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Outline:

• A very brief primer on tokamak turbulence and transport

• Avalanches in turbulent transport

• Zonal flows and the secondary pattern selection problem

• ExB staircase and avalanches

Staircase as a heat flux jam

• Discussion



What is a Tokamak?

N.B. No advertising intended…



Tokamak: the most intensively studied magnetic 
confinement device

PARAMETERS ITER KSTAR

Major radius 6.2m 1.8m

Minor radius 2.0m 0.5m

Plasma volume 830m3 17.8m3

Plasma current 15MA 2.0MA

Toroidal field 5.3T 3.5T

Plasma fuel H, D-T H, D-D

Superconductor Nb3Sn, NbTi Nb3Sn, NbTi

KSTAR

ITER



Basic of Magnetic Fusion

What is required for ignition? 
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- Energy content
- Confinement 

⇒ Good confinement
required for ignition! = /
Limited by stability

Confinement time 
set by turbulent transport



Tokamak Turbulence and 
Transport

à How do plasmas form a profile?

à What limits gradients?



Primer on Turbulence in Tokamaks I

• Strongly magnetized 

– Quasi 2D cells

– Localized by   ⋅  = 0 (resonance)

•  = +  	 × ̂
• , ,  driven

• Akin to thermal Rossby wave, with: g à magnetic curvature

• Resembles to wave turbulence, not high  Navier-Stokes turbulence

•  ill defined,  	 ≤ 1



Primer on Turbulence in Tokamaks II

S. Ku et al, EPS/ICPP 2012



Primer on Turbulence in Tokamaks III

• , , etc. driver

• Quasi-2D, elongated cells aligned with 
• Characteristic scale ~ few 
• Characteristic velocity  	~	∗

• Transport scaling: 	~	 	~	∗	~	
• i.e. Bigger is better! è sets profile scale via heat 

balance

• Reality: 	~	∗		,  < 1 è why??

2 scales: ≡	gyro-radius ≡	cross-section∗ ≡ / è key ratio



L→H Transition à Transport Barrier Formation
• A Remarkable Phenomenon: Plasma Spontaneously Self-Organizes to 

Improved Confinement

– L→H Transition – jam forms at edge

– Transport bifurcation, ‘phase transition’ ⇒ Pthresh, hysteresis, etc.

– Characterized by reduction of transport, turbulence in localized edge layer

– Likely related to VExB shear suppression of turbulent transport in edge layer

J.W. Huges et al., PSFC/JA-05-35
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H
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A. Hubbard et. al. 2002



→ Coupling of Transport Bifurcation to turbulence,           suppression

→ Non-linear Fick’s Law, extension

Shearing feedback

Profile Bifurcation

(H)

(L)

pedestal

forward

back

Heat flux S-curve induced by
profile-dependent shearing feedback



Avalanches in 
Turbulent Transport



Basic Phenomenology of CA Models – and Transport

• See: P.D. and Hahm, PoP’95; Newman, et al. PoP’96

• Avalanches happen:

è broad spectrum of inward, outward propagating avalanches evident

• What is an avalanche? 

– sequence of correlated toppling or eddy over-turning events

– akin to fall of dominos

– typically: Δ <  <  à meso-scale

 =   = 



• Cells “pinned” by magnetic geometry

• Remarkable

Similarity:

Automaton toppling
↔ Cell/eddy overturning



Are avalanches a consequence of the toy CA model? NO!

• Avalanches observed, studied in flux driven simulations

– First: Carreras , et. al. PoP’96 à resistive interchanges

– GK: GYSELA, GT5D, XGC1p …

• Comment:

– flux tube and  	simulations and those which artificially constrain , will not capture (full) 

avalanche dynamics

– avalanching not captured in quasi-linear models

Newman PoP96 Idomura NF09



Transport: Local or Non-local?
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Guilhem Dif-Pradalier et al. PRL 2009

• 40 years of fusion plasma modeling
− local, diffusive transport 

• 1995 → increasing evidence for:
− transport by avalanches as in sand pile/SOCs
− turbulence propagation and invasion fronts
− non-locality of transport

• Physics:
− Levy flights, SOC, turbulence fronts…

• Fusion: 
− gyro-Bohm breaking 

(ITER: significant ρ*  extension)
→  fundamentals of turbulent transport  modeling?



What Do Profiles Look Like?

• SOC profile ≠ linearly marginal profile

• For moderate drive, SOC occupation profile < marginal profile

• N.B. Important

– Observe SOC profile approaches marginal profile near boundary

– Flip intensity largest near boundary à losses

– As deposition increases, edge gradient steepens 

è with bi-stable flux, transport bifurcation naturally initiated first, at boundary

Newman PoP96



Heat avalanche dynamics model (Continuum)

• Heat Balance Eq.:

→ joint reflectional symmetry (Hwa+Kardar’92, Diamond+Hahm ’95)

→ up to source and noise

• Heat Flux            ?

- Usual:

Hwa+Kardar ’92, P.D. + Hahm ’95, Carreras, et al. ’96, ... GK simulation, ... Dif-Pradalier ’10 

•       :deviaon from marginal profile → conserved order parameter

hyperdiffusion

lowest order → Burgers equaon

→ ulize symmetry argument, ala’ Ginzburg-Landau



• How is transport suppressed?

è shear decorrelation!

• Back to sandpile model: 

• Avalanche coherence destroyed by shear flow

2D pile + 

sheared flow of 

grains

No
shear

shear

Shearing flow
decorrelates
Toppling sequence

• External Shear



• Implications:

Spectrum of Avalanches

With shear

W/O shear



Concept of a Transport Bifurcation
i.e. how generate the sheared flow??

→ First Theoretical Formulation of L→H Transition as an

è Appearance of S-curve in a Physical Model of L→H Transition

è Formulation of Criticality Condition (Threshold) for Transport Bifurcation

→ Theoretical Ideas on Hysteresis, ELMs, Pedestal Width, .....

- Transport Bifurcation

-  ′ Bifurcation

back

forwardQ

N.B. Edge sheared flow / transport barrier è LàH transition

−-  = −     − 



LàH Transition
• Now try bi-stable toppling rule, i.e. if  −  large enough 

è reduced or no toppling

• Obvious motivation is  = −  and  ≈  
• Hard gradient limit imposed

• Transitions happen, pedestal forms!

Gruzinov PRL2002



Note
• Critical deposition level required to form pedestal (“power threshold”)

• Pedestal expands inward with increasing input after transition triggered

• Now, including ambient diffusion (i.e. neoclassical)

–  threshold evident

– Asymmetry in LàH and HàL depositions

Gruzinov PoP2003



Hysteresis Happens!
• Hysteresis loop in mean flux-gradient relation appears for  ≠ 0
• Hysteresis is consequence of different transport mechanisms at work in “L” and 

“H” phases

• Diffusion ‘smoothes’ pedestal profiles, allowing filling limited ultimately by large 

events

Gruzinov PoP2003

Γ  =Flux  =Mean Slope



Zonal Flows and
the Secondary Pattern 

Selection Problem
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Preamble I
• Zonal Flows Ubiquitous for:

~ 2D fluids / plasmas

Ex: MFE devices, giant planets, stars…

R0 < 1

0B
r

W
r

Rotation      , Magnetization     , Stratification
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Preamble II
• What is a Zonal Flow?

– n = 0 potential mode; m = 0 (ZFZF), with possible sideband (GAM)

– toroidally, poloidally symmetric ExB shear flow 

• Why are Z.F.’s important?

– Zonal flows are secondary (nonlinearly driven):

• modes of minimal inertia (Hasegawa et. al.; Sagdeev, et. al. ‘78)

• modes of minimal damping (Rosenbluth, Hinton ‘98)

• drive zero transport (n = 0)

– natural predators to feed off and retain energy released by 

gradient-driven microturbulence
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Zonal Flows I
• Fundamental Idea:

– Potential vorticity transport + 1 direction of translation symmetry                             
→  Zonal flow in magnetized plasma / QG fluid

– Kelvin’s theorem is ultimate foundation

• G.C. ambipolarity breaking → polarization charge flux → Reynolds force
– Polarization charge

– so                                                                   ‘PV transport’ 

– If 1 direction of symmetry (or near symmetry):

eGCi G¹G ,

)()(,
22 fffr eGCi nn -=Ñ-

polarization length scale ion GC

0~~ 22 ¹Ñ^fr rEv

polarization flux

ErErrE vvv ^^ -¶=Ñ- ~~~~ 22 fr (Taylor, 1915)

ErEr vv ^¶- ~~

→ What sets cross-phase?

Reynolds force Flow

electron density
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• Coherent shearing: (Kelvin, G.I. Taylor, Dupree’66, BDT‘90)

– radial scattering +       →  hybrid decorrelation

– →

– shaping, flux compression: Hahm, Burrell ’94

• Other shearing effects (linear):

– spatial resonance dispersion:

– differential response rotation → especially for kinetic curvature effects

→  N.B. Caveat: Modes can adjust to weaken effect of external shear 

(Carreras, et. al. ‘92; Scott  ‘92)

Shearing I

'EV

^Dkr
2

cE DVk tq /1)3/'( 3/122 =^

)(' 0|||||||| rrVkvkvk E ---Þ- qww

Response shift 
and dispersion
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Shearing II
• Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. ‘98, et. seq.)

• ;

• Mean Field Wave Kinetics
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Zonal shearing

- Wave ray chaos (not shear RPA) 

underlies Dk → induced diffusion

- Induces wave packet dispersion

- Applicable to ZFs and GAMs 
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Coherent interaction approach (L. Chen et. al.)
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Shearing III
• Energetics: Books Balance for Reynolds Stress-Driven Flows!

• Fluctuation Energy Evolution – Z.F. shearing

• Fate of the Energy: Reynolds work on Zonal Flow

• Bottom Line:

– Z.F. growth due to shearing of waves

– “Reynolds work” and “flow shearing” as relabeling → books balance

– Z.F. damping emerges as critical; MNR ‘97
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(c.f. Gurcan et. al. 2010)



32

Feedback Loops I
• Closing the loop of shearing  and Reynolds work

• Spectral ‘Predator-Prey’ equations
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Feedback Loops II
• Recovering the ‘dual cascade’:

– Prey → <N> ~ <Ω>  ⇒ induced diffusion to high kr

– Predator →   

• Mean Field Predator-Prey Model 

(P.D. et. al. ’94, DI2H ‘05)

System Status

⇒ Analogous →  forward potential

enstrophy cascade; PV transport

2
,

2 ~|| qf Eq V
⇒ growth of n=0, m=0 Z.F. by turbulent Reynolds work

⇒ Analogous →  inverse energy cascade
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A Central Question: Secondary Pattern Selection

• Two secondary structures suggested

– Zonal flow à quasi-coherent, regulates transport via 

shearing

– Avalanche à stochastic, induces extended transport 

events

• Nature of co-existence?



Staircases and 
Traffic Jams

Single Barrier à Lattice of Shear Layers

à Jam Patterns



Highlights

Observation of ExB staircases

Model extension from Burgers to telegraph

Analysis of telegraph eqn. predicts heat flux jam

finite response time

- scale of jam comparable to staircase step

→ Failure of convenonal theory

→ like drivers’ response me in traffic

(emergence of particular scale???)



Motivation: ExB staircase formation (1)

• `ExB staircase’ is observed to form

- so-named after the analogy to PV staircases 
and atmospheric jets

- Step spacing à avalanche  outer-scale

- flux driven, full f simulation

- Region of the extent 
interspersed by temp. corrugation/ExB jets

- Quasi-regular pattern of shear layers 
and profile corrugations

(G. Dif-Pradalier, P.D. et al. Phys. Rev. E. ’10)

→ ExB staircases

• ExB flows often observed to self-organize in magnetized plasmas
eg.) mean sheared flows, zonal flows, ...



ExB Staircase (2)

• Important feature: co-existence of shear flows and avalanches

- Can co-exist by separating regions into:

- What is process of self-organization linking avalanche scale to ExB step scale?

i.e. how explain the emergence of the step scale   ???

• How understand the formation of ExB staircase???

1. avalanches of the size

- Seem mutually exclusive ?!?

2. localized strong corrugations + jets

→ strong ExB shear prohibits transport

→ avalanches smooth out corrugaons
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Staircases, cont’d

• The point: 

– fit:

– i.e.        Avalanche scale >>         correlation scale

– Staircase ‘steps’ separated by     !

N.B.

• The notion of a staircase is not new – especially in systems with natural periodicity (i.e. NL wave 

breaking…)

• What IS new is the connection to stochastic avalanches, independent of geometry

– What is process of self-organization linking avalanche scale to zonal pattern step?

i.e. How extend predator-prey feedback model to encompass both avalanche 

and zonal flow staircase? Self-consistency is crucial!

ò ¢Ñ¢¢-= )(),( rTrrrdQ k 22
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rr
Srrk → some range in exponent

cD>>D ~D ~cD

D →  stochastic avalanches produce    
quasi-regular flow pattern!?



Corrugation points and rational surfaces – no relation!

Step location not tied to magnetic
geometry structure in a simple way



Staircases build up from the edge

→ staircases may not be related to zonal 
flow eigenfunctions

→ How describe generaon mechanism??

(GYSELA simulation)



Towards a model

corrugated profile           ExB staircase

• An idea: jam of heat avalanche

• How do we actually model heat avalanche ‘jam’??? → origin in dynamics?

• How do we understand quasi-regular pattern of ExB staircase, generated from stochastic 
heat avalanche???

→ corrugaon of profile occurs by 
‘jam’ of heat avalanche flux

→ accumulaon of heat increment
→ staonary corrugated profile

→ time delay between           and       
is crucial element

＊

like drivers’ response time in traffic



Traffic jam dynamics: ‘jamiton’

• Simulation of traffic jam formation

→ Jamitons (Flynn, et.al., ’08)

http://math.mit.edu/projects/traffic/

• A model for Traffic jam dynamics → Whitham

→ car density

→ traffic flow velocity

→ an equilibrium traffic flow

→ driver’s response time

→ Instability occurs when

→ Indicave of jam formaon

→ clustering instability

n.b. I.V.P. → decay study



Heat avalanche dynamics model (`the usual’)

• Heat Balance Eq.:

→ joint reflectional symmetry (Hwa+Kardar’92, Diamond+Hahm ’95)

→ up to source and noise

• Heat Flux            ?

- Usual:

Hwa+Kardar ’92, P.D. + Hahm ’95, Carreras, et al. ’96, ... GK simulation, ... Dif-Pradalier ’10 

•       :deviaon from marginal profile → conserved order parameter

hyperdiffusion

lowest order → Burgers equaon

→ ulize symmetry argument, ala’ Ginzburg-Landau



• An extension: a finite time of relaxation of       toward SOC flux state

An extension of the heat avalanche dynamics

• Dynamics of heat avalanche:

→ Burgers
(P.D. + T.S.H. ’95)

New: finite response time

→ In principle large near criticality (〜 critical slowing down)

i.e. enforces time delay between       and heat flux

n.b. model for heat evolution

diffusion → Burgers → Telegraph

→ Telegraph equation

(Guyot-Krumhansl)



Relaxation time: the idea

• What is ‘     ’ physically?

• A useful analogy:

→ Learn from traffic jam dynamics

heat avalanche dynamics traffic flow dynamics

temp. deviation from marginal profile local car density

heat flux traffic flow

mean SOC flux (ala joint relflection 
symmetry)

equilibrium, steady traffic flow

heat flux relaxation time driver’s response time

- driver’s response can induce traffic jam
- jam in avalanche → profile corrugaon → staircase?!?

- Key: instantaneous flux vs. mean flux



Time delay: microscopic foundation?

• Relaxation by plasma turbulence = mixing of phase space density

• Energy moment leads to heat flux evolution equation (Gurcan ’13)

production
due gradient relaxation

turbulent mixingphase space density correlation = 
‘phasetrophy’

→ Heat flux relaxes toward the mean value, in the mixing me

The delay time is a natural consequence of phase space density mixing. The 
delay time is typically in the order of mixing time.

i.e. PV mixing time sets delay



Heat flux dynamics: when important?

New approach for transport analysis

then telegraph equation:

• Heat flux evolution:

Conventional Transport Analysis

→ me delay, when important?

→ Heat flux relaxes to the mean 
value immediately

→ Profile evolves via the mean flux

then

→ mixing me can be long, so

→ Heat evo. and Profile evo. must be 
treated self-consistently

time scale of interest

diff.

Burgers

time scale of interest
mesoscale



Brief summary on model extension

telegraph

Burgers

Diffusion

- Physical idea: analogy to traffic dynamics, drivers’ response time

finite response time

- Microscopic foundation: mixing of phase space density

- Finite response me → Heat dynamics described by telegraph eqn.

Heat Flux Profile evo.

Usual:

Extended:

→ Wavy feature, speed determined by /
- Connects avalanche dynamics to elasticity in/of turbulence



• Consider an initial avalanche, 
with amplitude ,
propagating at the speed 

Analysis of heat avalanche dynamics via telegraph
• How do heat avalanches jam?

→ turbulence model dependent

• Dynamics:

two characteristic propagation speeds

pulse

→ In short response me (usual) heat 
flux wave propagates faster

→ In long response me, heat flux wave 
becomes slower and pulse starts overtaking. 
What happens???

‘Heat flux wave’:
telegraph → wavy feature



Analysis of heat avalanche jam dynamics

• negative heat conduction instability occurs (as in clustering instability in traffic jam dynamics)

n.b. akin to negative viscosity instability of ZF in DW turbulence

• In large tau limit, what happens?

• Recall plasma response time akin to driver’s response time in traffic dynamics

→ Heat flux jams!!

<0 when overtaking

→ clustering instability

instead ZF as secondary mode in the gas of primary DW

è Heat flux ‘jamiton’ as secondary mode in the gas of primary avalanches



Analysis of heat avalanche jam dynamics

• Growth rate of the jamiton instability

• Threshold for instability

• Scale for maximum growth

n.b. 
→ clustering instability strongest near cricality

from

→ staircase size, 

→ crical minimal delay me

, from saturation: consider shearing



Scaling of characteristic jam scale

• Saturation: Shearing strength to suppress clustering instability

→ esmate, only

• Characteristic scale

- Geometric mean of

- ‘standard’ parameters: 

Jam growth → profile corrugaon → ExB staircase →

→ saturated amplitude:

: ambient diffusion length in 1 relaxation timeand



Jam growth qualitatively consistent with staircase formation 

Dif-Pradalier ’13 caveat: based on model with compressional waves

good agreement in 
early stage

outer radius: 
large chi
→ smear out 
instability
or
→ heat flux waves 
propagate faster
→ harder to 
overtake, jam

NL evolution ???



Summary

• A model for ExB staircase formation

• Analysis of heat flux jam dynamics

- Negative conduction instability as onset of jam formation

- Growth rate, threshold, scale for maximal growth

- Qualitative estimate: scale for maximal growth 

- Heat avalanche jam → profile corrugaon → ExB staircase

- model developed based on analogy to traffic dynamics → telegraph eqn.

→ comparable to staircase step size



Ongoing Work

• This analysis ↔ set in context of heat transport

• Implications for momentum transport? è

– consider system of flow, wave population, wave 

momentum flux

– time delay set by decay of wave population 

correlation due ray stochastization à elasticity

– flux limited PV transport allows closure of system



–→  Collecve Dynamics of Turbulent Eddy 
– ‘Aether’ I – First Quasi-Particle Model of Transport?!

− Kelvin, 1887

Aside: FYI – Historical Note



→  time delay between 
Reynolds stress and 
wave shear introduced

→  converts diffusion equation 
to wave equation

→ describes wave in ensemble 
of vortex quasi-particles

– c.f. “Worlds of Flow”, O. Darrigol 

ñá 22 ~~ vR


