalogs

TIME-ENERGY SCALING
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DYNAMICAL SCALING IN S.EISMICI.TY e

For convenience
let us intro&luce
the ‘quantity
M=L2=1Q'.': i,

plMl=] | dar 6Lt M <F, m
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LB
DYNAMICAL SCALING IN SEISMICEITY,-"“

.l | BN |
e 11

Remembering hat J =10 §

_ g
L | II I‘

Gutenberg-RichterTaWw is recovered and also productivity law with the condition a=Db.

GR law dnd productivity are not independent laws.
ol

We [;,avle ignored the costant d that however pjays an important role introducing non trivial
[+ ggufelations.
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DYNAMICAL SCALING IN S.EISMIC!TY e

=] [ e G M F i_f

Omori law is recovered and also productivity law.
The scaling analysis reveals that also Omori behavior and Productivity law are not
independent.

09/29/14 Non-equilibrium 14 KITP



DYNAMICAL SCAEING IN SEISMICITY «_

Remembermg that M l.:l()m"

Omori law is recovered and also produf:tiVity law.
The scaling analysis.reveals that also Omori behavior and Productivity law are not independent.

nature Vol 462|3 December 2009|dei:10.1038 /nature08553

LETTERS

Common dependence on stress for the two
fundamental laws of statistical seismology

Clément Narteau', Svetlana Byrdina', Peter Shebalin'” & Danijel Schorlemmer"
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Numerical simulations

/I(E,r,t):ﬂ(E,V)JFZ G(E,r‘rwt"ti‘Ei)




(0.1 1 10} 100 {'].] ] 10 100 0.1 | 10
Ar (km) Ar (Km) Ar (Km)
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Magnitude correlations -

Fhe presence of correlations between subsequent earthquake magnitudes provides
a first answer to the question concerning the existence of premonitoring indications
on thessubsequent earthquake magnitude. Magditude correlations, indeed, imply
Lthat earthquake occurrence modify physical properties in such a way to influence
the subsequent earthquake magnitude. The understanding of these modifications
represé'nt a possible tool to predict features of the next seismic event.
In the ‘opposite scenario, magnitudes are not affected by preexisting phyiscal
properties and therefore, magnitudes are totally uncorrelated.

Experimetal evidences: Lippiello et al. 2007,....,2012
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Linear Density distribution and .:itregs"s- diffusion

" | 12 . -
The agreement between experimental and numerical

oSl 1D[

Aroc i

= which implies that the evolution in time of stress is consistent with a
diffusion equation.

TrL i
e
has been proposed has one of the main
mechanisms responsible of aftershock triggering

The very good fit of numerical simulations support this conclusion:
Numerical results are obtained with H=0.47
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b. Coseismic + 7 years of
20 km| |postseismic viscous relaxation | |c. Postseismic only

Coulomb Stress Change (MPa)
 EEESIrEENEE

I |
FREED, Nature 2002
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Stress diffusion ; T

4

Lithougbhsere

e Y = Youngs modulus

Ao e R T S T
ASINEBNLIUNers

1 = viscosity
1L = shear modulus

| ™ I | B

\# “Stress transfer between faults through viscous relaxation may be a general cause of
earthquake clustering. For example, Lynch et al. (2003) suggest that seismicity on a northern
and southern San Andreas—type fault system can become coupled by the transfer of stress
through lower crustal flow. Chery et al. (2001) appeals to a similar stress transfer process to
explain a sequence of three M > 8 earthquakes that occurred in Mongolia during a 52-year
period despite great distances (400 km) that separate the events. And in a global review of
the relative distance and time delay separating pairs of earthquakes, Marsan & Bean (2003)
found that seismic activity diffuses away from an earthquake as the delay time increases
following its occurrence, which they attributed to viscous diffusion of stress in the upper
mantle.
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OPEN QUESTIQN-S""" o
-
"Ri

- s it pOSSIb|e to secoVT the obseryed scaljag inwaridhce in
prlysmal mibdels for selsm%etsu-rrp'nce’?
'.I|'.
Is it't Jlsaﬂ%' scaling mvanance.obse‘rved In other physical
proc'és =

o'

-_—-
-

- el

»-
- ." -F Fi
| I'S"II t possible to develop a branching model that combines the

mlcﬂglqscoplc chain-reaction model to the triggering models?
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