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Equation of motion  Energy balance:

Energy flux into the crack tip = dissipation

s(r) ~ r -1/2

?

Linear Elastic Fracture Mechanics  (LEFM)

Singularity of the stress at the crack tip

Speed limit  = cR

G =G

A.Livne, E. Bouchbinder and J.Fineberg, PRL 101, 264301 (2008).

E. Bouchbinder, A. Livne and J. Fineberg, PRL 101, 264302 (2008).

E. Bouchbinder, A. Livne and J. Fineberg, JMPS 57, 1568-1577 (2009). 

Fracture mechanics in ~1 min

LEFM: ignore what happens within the singular region…
(fine for this talk…)
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Fracture of polyacrylamide dynamic fracture in slow motion

by reducing sound velocities by 2-3 orders of magnitude

Change in the gel’s composition  Change in elastic constants

Young’s modulus E=100-560 kPa

Fracture energy G=13-60 J/m2

Slowing things down:

Understanding dynamic fracture through brittle gels



A simple crack moving at 0.6CR ~ 3m/s



Gels really probe dynamic fracture:   e.g. checking the equation of motion: G=G

In an infinite medium and constant stress, s : 
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The equation of motion G=G works perfectly:
Gels are perfectly representative of brittle materials!
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Excellent agreement with Fracture Mechanics for a simple crack

Gels are a convenient testing ground for fracture mechanics

What happens when cracks stop being simple?



The Micro-branching instability

• At a critical velocity a single crack may become unstable to frustrated micro-

branches

• In gels, Micro-branches have the same functional form as in other brittle 

materials
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Micro-branches within a Crack Front:

Micro-branches are Energy Sinks that are:

• Localized within the crack front (z direction)

• Align in chains along the propagation (x) direction.

• Bi-stable within a crack front
Gel Glass

V V

Is Energy balance local(?): G(v,z)=G(z)
What are Crack Front Dynamics when z-invariance is broken??z
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Micro-branches (fracture surface view)



Distance from the crack tip - r
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crack tip 
Real materials break at a crack 
geometry can lead to new 

Crack front

3D crack
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On the theoretical hand,

On the experimental hand,

We will be discussing this example to learn something in general about fronts

Crack fronts: A transition from 2D to 3D understanding of fracture

The conventional view

Materials fail at a crack tip 
because stresses become singular

 Crack tip equation of motion:

=G
Elastic energy 

available for 

fracture

Energy  

needed for 

fractureG

Challenges to the 2D view – front instabilities
The micro-branching instability –

z

x

Fracture 
surface

V

Stepped surfaces (Sommer ‘69, Tanaka et al. ‘98,00’, 
Baumberger et al. ’08,’13)

2D crack

Crack tip

y

x

localized out-of-plane structures

Front waves (Ramanathan & Fisher ‘97, Sharon et al. ‘01)

Other front instabilities

r

K

p
s

2
~

y

x



Gel sample 60x50x6 mm3

Collimated LED light

Imaging plane

r

E
c ~

10mm/pixel @ 48000 fps

E  90 kPa

c  5 m/s

Problem #1: Cracks are fast (3 km/sec in glass) 

Problem #2: How to image a crack front?

camera

Measuring rapid crack fronts Dynamics

Solution: Use gels (3 m/sec in polyacrylamide)

Solution: Look through the gel

The front becomes a moving shadow across the image



Simple crack

Front imaging:

Crack tip imaging:

The fracture surface post-mortem:

 

 

400 m

Micro-branching crack



Can we understand the 
Front shapes and dynamics
Velocity fluctuations

Do “simple” 2D Fracture Mechanics work in an intrinsically 3D world???

Velocity fluctuations along the front
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Once cracks stop being  geometrically simple, their dynamics become pretty complex

~ Exponential tails

Long-range correlations
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*Rice, ‘85. First order in x’(z), neglecting dynamic effects

v = v( K  , G )
Crack tip

eq. of motion:

v(z)

v0
~

K(z)

K0

G(z)

G0

-
Front 
curvature

K acts as a 
restoring force

Small cracks branch 
off the main front

More surface 
is created  

Increase in 
Fracture Energy

=G( v , K )
Elastic energy 

available for 

fracture

Crack tip 
singularity 

The dramatis personae: Enter v(z), K(z), G(z) 

Crack velocity

Transition to front dynamics: Assume the eq of motion is locally valid v(z) = v(K(z),G(z))

Perturb around 
a straight front:

z

x

z

x

x=x(z)
v = v0+v(z)

K = K0+K(z)

G = G0+G(z)

Front eq. 

of motion
 What determines K(z)?

K(z) can be computed:

 What determines G(z) in microbranching?

Pinning of 
the front



The life and times of a microbranching event
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• Micro-branch initiation increases G(z)  > 0
• The front is locally stretched as micro-branches 

progress  due to the inhomogeneity of G(z) 

• Upon micro-branch arrest, G(z)  = 0  while
K(z)> 0  fronts are locally accelerated



What determines the moment of release?

What determines the magnitude of velocity at release?

The crack front is a “slingshot”, cocked by micro-branch initiation



The velocity at the moment of complete release
( when  G ~ 0)

Immediately after a micro-branch dies G~ 0
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Let’s analyze the movie front-by-front:

• At first the front is locally retarded because of 

micro-branch nucleation + growth
(decrease in velocity = increase in fracture energy)

• The curved front collapses into a cusp-like shape 

• Cusp formation is immediately followed by release

1. Fronts propagate in the
normal direction

Develop cusps shocks in curvature

A finite-time singularity scenario

2. Diverging curvature
means diverging K

Micro-branches yield to diverging stress 
 fronts are released from pinning

What makes the stress grow so large?

 What determines the moment of release?
Front dynamics of one big 
microbranching event

How to test these assumptions?



Normal propagation  + curvature = Burgers equation

tu+vn∙u(z)∙zu =0
Burger’s equation for the slope u(z)

vx

vn  constant

tx = vx(z)=vncosq

vn(1-q2/2)
 vn (1-(x/z)2/2) 

taking /z  + using the 

slope:

u(z)  x/z

Burger’s Eqn  Finite time singularity

with
2x

2z
~

1

t* - t 
t* = 1 /(k0 vn)

CUSP formation time

x

z

k0
Initial curvature

t*



vn statistics are not far off from the assumptions! 

Assumptions for Burger’s equation:
• vn  constant 
• initial curvature of the front (due to G>0 )

No explicit fracture mechanics input required  only geometry!

How constant is the vn during the stress buildup?

vn varies by 10% over stress build-up
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Is cusp formation at all related to micro-branch dynamics?

t* = 1 /(k0vn)

CUSP formation time
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Dynamics of cracks

Are t* and t related?
???
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Cusp formation t* ~ Micro-branch lifetimes t ! 

Yes! Are t* and t related?

t / t*

k
k0

t*

0 0.5 1 1.5
0

2

4

6

0 0.5 1 1.5
0

2

4

6

0 0.5 1 1.5
0

2

4

6

0 0.5 1 1.5
0

2

4

6

0 0.5 1 1.5
0

2

4

6



Summary: Front geometry drives Front dynamics

Micro-branching provides insight into crack front dynamics

When a micro-branch is nucleated the front curves due 
to increased fracture energy

Crack front curvature spontaneously generates a cusp

The formation of the cusp  singular “line tension” K

Front velocities at release are determined 
by front geometry + Fracture mechanics 
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Thank you!
Singular line tension  cusp collapseMicro-branch Death
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Low-Friction Surface
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PMMA

Ilya Svetlizky & Jay Fineberg
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Friction is Fracture:

Fracture Processes Drive Frictional Motion

Friction Is Fracture



s(r) ~ r -1/2

Shear (sxy)Tension (syy)

Review: Fracture
Linear Elastic Fracture Mechanics  (LEFM)

• Linear elasticity → singularity of the stress at the crack tip 

• Energy balance → Dissipation = Energy flux into the crack tip 

• Important velocity scale CR ,Rayleigh wave speed (1255m/s for PMMA) 

Cf
Cf



F. Philip Bowden and David Tabor (1950) 

Frictional Interface

• Net contact area = A <<  Nominal contact area

• At the transition from stick to slip contacts are being broken and reduce A.

FN

Fs

We’ll show that:

Rupture of contacts described by classic Fracture Mechanics



Itransmitted  A A(x,t)= I(x,t) =   I(x,y,t) dy

Real Contact Area A Visualization

S. M. Rubinstein, G. Cohen, and J. F., Nature 430, 1005-1009 (2004)

Fast Camera
NF

6mm

Strain measurements

~3mm

~100 mm

2D strain tensor measured at 20 locations 
(~1 μV signal at 1 MHz rate)

Frame Rate ~ 580,000 Frames/sec

Resolution: 1280 Pixels / 200mm
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What types of rupture events occur upon slip initiation? 

Different ruptures modes:

are determined by local pre-stresses near the interface!

Here we’ll concentrate on ruptures where Cf < CS

Poor man’s movie: 

Horizontal lines are A(x) over the entire interface  separated in time by 2ms



Each t is a snapshot of the real area of contact across the entire interface (X-t plot)

Block detachment is mediated by propagating crack-like front

Friction Dynamic Fracture Problem

“Slow” Rupture Fronts
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Characterizing “Slow” Ruptures
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Cf<0.3CR : 

Spatial profiles of  strain collapse to a 

single functional form.
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Cf~0.86CR

Cf~0.94CR

Cf~0.4CR

Cf~ CR

0.4CR – CR

Does this collapse continue for even higher front velocities?

No data collapse at high velocities!

Cf~ CR

So, how can we explain this mess?! LEFM
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Comparing Strain Measurements To LEFM
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One free parameter K

Fracture Mechanics:

G= energy to break a unit area of contacts

(       )K G Fracture

Energy

fits all of the data well
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Excellent agreement at high velocities
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Comparing Strain Measurements To LEFM
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Comparing LEFM to Measurements at All Velocities:

x-xtip(mm)

exxe x
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
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Cf/CR

One free parameter G (Fracture energy)

Great quantitative agreement 

for all velocities
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for all velocities

Comparing LEFM to Measurements at All Velocities:

Problem with stress drop prediction



Gbulk = G A0/DA = 1 / (0.2 × 0.005) ~ 1000 J/m2 

 Gbulk ~ the measured bulk fracture energy for PMMA!

J.H. Dieterich, B.D. Kilgore Tectonophysics 256 (1996) 219-239

Real area of contact - PMMA

Under our conditions: A ~ 0.005A0 x-xtip(mm)

A
/A

(t
=

0
)

~20%

Does the value of G ~1J/m2 make sense?

Yes! When interface sparseness is taken into account G Gbulk

Cf



Well… What about friction (we are talking about friction)?

How is this compatible with a characteristic
static friction coefficient?

It’s actually not….



In general:
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mS can vary by ~ a factor of 2 – for the same materials under the same

ambient conditions!

O. Ben-David and  J. Fineberg, Phys. Rev. Lett. 106, 254301 (2011).
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Dissipation  DA(x,t) at the tip of a rupture front

Characterizing the dissipation scale, Xc

DA/A0

xc

Xc contracts as cf  cR!

J. R  Rice (1980)

M.Ohnaka & T.Yamashita JGR (1989)

Y.Bar Sinai, Efim A.Brener, E.Bouchbinder GRL (2012)

Xc contracts due to  relativistic effects 

at high front velocities

Xc=Xc0/f(cf) 
1/ f(cf) ~ Lorentz contraction of length scales

(for anti-plane f(cf) = (1-(cf/cs)
2)-1/2  )
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(another example)

A(x) characterizes the dissipation at each x, cf



Friction is (really) Fracture

• Singular fields at the rupture tip  Classic Shear Fracture

• Measured fracture energy (G~1J/m2)  ~bulk fracture energy

• Cohesive zone size contracts according to “Lorentz Contraction”

Questions:

• As Cf →CR, classic solution fails to describe exy(x-xtip>0)

• Rupture Nucleation

Summary

Thank you!


