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Outline:

« A very brief primer on tokamak turbulence and transport
 Avalanches in turbulent transport
« Zonal flows and the secondary pattern selection problem

e r ExB staircase and avalanches

-

L Staircase as a heat flux jam

e Discussion



What is a Tokamak?

N.B. No advertising intended...



Tokamak: the most intensively studied magnetic
confinement device

PARAMETERS ITER KSTAR

Major radius 6.2m 1.8m
Minor radius 2.0m 0.5m
Plasma volume 830m3 17.8m3
Plasma current 15MA 2.0MA
Toroidal field 5.3T 3.5T

Plasma fuel H, D-T H, D-D

Superconductor Nb;Sn, NbTi Nb;Sn, NbTi




Basic of Magnetic Fusion

What is required for ignition? - Energy content
P FuelD. T - Confinement
¥ Amount/density 7 Confinement time 15

¥ Ignition temperature T set by turbulent transport

¥ Energy confinement time 7

- T
Fusion power ~ n°T*(~ °B*) > Loss power ~ e

__V Tk
78 3 = Good confinement
n-1- g > 3x107" m~Ks required for ignition!

Lawson criterion for D-T fusion B = Py /Py
Limited by stability




Tokamak Turbulence and
Transport

- How do plasmas form a profile?

- What limits gradients?



Primer on Turbulence in Tokamaks I

Strongly magnetized

— Quasi 2D cells

— Localized by k-B=0 (resonance)

—

¢ VJ_ EXZA

5
« VT,, VT;, Vn driven

« AKkin to thermal Rossby wave, with: g = magnetic curvature
 Resembles to wave turbulence, not high Re Navier-Stokes turbulence

« Reill defined, K <1



Primer on Turbulence in Tokamaks II

(Klasky, ORNL: Ethier, Wang, PPPL] S. Ku et al, EPS/ICPP 2012




Primer on Turbulence in Tokamaks III

2 scales:
p = gyro-radius
a = cross-section

p. = p/a <> key ratio

« VT,Vn, etc. driver
« Quasi-2D, elongated cells aligned with By
« Characteristic scale ~ few p;

« Characteristic velocity v, ~ p,c

Transport scaling: D ~ pv,; ~ p.Dg ~ D¢p
.e. Bigger is better! = sets profile scale via heat

balance

Reality: D ~ p& Dy, a <1 = why??



L—H Transition - Transport Barrier Formation

« A Remarkable Phenomenon: Plasma Spontaneously Self-Organizes to

Improved Confinement

Electron Temperature (eV)

— L—H Transition — jam forms at edge A. Hubbard et. al. 2002
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— Transport bifurcation, ‘phase transition’ = Py, .., hysteresis, etc.
— Characterized by reduction of transport, turbulence in localized edge layer

— Likely related to V/,, shear suppression of turbulent transport in edge layer



— Coupling of Transport Bifurcation to turbulence, ('UE)' suppression

— Non-linear Fick's Law, extension

forward
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Avalanches In
Turbulent Transport



Basic Phenomenology of CA Models — and Transport

« See: PD. and Hahm, PoP'95;: Newman, et al. PoP'96

« Avalanches happen:

(a) time

(b) time ———»

=» broad spectrum of inward, outward propagating avalanches evident

« What is an avalanche?

— sequence of correlated toppling or eddy over-turning events

— akin to fall of dominos

— typically: A; < lgyg < L, = meso-scale



* Cells “pinned” by magnetic geometry

TABLE I. Analogies between the sandpile transport model and a turbulent transport model.

« Remarkable

Turbulent transport in toroidal

S . I t plasmas Sandpile model
imiiarl y Localized fluctuation (eddy) Gnd site (cell)
Local turbulence mechanism: Automata rules:
Critical gradient for local instability Critical sandpile slope (Z ;)
Local eddy-induced transport Number of grains moved if unstable (V)
Total energy/particle content Total number of grains (total mass)
Heating noise/background fluctuations Random rain of grains
Energy/particle flux Sand flux
Mean temperature/density profiles Average slope of sandpile
Transport event Avalanche
Sheared electric field Sheared flow (sheared wind)
A

Automaton toppling
< Cell/eddy overturning

A cartoon representation of the simple cellular automata rules used
to model the sandpile.



Are avalanches a consequence of the toy CA model? NO!

* Avalanches observed, studied in flux driven simulations

— First: Carreras , et. al. POP'96 - resistive interchanges

— GK: GYSELA, GT5D, XGClp ...

1 10
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) 6| L
s 10 > 0.001 }
10° o 0.0001 } ., :
10° | 16-05 oy — W ,
: 1-08 | 4MW ~— T
1000 A i) " PEPRPErI L /@ e R,
0.0001 0.001 0.01 . 1e-07 : : -
freq 0.01 0.1 1 10
Newman PoP96 ORy/Vy; Idomura NF09

« Comment;:

— flux tube and &f simulations and those which artificially constrain VP, will not capture (full)

avalanche dynamics

— avalanching not captured in quasi-linear models



Transport: Local or Non-local?

40 years of fusion plasma modeling

- local, diffusive transport | %
Q=—-ny(r)vr 3 50

200

(0]
1995 — increasing evidence for: £ 7

— transport by avalanches as in sand pile/SOCs = {
— turbulence propagation and invasion fronts

— non-locality of transport T " Radivs: rrp

O =—[x(r,r VT (")ar -
Physics: s | /M "
~ Levy flights, SOC, turbulence fronts... 5 Ll .
Fusi . e o |—-— o Kernel width:A/pi| i
usion. E’ 6: turb. a-utocorrelation
~ gyro-Bohm breaking 1 " ondth: %76 - < ]
4 I« JE & ——m T 7

(ITER: significant p. extension) e L mr

1/p

ing?
— fundamentals of turbulent transport modeling: Guilhem Dif-Pradalier et al. PRL 2009



What Do Profiles Look Like?

1400 »‘.; ——— -,

1200 - q."'.. .

[ SOC profile
200 |
0 ' . ] a2 1
0 50 100 150 200
X
« SOC profile # linearly marginal profile Newman PoP96

« For moderate drive, SOC occupation profile < marginal profile

* N.B. Important
— Observe SOC profile approaches marginal profile near boundary
— Flip intensity largest near boundary - losses
— As deposition increases, edge gradient steepens

= with bi-stable flux, transport bifurcation naturally initiated first, at boundary



Heat avalanche dynamics model (Continuum)

Hwa+Kardar * 92, P.D. + Hahm ’ 95, Carreras, et al. 96, ... GK simulation, ... Dif-Pradalier * 10

e 4T :deviation from marginal profile - conserved order parameter

e Heat Balance Eq.: 8,67 + 9,.Q[67] =0 - up to source and noise

e Heat Flux QI[é77 — utilize symmetry argument, ala’ Ginzburg-Landau

- Usual: - joint reflectional symmetry (Hwa+Kardar’92, Diamond+Hahm ’95)

Q = Qo(dT)
A\ N €Tr < —X 2 *

hyperdiffusion

lowest order - Burgers equation 06T + NOT 06T = x2026T



e External Shear

(b) time —————=

FIG. 11. Time evolution of the overtuming sites (like Fig. 4). The ava-
lanches do not appear continous in time because only every 50th time step is
shown. (a) The shear-free case shows avalanches of all lengths over the
entire radius. (b) The case with sheared flow shows the coherent avalanches
being decorrelated in the shear zone in the middle of the pile.

How is transport suppressed?
=» shear decorrelation!

Back to sandpile model:

Closed end
2D pile +
sheared flow of
grains 1
Shearing flow E
e |
decorrelates
Toppling sequence g
Open End

FIG. 10. A cartoon of the sandpile with a shear flow zone. The whole pile 1s
flowing to the right at the top and to the left at the bottom connected by a
variable sized region of sheared flow.

Avalanche coherence destroyed by shear flow



* |Implications:

Spectrum of Avalanches
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FIG. 12. (a) Frequency spectra with and without a shear flow region. This
shows a marked decrease in the low-frequency power (with shear) and a
commensurate increase in high-frequency power. (b) The insert shows the
decorrelation time (7,=1/w) as a function of the shear parameter (the prod-
uct of the shearing rate and the size of the shear zone).

shear

shear

dh/dx

0 50 100 150 200

FIG. 14. The slopes of a sandpile with a shear region in the middle, includ-
mng all the shear effects (diamonds) and just the transport decorrelation and
the linear effect (circles).

FIG. 11. Time evolution of the overtuming sites (like Fig. 4). The ava-
lanches do not appear continous in time because only every 50th time step 15
shown. (a) The shear-free case shows avalanches of all lengths over the
entire radius. (b) The case with sheared flow shows the coherent avalanches
being decorrelated in the shear zone in the middle of the pile.



Concept of a Transport Bifurcation
i.e. how generate the sheared flow??

N.B. Edge sheared flow / transport barrier =& L->H transition
— First Theoretical Formulation of L—H Transition as an

- Transport Bifurcation Q forward

- (E,.)’ Bifurcation

N X _
Q 1+a(Vg)'? VI = xoVIT —VT

= Appearance of S-curve in a Physical Model of L—H Transition
=» Formulation of Criticality Condition (Threshold) for Transport Bifurcation

— Theoretical Ideas on Hysteresis, ELMs, Pedestal Width, .....



L->H Transition

* Now try bi-stable toppling rule, i.e. if Z; — Z;,, large enough

=» reduced or no toppling

xvpP _ ¢cVvp
————and V/y; x ——

* Obvious motivation is Q = —
1+aV'g eB n

« Hard gradient limit imposed

* Transitions happen, pedestal forms!

« 1000
=

o
Q

¢

‘-J"H'dth

O 2 4 6 8 10 12 14
N, (grains per iteration)  Gruzinov PRL2002




Note

» Critical deposition level required to form pedestal (“power threshold”)
« Pedestal expands inward with increasing input after transition triggered

* Now, including ambient diffusion (i.e. neoclassical)

— N threshold evident

— Asymmetry in L>H and H->L depositions

Gruzinov PoP2003



Hysteresis Happens!

« Hysteresis loop in mean flux-gradient relation appears for Dy # 0

» Hysteresis is consequence of different transport mechanisms at work in “L” and

“H” phases

« Diffusion ‘'smoothes’ pedestal profiles, allowing filling limited ultimately by large

events

r(R)
N (N

O =

I'R)

O LTI T‘TITT‘I'I“TTT TWT‘I’TY*I‘I‘TI’TTTI

I'(R)=Flux
Z(R)=Mean Slope

30

Gruzinov PoP2003



Zonal Flows and
the Secondary Pattern
Selection Problem



Preamble I

« Zonal Flows Ubiquitous for:

~ 2D fluids / plasmas R, <1
Rotation Q, Magnetization B Stratification

Ex: MFE devices, giant planets, stars...




Preamble II

 What is a Zonal Flow?
— n = 0 potential mode; m = 0 (ZFZF), with possible sideband (GAM)

— toroidally, poloidally symmetric ExB shear flow

 Why are Z.F.'s important?

— Zonal flows are secondary (nonlinearly driven):
« modes of minimal inertia (Hasegawa et. al.; Sagdeey, et. al. ‘78)
« modes of minimal damping (Rosenbluth, Hinton ‘98)

 drive zero transport (n = 0)

— natural predators to feed off and retain energy released by

gradient-driven microturbulence

RIS e 27 =< UCSD



Zonal Flows 1

« Fundamental Idea:

— Potential vorticity transport + 1 direction of translation symmetry
— Zonal flow in magnetized plasma / QG fluid

— Kelvin’s theorem is ultimate foundation

« G.C. ambipolarity breaking — polarization charge flux — Reynolds force

— Polarization charge mmp .pZW —:nl oc(#)—n.(9) |

polarization length scale J ion GC electron density

— SO, ;o #, mmp p2<\7,,EVi$>¢O @) PV transport
L polarization flux — What sets cross-phase?
— If 1 direction of symmetry (or near symmetry):

—p <erVL¢>— -8,(v,,%.,) (Taylor, 1915)
~0,(V,;v,;) =) Reynolds force mmp Flow

NEREEESE . 28 =< UCSD



Shearing I

» Coherent shearing: (Kelvin, G.I. Taylor, Dupree’66, BDT"90)
— radial scattering + (V,)' — hybrid decorrelation

- k’D, — (k;(V;)?D, /3" =1/z,

— shaping, flux compression: Hahm, Burrell 94

. _ R Hift Time
 Other shearing effects (linear): esponse shi
and dispersion =y

— spatial resonance dispersion: o — kv, = o —kyv, —k, (V) (r —r,)
— differential response rotation — especially for kinetic curvature effects
— N.B. Caveat: Modes can adjust to weaken effect of external shear

(Carreras, et. al. ‘92; Scott ‘92)

NEREESE e 29 =< UCSD



Shearing II

« Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. ‘98, et. seq.)

. dk. /dt =

Mean

shearing

Zonal

Random

« Mean Field Wave Kinetics

—0(w+k V) or; vV, :<VE>+I7E A

k

r

k =k —k,Vir '
/» #VAVQUBU%%W’
() =Dy x

shearing D, Zkz‘VEq

Coherent interaction approach (L. Chen et. al.)

V),. A V.,

Tk — Wave ray chaos (not shear RPA)
underlies D, — induced diffusion

— Induces wave packet dispersion

ON ON
E+(V +V)- VN——(co+k V) — 7 =7 N—-Ci{N} - Applicable to ZFs and GAMs
0 0 A
= —(N)—— N)=y.(N)—(C{N
L Zonal shearing
NERIE 30 < UCSD



Shearing III

« Energetics: Books Balance for Reynolds Stress-Driven Flows!

* Fluctuation Energy Evolution — Z.F. shearing

o1 ok * ok, k, o (1+k2p2)

Point: For d(Q)/dk, <0, Z.F. shearing damps wave energy

[dhe] &My~ -0, )| = £0) [ av, op, () v, =Pk

« Fate of the Energy: Reynolds work on Zonal Flow

Modulational .9V, + 5(5<VFV9>)/ or =—yoV,
Instability N.B.: Wave decorrelation essential:
Equivalent to PV transport

(c.f. Gurcan et. al. 2010)

~ ~ krk 1. Q)
5<VrV6>N g 282
. (1+kJ_ps)
« Bottom Line:

— Z.F. growth due to shearing of waves
— “Reynolds work” and “flow shearing” as relabeling — books balance

— Z.F. damping emerges as critical; MNR ‘97

NEREESE e 31 =< UCSD



Feedback Loops I

flow dampin flow damping

. , ) . energy
 Spectral ‘Predator-Prey’ equations [ZO“a‘ ElowH ]‘@

SUPPRESS * *DRI\'E

;
Inhomoge- Drift wave
neity turbulence

DRIVE

« Closing the loop of shearing and Reynolds work |coliisional ] )Nonlinear
o INSUPPRESS
c\

Prey — Drift waves, <N>

O 0 O Ao,
& (M)~ D, () = 1) =52 ()

Predator — Zonal flow, |@|°

0 2 6<N> 2 _ 2 _ 2 g

NERD S fwon, 32 < UCSD



Feedback Loops 11

Recovering the ‘dual cascade’:

_ o _ = Analogous — forward potential
— Prey —» <N>~ <Q> = induced diffusion to high k.
enstrophy cascade; PV transport

= growth of n=0, m=0 Z.F. by turbulent Reynolds work

~ Predator — | ¢, '~ (V7,) {
= Analogous — inverse energy cascade

System Status

State No flow Flow (a2 = 0) Flow (a2 # 0)
' - =
Mean Field Predator-Prey Model ¥ (@it wave . % nsarya!

turbulence level)

) 1
(PD et al 94, DIZH 05) 5 Yy Aoy Yy — Awyga™!
V= (mean square 0 = 3 o 1
o - o+ Awara™
a flow)
) ) Drive/excitation Linear growth Linear growth Linear growth
o N = 7N —aV "N —-AwN mechanism Nonlinear
4 damping
a of flow
V2 = aNV2 — deZ — 7/NL (V2 )V2 Regulation/inhibition Self-interaction Random shearing, Random shearing,
6[ mechanism of turbulence self-interaction self-interaction
72 - A -1 — A -1
Branching ratio tT 0 e %
: W W +taya”
Threshold (without noise) y = 0 y > Awyga™! y > Awyga™!

RIS e 33 =< UCSD



A Central Question: Secondary Pattern Selection

* Two secondary structures suggested

— Zonal flow - quasi-coherent, regulates transport via

shearing

— Avalanche - stochastic, induces extended transport

events

 Nature of co-existence?



Staircases and
Traffic Jams

Single Barrier - Lattice of Shear Layers

- Jam Patterns



Highlights

Observation of ExB staircases

— Failure of conventional theory

Turbulence drive: R,

(emergence of particular scale???)

80 100 120 140 160 180
Normalized radius: r/ ”

Model extension from Burgers to telegraph
06T + NST 06T = x2026T - e
= CORST+ 06T + ASTD,6T = x2025T e e

finite response time = like drivers’ response time in traffic

Analysis of telegraph eqn. predicts heat flux jam %

L

L L L LT

2

R 4

- scale of jam comparable to staircase step

-1 :
gy

1 1 1L 1 1
I Tkm Zkm Tkm Tkm Skm positon



Motivation: ExB staircase formation (1)

e ExB flows often observed to self-organize in magnetized plasmas

eg.) mean sheared flows, zonal flows, ...

e ExB staircase’ is observed to form (G. Dif-Pradalier, P.D. et al. Phys. Rev. E. ’10)
GYSELA ’
“ExB stai rcase \ A - flux driven, full f simulation
o pq—A—v’

>
1

- - Quasi-regular pattern of shear layers
and profile corrugations

of shear flows |
f f \/ J*

-

. - Region of theextent A > A,
interspersed by temp. corrugation/ExB jets

Turbulence dnve: R,

okt -
- 10 140 160 a0

Normalised radius: /1, -> ExB staircases
Atmospheric Jets |
I f ‘) ' { : - so-named after the analogy to PV staircases
| J oo™ \ /8 and atmospheric jets

- Step spacing = avalanche outer-scale
[from Dunkerton et al. 2008)



ExB Staircase (2)

e Important feature: co-existence of shear flows and avalanches

Turbulence drive: R/,

80 100 120 140
Normalized radius: r/ P,

- Seem mutually exclusive ?!7?

— strong ExB shear prohibits transport

— avalanches smooth out corrugations

- Can co-exist by separating regions into:

1. avalanches of the size A > A,

2. localized strong corrugations + jets

e How understand the formation of ExB staircase???

- What is process of self-organization linking avalanche scale to ExB step scale?

i.e. how explain the emergence of the step scale ???



Staircases, cont’d

 The point:

S2

— fitt O=—|dr'x(r,¥ ) VT (' k(r,r') ~
I Q J‘ ( ) ( ) ( ) (7’—1”')2+A2

— A>>A_ ie. A~ Avalanche scale >> A, ~ correlation scale

— sSome range in exponent

— Staircase ‘steps’ separated by A! — stochastic avalanches produce

quasi-regular flow pattern!?
N.B. °

« The notion of a staircase is not new — especially in systems with natural periodicity (i.e. NL wave

breaking...)

What IS new is the connection to stochastic avalanches, independent of geometry

— What is process of self-organization linking avalanche scale to zonal pattern step?
i.e. How extend predator-prey feedback model to encompass both avalanche

and zonal flow staircase? Self-consistency is crucial!

NEREESE e 39 =< UCSD



Corrugation points and rational surfaces — no relation!

2800
— I I | |
-] GYSELA
o p. = 1/300 o~
= TS#45511 I
S 10 =
K o
2100 = - A
-
o o
S
= o
3]
F)
1400 é
o ®)
Q Z 0
® 0.2 0.4 0.6 0.8 1.0
. Normalised radius p
£
|_

700 . . .
Step location not tied to magnetic
geometry structure in a simple way

=

0.2 0.4 0.6 0.8 1.0
Normalised radius p



Staircases build up from the edge

-

2800

rhwl ' L\ IIM.-‘\ "_\\l

2100

At
-
N~
=
‘L.‘

1400

Time x a/c

E x B shear

0 ————= —————
0.2 0.4 0.6 0.8 1.0

Normalised radius p

—> staircases may not be related to zonal
flow eigenfunctions

—> How describe generation mechanism??

(GYSELA simulation)



Towards a model

e How do we understand quasi-regular pattern of ExB staircase, generated from stochastic
heat avalanche???

e An idea: jam of heat avalanche

corrugated profile «> ExB staircase "X

— accumulation of heat increment

—> corrugation of profile occurs by - stationary corrugated profile
‘jam’ of heat avalanche flux

* —> time delay betweenQ[éT]and 6T s
is crucial element - _;-'é-i‘:h}

like drivers’ response time in traffic

e How do we actually model heat avalanche ‘jam’ ??? = origin in dynamics?



£

Traffic jam dynamics: ‘jamiton’

e A model for Traffic jam dynamics - Whitham

pt+ (pv)z =0
( )m P —> car density
1 v
Ut + VVz = T T v—V(p)+ ;Pa: U S traffic flow velocity
Vip) — Zp

- Instability occurs when - V/(ngo’z) P z - an equilibrium traffic flow

Desr =v — Tpgvo'z < (0 - clustering instability T > driver sresponse time
- Indicative of jam formation
e Simulation of traffic jam formation

Jamitons in Traffic Flow t=340s — simutaton http://math.mit.edu/projects/traffic/
: - Jamitons (Flynn, et.al., " 08)

. JLLU n.b. .V.P. = decay study

L] L LR
°‘ - e Ny - LU L L

AL ' L L '
0 km 1km 2km 3 km 4 km 5 km position



Heat avalanche dynamics model ( the usual’)

Hwa+Kardar * 92, P.D. + Hahm ’ 95, Carreras, et al. 96, ... GK simulation, ... Dif-Pradalier * 10

e 4T :deviation from marginal profile - conserved order parameter

e Heat Balance Eq.: 8,67 + 9,.Q[67] =0 - up to source and noise

e Heat Flux QI[é77 — utilize symmetry argument, ala’ Ginzburg-Landau

- Usual: - joint reflectional symmetry (Hwa+Kardar’92, Diamond+Hahm ’95)

Q = Qo(dT)
A\ N €Tr < —X 2 *

hyperdiffusion

lowest order - Burgers equation 06T + NOT 06T = x2026T



An extension of the heat avalanche dynamics

e An extension: a finite time of relaxation of @ toward SOC flux state

8.Q = (@~ Qu(oT) QolsT] = 58T — X20,6T + x4030T

(Guyot-Krumhansl)

- Inprinciple  7(67,Qo)  <=> |arge near criticality (~ critical slowing down)

i.e. enforces time delay between 67" and heat flux

* Dynamics of heat avalanche: n.b. model for heat evolution

86T + AST 80T = x2828T — x4026T — 17026T diffusion - Burgers - Telegraph

- Burgers l

(P.D. + T.S.H. ’ 95) - .
New: finite response time

— Telegraph equation



Relaxation time: the idea

e What is ‘T ’ physically? — Learn from traffic jam dynamics

e A useful analogy:

heat avalanche dynamics traffic flow dynamics
temp. deviation from marginal profile local car density
heat flux traffic flow
mean SOC flux (ala joint relflection equilibrium, steady traffic flow
symmetry)
# heat flux relaxation time driver’s response time

- driver’s response can induce traffic jam
- jam in avalanche - profile corrugation - staircase?!?

- Key: instantaneous flux vs. mean flux



Time delay: microscopic foundation?

e Relaxation by plasma turbulence = mixing of phase space density

d_J; = 0= 9, (6f(1)5f(2)) + 1,

d Tmzx

(0F(1)f(2)) = =(0r6 ) (f)

turbulent mixing production

hase space density correlation = . .
P P Y due gradient relaxation

‘ohasetrophy’ l,
i.e. PV mixing time sets delay

e Energy moment leads to heat flux evolution equation (Gurcan '13)

1

0Q = — (Q — QO) Qo = —Xturb VI

Tmzx
— Heat flux relaxes toward the mean value, in the mixing time

The delay time is a natural consequence of phase space density mixing. The
delay time is typically in the order of mixing time.



Heat flux dynamics: when important?

1
e Heat flux evolution: 6tQ — — (Q — QO) — time delay, when important?
Tmix
Conventional Transport Analysis New approach for transport analysis
Tomir <K time scale of interest > mixing time can be long, so
— Heat flux relaxes to the mean Tmiz ~~ time scale of interest
value immediately mesoscale
— Heat evo. and Profile evo. must be
Q = Qo treated self-consistently
— Profile evolves via the mean flux
O Q) = _%(Q — QO)
KT + 0,Qp = 0 ool + &,;Q[cST] =0
then
gite. 0T = X&%T then telegraph equation:

Burgers 9,67 4+ A\0T 90T = x2026T 00T + NT 06T = x20°8T — 7O*6T




Brief summary on model extension

Usual:

Extended:

Heat Flux Profile evo.
T = vO*T
Q = Qo[dT th = X% ;
00T + NOT' O, 0T = x20,0T

Diffusion

Burgers

telegraph

0:Q = @Q — Qo) ;6T + N6TO,0T = x2026T

finite response time

- Physical idea: analogy to traffic dynamics, drivers’ response time

- Microscopic foundation: mixing of phase space density

- Finite response time - Heat dynamics described by telegraph eqn.

- Wavy feature, speed determined by /x,/t

- Connects avalanche dynamics to elasticity in/of turbulence



Analysis of heat avalanche dynamics via telegraph

e How do heat avalanches jam? 0Ty

e Consider an initial avalanche, > Ug
with amplitude 675,
propagating at the speed vy = AdTy

— turbulence model dependent
e Dynamics:
OOT + 090y 0T = x20206T — x4026T — 7O26T
X2
ulse \ \/ ‘Heat flux wave’: —
P telegraph - wavy feature
two characteristic propagation speeds

— In short response time (usual) heat

/\_} /\/\/\_) flux wave propagates faster

" — In long response time, heat flux wave
0 becomes slower and pulse starts overtaking.
What happens???

>0
N



Analysis of heat avalanche jam dynamics

e In large tau limit, what happens? - Heat flux jams!!

e Recall plasma response time akin to driver’s response time in traffic dynamics

* negative heat conduction instability occurs (as in clustering instability in traffic jam dynamics)

Jamitons in Traffic Flow t=340s —simulation
== theory

86T + v00,0T = xgagﬁ’ — X43§gf’ — 7'3,:237’
—> (e — ’1’37)833?1: — x46iﬁ“

<0 when overtaking

.y

-~ Lo R
-~ e N "~ LU L -

- clustering instability

1km 2km 3km 4 km 5 km position

n.b. akin to negative viscosity instability of ZF in DW turbulence

instead ZF as secondary mode in the gas of primary DW

=>» Heat flux ‘jamiton’ as secondary mode in the gas of primary avalanches



Analysis of heat avalanche jam dynamics

e Growth rate of the jamiton instability

2 2 2
7:_21 + 21 \/7‘—;—1 — 272 k2 (1_|_X4k ) r:\/{47'xzk:2 (1—|—X;k ) —1} + 16v3 k272
T T X2 2

e Threshold for instability

X2 (1 N X4k2> nb. 1/7=1/7[&

> -
v X2 — clustering instability strongest near criticality

— critical minimal delay time

e Scale for maximum growth

2

~ X2 [ X4Y( O X2 2
k2 —= f /y 6 4 2 UOT
3 rom ——O :>87' 416 4+ 47 k+2 k+1——:()
e Ok? X2 X X2 X2

> staircase size, A2, . (6T) , 6T  from saturation: consider shearing



Scaling of characteristic jam scale

e Saturation: Shearing strength to suppress clustering instability

Jam growth - profile corrugation - ExB staircase - U}}Jx B

1 |

— estimate, only

T 1
- saturated amplitude: or X4

1; VthiPi N T

e Characteristic scale

2Vth;
T

A? ~ k26T ~ Pir/X2T X2 ™~ Xneo

- Geometric mean of  p; and /x27 :ambient diffusion length in 1 relaxation time

- ‘standard’ parameters: A ~ 10A,



Jam growth qualitatively consistent with staircase formation

2800

2100

1400

S

Time x a/c

0.2 0.4 0.6 0.8 1.0
Normalised radius p

800 |—|

NL evolution ???

600

S

Time x a/c

I T T T T I T T

.

A XNC

8

{ . 0.7 0.
.“ "N - r f' 3 — LT -
.‘\ () & ) a ’ '.??
L LT J“]‘Jz ' ‘w By
max. "Jamiton" |
rowth

0.3

0.4 0.5 0.6 0.7 0.8
Normalised radius p

Dif-Pradalier 13 caveat: based on model with compressional waves

outer radius:
large chi

- smear out
instability

or

- heat flux waves
propagate faster
- harder to
overtake, jam

good agreement in
early stage



Summary

e A model for ExB staircase formation

- Heat avalanche jam = profile corrugation - ExB staircase

- model developed based on analogy to traffic dynamics - telegraph egn.

e Analysis of heat flux jam dynamics

- Negative conduction instability as onset of jam formation
- Growth rate, threshold, scale for maximal growth

- Qualitative estimate: scale for maximal growth A ~ 10A.,

—> comparable to staircase step size



Ongoing Work
* This analysis < set in context of heat transport

* |mplications for momentum transport? =>»

— consider system of flow, wave population, wave

momentum flux

— time delay set by decay of wave population

correlation due ray stochastization - elasticity

— flux limited PV transport allows closure of system



Aside: FYI| — Historical Note

——> Collective Dynamics of Turbulent Eddy
— ‘Aether’ | — First Quasi-Particle Model of Transport?!

/- l... A007
XLV. On the Propagation of Laminar Motion through a tur-
bulently moving Inviscid Liquid. By Sir WiLLIAM THOMSON,
LL.D., F.R.8.*

1. IN endeavouring to investigate turbulent motion of water
between two fixed planes, for a promised communication

to Section A of the British Association at its coming Meeting
in Manchester, I have found something seemingly towards a
solution (many times tried for within the last twenty years)
of the problem to construct, by giving vortex motion to an
incompressible inviscid fluid, a medium which shall transmit
waves of laminar motion as the luminiferous @ther transmits
waves of light.

2. Let the fluid be unbounded on all sides, and let u, v, w
be the velocity-components, and p the pressure at (z, v, 2, ¢).

We have

Tr =0 . . . . . ),

* Communicated by the Author, having been read before Section A of
the British Association at its recent Meeting in Manchester.



21. Eliminating the first member fiom this equation, by

(34), we find d2 d2
a—;—é =§R2(T;§ . . . . . . (51)-
R? ~ <\72> Thus we have the very remarkable result that laminar dis-

turbance is propagated according to the well-known mode of
waves of distortion in a homogeneous elastic solid ; and

that the velocity of propagation is iggB, or about *47 of the
average velocity of the turbulent motion of the fluid.

Fig. 1.

— time delay between
Reynolds stress and
wave shear introduced

I

=)

— converts diffusion equation
to wave equation

]

i
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— describes wave in ensemble
of vortex quasi-particles

9

. ——
__.:1

— c.f. “Worlds of Flow”, O. Darrigol |




