On the MSW effect of the neutrino background

Alex Friedland, LANL \& IAS

In collaboration with
Cecilia Lunardini, IAS

Feb 6, 2003 KITP

Introduction: why neutrino background?

\& Interactions with background matter modify neutrino dispersion relation (Wolfenstein, 1977)
\rightarrow the modification is flavor-dependent
\rightarrow plays an important role in neutrino flavor evolution
\& Ordinarily (in Sun, Earth) the interaction is with background electrons and nucleons
\& In certain cases, neutrino number density \gtrsim number density of "normal matter"
\rightarrow neutrino "self-induced" refraction may be important

Supernova \& Early Universe

\& In the early Universe, $n_{\nu} \sim n_{\gamma} \gg n_{\text {baryons }},\left(n_{e}-n_{\bar{e}}\right)$
\rightarrow neutrino self-refraction is relevant for studies of flavor evolution: effects of lepton chemical potential, lepton asymmetry generation through active-sterile conversions, etc.
\& In supernova, near the core ($\mathrm{r} \sim 15-30 \mathrm{~km}$), $\mathrm{n}_{\mathrm{v}} \sim$ $\mathrm{n}_{\text {baryons }}$
\rightarrow various applications, e. g., synthesis of heavy elements

Early Work

Fuller, Mayle, Wilson \& Schramm, ApJ., 1987 Notzold \& Raffelt, Nucl. Phys., 1988

* Recognized the importance of neutrino selfrefraction in supernova
\& Treated the problem by analogy with "conventional MSW"

"Conventional MSW"

\& Evolution Hamiltonian for a single neutrino

$$
\begin{aligned}
& H=H_{v a c}+\Delta H_{\text {matt }} \\
& \Delta H_{\text {matt }}=\sqrt{2} G_{F}\left(n_{e}-n_{\bar{e}}\right)\left(\begin{array}{cc}
1+1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

\& Early works constructed the Hamiltonian due to the neutrino background by analogy

$$
H=H_{v a c}+\Delta H_{m a t t}+\Delta H_{\nu \nu}
$$

$$
\Delta H_{\nu \nu}=\sqrt{2} G_{F}\langle 1-\cos \Theta\rangle
$$

$$
\times\left[\left(n_{\nu_{e}}-n_{\bar{\nu}_{e}}+n_{\nu_{\mu}}-n_{\bar{\nu}_{\mu}}\right)\right.
$$

$$
\left.+\left(\begin{array}{cc}
\left(n_{\nu_{e}}-n_{\bar{\nu}_{e}}\right) & 0 \\
0 & \left(n_{\nu_{\mu}}-n_{\bar{\nu}_{\mu}}\right)
\end{array}\right)\right]
$$

Things are not that simple, however...

* The effect of the neutrino background on active-active oscillations is qualitatively different (J. Pantaleone, PLB 1992, PRD 1992)
* The NC weak interaction Hamiltonian

$$
H_{\mathrm{NC}}=\frac{G_{F}}{\sqrt{2}}\left(\sum_{a} j_{a}^{\mu}\right)\left(\sum_{b} j_{b \mu}\right)
$$

possesses a $\mathrm{U}(2)$ flavor symmetry:

$$
\binom{\nu_{e}}{\nu_{\mu}} \rightarrow U\binom{\nu_{e}}{\nu_{\mu}}
$$

\& \rightarrow Any result derived from it should also obey $\mathrm{U}(2)$

Flavor off-diagonal terms

\& If all neutrino states (both in the "beam" and "background") are rotated, the Hamiltonian in the new basis should be exactly the same as in the old basis

$$
\binom{\nu_{e}}{\nu_{\mu}} \rightarrow U\binom{\nu_{e}}{\nu_{\mu}} \quad U H_{\nu \nu}\left(U \nu_{x}\right) U^{\dagger}=H_{\nu \nu}\left(\nu_{x}\right)
$$

* The diagonal Hamiltonian used in earlier studies was not $U(2)$ invariant
\& The Hamiltonian $\Delta \mathrm{H}_{\mathrm{vv}}$ generically cannot be diagonal

What would be U(2) invariant?

* Consider v_{e} in v_{e} BG. Since NC cannot change flavor, there will be no flavor transitions
The two relevant diagrams are

\& Consider now v_{μ} in v_{e} BG. Assume that Hamiltonian is again flavor-diagonal.

Only one flavor-diagonal diagram

* Putting things together, one gets for v_{e} BG

$$
H_{\nu \nu}=\sqrt{2} G_{F} n_{\nu}\langle 1-\cos \Theta\rangle\left[1+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right] .
$$

\& Now, if we rotate the background $v_{\mathrm{e}} \rightarrow v_{\mathrm{x}}$ and use $\mathrm{U}(2)$, we find

$$
H_{\nu \nu}^{(i)}=\sum_{j} \sqrt{2} G_{F} n_{\nu}^{(j)}\left(1-\cos \Theta_{i j}\right)\left[1+\left(\begin{array}{cc}
\left|\nu_{e}^{(j)}\right|^{2} & \nu_{e}^{(j)} \nu_{\mu}^{(j) *} \\
\nu_{e}^{(j) *} \nu_{\mu}^{(j)} & \left|\nu_{\mu}^{(j)}\right|^{2}
\end{array}\right)\right]
$$

Pantaleone argued that

1. Under certain assumptions, neutrino ensemble can be described by a system of single particle equations
2. The Hamiltonian for each neutrino mode is given by H_{vv} above
\& This result was also later rederived by \& Sigl \& Raffelt, Nucl. Phys. B, 1993 * McKellar \& Thomson, PRD, 1994
in the context of a more general analysis of the flavor evolution of a neutrino ensemble (collisions and well as refraction, Pauli blocking, etc)

* Subsequent studies used the density matrix vv Hamiltonian as a starting point
\& Neutrino evolution in the early Universe (equilibration of flavors)

```
* Lunardini & Smirnov, PRD 2001
* Pastor, Raffelt & Semikoz, PRD 2002
& Dolgov, Hansen, Pastor, Petcov & Raffelt, Nucl Phys B, 2002
& Wong, Y. Y., PRD 2002
* Abazajian, Beacom & Bell, PRD 2002
```

\& ...and in the supernova core (r-process)

* Qian \& Fuller, PRD 1995
\& Pantaleone, PLB, 1995
* Sigl, PRD, 1995
\& McLaughlin, Fetter, Balantekin \& Fuller, PRC 1999
* Pastor \& Raffelt, PRL,2002

Questions

\& What is the physical mechanism behind the density matrix Hamiltonian?
Can one have a simple picture, from first principles?
\& What physical assumptions go into the derivation?
\& What is the justification for using the single-particle approach? (a priori a multi-particle problem)

Naïve attempt to "derive" result from first principles

\& Consider toy problem: two intersecting beams
v_{e}
"Beam"

What is the flux of
ν_{μ} in the beam after crossing?
"Background"

$$
v_{x}=\cos \alpha v_{\mathrm{e}}+\sin \alpha v_{\mu}
$$

Similar to FCNC problem?

v_{e}
What is the flux of
ν_{μ} in the beam after crossing?
"Beam"

Material with Flavor changing interactions

$$
H_{F C N C}=\frac{\sqrt{2} G_{F} n_{2}}{2}\left[\text { const }+\left(\begin{array}{cc}
\epsilon & \epsilon^{\prime} \\
\epsilon^{\prime} & -\epsilon
\end{array}\right)\right]
$$

The FCNC case is easy to understand

\& Usual (incoherent) scattering: flux $\left(v_{\mu}\right) \propto \varepsilon^{\prime 2} N$
\& Coherent scattering (forward direction): amplitudes add up flux $\left(v_{\mu}\right) \propto \mid \varepsilon^{\prime} \mathrm{N}^{2}$
\& \Rightarrow prescription:
*Take amplitude for elementary process
*Multiply by \# of scatterers
*Square to find the rate

Elementary event: two neutrino system

* NC interactions conserve flavor

$$
v_{x}=\cos \alpha v_{\mathrm{e}}+\sin \alpha v_{\mu}
$$

Elementary event: two neutrino system

\& Beam and BG neutrinos exchange momenta basis:
$H_{2 \nu}=\sqrt{2} \frac{G_{F}}{V}\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right) \quad\left(\begin{array}{l}\nu_{e}(p) \nu_{e}(k) \\ \nu_{e}(p) \nu_{\mu}(k) \\ \nu_{\mu}(p) \nu_{e}(k) \\ \nu_{\mu}(p) \nu_{\mu}(k)\end{array}\right)$
Initial state: $|\psi\rangle=\left|\nu_{e}\right\rangle\left|\nu_{x}\right\rangle=(\cos \alpha, \sin \alpha, 0,0)$
Small-t evolution: conversion probability agrees with intuition

$$
\begin{aligned}
& t \rightarrow t+\delta t \\
& P(e, x \rightarrow \mu, a n y) \propto \sin ^{2} \alpha
\end{aligned}
$$

\& Amplitude of measuring neutrino v_{x} as v_{v} is $\propto \sin \alpha$

* Multiply by number of scattering events
* Find that the flux of v_{μ} goes like $\propto \sin ^{2} \alpha$
\& But the density matrix Hamiltonian yields

$$
P_{\nu_{e} \rightarrow \nu_{\mu}} \propto \sin ^{2} 2 \alpha
$$

The puzzle

\& The result $\mathrm{P} \propto \sin ^{2} 2 \alpha$ looks paradoxical
*The conversion amplitude for an elementary process has a maximum for $\alpha=\pi / 2$ (background composed of pure v_{μ} states)
But the density matrix Hamiltonian predict no conversion in this case! Why?

Hidden physical assumptions?

\& Maybe the density matrix Hamiltonian is only valid under some physical assumptions?
\& Maybe the result could be understood only once those assumptions are included?

Pantaleone, 1992

* For general conditions, the flavor evolution of massive neutrinos is a many-body phenomenon
* Massive neutrinos: require averaging. The diagrams diagonal in the propagation (mass) eigenstate sum coherently but the exchange diagrams do not.

Sigl \& Raffelt; McKellar \& Thomson:

\& No such assumptions mentioned

Changing background?

\& Additional problem: usually coherent scattering assumes that the scatterers are unchanged (one cannot say on what particle the scattering occurred)
\& But in our case, the background definitely changes, to conserve flavor
\& How to take it into account?

Key point

\& Let's consider the change of the background more carefully
\& Consider the beam neutrino $v_{\mathrm{e}}(|\mathrm{e}\rangle)$ scattering from several background neutrinos $v_{x}(|\times \times x \ldots\rangle)$

$$
|e\rangle|x x x \ldots x x\rangle \Rightarrow|e\rangle|x x x \ldots x x\rangle+i a|E x c h\rangle,
$$

where $a \propto G_{F} d t$ and

$$
\begin{aligned}
|E x c h\rangle & =|x\rangle|e x x \ldots x x\rangle+|x\rangle|x e x \ldots x x\rangle \\
& +|x\rangle|x x e \ldots x x\rangle+\ldots
\end{aligned}
$$

\& Compute the expectation value of the " v_{μ} number" operator in the final state, $|\mu\rangle\langle\mu|$, to determine the flux of v_{μ}

$$
\langle F| \hat{\mu}|F\rangle
$$

$\widehat{\mu}$ only acts on the states of the beam

\& In large N limit, $\propto N^{2} \sin ^{2} 2 \alpha$, precisely as expected!

Lessons:

* As a result of the elementary scattering event, the background changes
* Only terms that are $\propto \mathrm{N}^{2}$ should be kept; terms proportional to N correspond to incoherent scattering
\& There is no conversion $\propto N^{2}$ in the v_{μ} background because the states $|e \mu \mu \ldots\rangle,|\mu e \mu \ldots\rangle,|\mu \mu e . .$.$\rangle , etc are$ mutually orthogonal
* The part of the changed background that gets coherently amplified is the projection on the initial state

$$
|x \ldots x e x \ldots\rangle=\langle x \mid e\rangle|x \ldots x x x \ldots\rangle+\langle y \mid e\rangle|x \ldots x y x \ldots\rangle
$$

Two beams

\& Consider interactions between two beams, with N_{1} and N_{2} particles, treating beam and BG symmetrically

$$
|e e e \ldots\rangle|x x x \ldots\rangle \Rightarrow|e e e \ldots\rangle|x x x \ldots\rangle+i a|E x c h\rangle,
$$

where

$$
N_{1}
$$

$$
|E x c h\rangle=(|x e e \ldots e\rangle+|e x e \ldots e\rangle+|e e x \ldots e\rangle+\ldots)
$$

$$
\times(|e x x \ldots x\rangle+|x e x \ldots x\rangle+|x x e \ldots x\rangle+\ldots) .
$$

* $\mathrm{N}_{1} \mathrm{~N}_{2}$ terms
\& In |Exch \rangle, project each of the states on the initial direction and orthogonal directions, for example

$$
\mid \text { xee } \ldots\rangle=\langle e \mid x\rangle \mid \text { eee.... }\rangle+\langle\mu \mid x\rangle|\mu e e \ldots\rangle .
$$

* Do this for the $\mathrm{N}_{1} \mathrm{~N}_{2}$ terms and add the result

$$
\begin{aligned}
|E x c h\rangle & =N_{1} N_{2}\langle e \mid x\rangle\langle x \mid e\rangle|e e e \ldots\rangle|x x x x \ldots\rangle \\
& +N_{2}\langle\mu \mid x\rangle\langle x \mid e\rangle(|\mu e e \ldots\rangle+|e \mu e \ldots\rangle+\ldots)|x x x \ldots\rangle \\
& +N_{1}\langle e \mid x\rangle\langle y \mid e\rangle|e e e \ldots\rangle(|y x x \ldots\rangle+|x y x \ldots\rangle+\ldots) \\
& +\langle\mu \mid x\rangle\langle y \mid e\rangle(|\mu e e \ldots\rangle+|e \mu e \ldots\rangle+\ldots) \\
& (|y x x \ldots\rangle+|x y x \ldots\rangle+\ldots)
\end{aligned}
$$

\& Incoherent piece. If dropped, the rest good be rewritten ...
... to first order in a, as a product of single particle rotated states

$$
\begin{aligned}
& \left.|e e e \ldots e\rangle\rangle\left|x x x \ldots x x^{t}\right\rangle^{t+\delta t} \xrightarrow{\prime} e^{\prime} e^{\prime} e^{\prime} \ldots e^{\prime} e^{\prime}\right\rangle\left|x^{\prime} x^{\prime} x^{\prime} \ldots x^{\prime} x^{\prime}\right\rangle . \\
& \left|e^{\prime}\right\rangle=|e\rangle+i N_{2} a\left[\text { [1/2 }{ }^{2} \times|\langle x \mid e\rangle|^{2}|e\rangle+\langle\mu \mid x\rangle\langle x \mid e\rangle|\mu\rangle\right] \text {, } \\
& \left.\left|x^{\prime}\right\rangle=|x\rangle+i N_{1} a\left[1 / \overline{2}\left|\times|\langle e \mid x\rangle|^{2}\right| x\right\rangle+\langle e \mid x\rangle\langle y \mid e\rangle|y\rangle\right] \text {. }
\end{aligned}
$$

\& This looks close to what is predicted by the density matrix Hamiltonian, but not exactly!

$$
\begin{aligned}
& H_{\nu \nu}=a N_{2}\left(\begin{array}{cc}
\cos ^{2} \alpha & \sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha & \sin ^{2} \alpha
\end{array}\right) \Rightarrow \\
& t \rightarrow t+\delta t \\
& \left.|e\rangle \Longrightarrow|e\rangle+i N_{2} a\left[\cos ^{2}|\alpha| e\right\rangle+\sin \alpha \cos \alpha|\mu\rangle\right]
\end{aligned}
$$

* The difference is the factor of $1 / 2$. It came about because the term $\propto N_{1} N_{2}$ had to be split between beams
\& But this makes sense, because doing otherwise amounts to counting the interaction energy twice!
*Writing

$$
\begin{aligned}
& \left|e^{\prime}\right\rangle=|e\rangle+i N_{2} a\left[|\langle x \mid e\rangle|^{2}|e\rangle+\langle\mu \mid x\rangle\langle x \mid e\rangle|\mu\rangle\right], \\
& \left|x^{\prime}\right\rangle=|x\rangle+i N_{1} a\left[|\langle e \mid x\rangle|^{2}|x\rangle+\langle e \mid x\rangle\langle y \mid e\rangle|y\rangle\right],
\end{aligned}
$$

would give

$$
|E x c h\rangle=\overparen{\imath} \hat{2}_{2} N_{1} N_{2}\langle e \mid x\rangle\langle x \mid e\rangle|e e e \ldots\rangle|x x x x \ldots\rangle+\ldots
$$

\& Does this have any physical effect?

Correct evolution equation

\& To find out, we need to get the correct evolution equation.

* We have the result of the evolution for small $\delta \mathrm{t}$

$$
\begin{aligned}
|\psi(t+\delta t)\rangle-|\psi(t)\rangle & =i \sqrt{2} G_{F} N_{2} / V \\
& \times\left[|\phi\rangle\langle\phi \mid \psi\rangle-1 / 2 \times|\langle\phi \mid \psi\rangle|^{2}|\psi\rangle\right\rangle
\end{aligned}
$$

This result is independent of the basis \rightarrow can be used for any t

$$
i \psi_{i}^{\prime}=\sqrt{2} G_{F} n_{2}\left(\phi_{i} \phi_{j}^{*} \psi_{j}-1 / 2\left|\phi_{j} \psi_{j}^{*}\right|^{2} \psi_{i}\right)
$$

\& U(2) invariant

Solution

\& The equation is of the form

$$
i \psi^{\prime}=\left(H_{0}+C\left(\left|\phi \psi^{*}\right|\right) \mathbb{I}\right) \psi
$$

\& The solution is

$$
\psi_{1}(t)=\exp \left[-i \int^{t} C\left(\mid \phi_{0}(\tilde{t}) \psi_{0}\left(\tilde{t}^{*} \mid\right) d \bar{t}\right] \psi_{0}(t)\right.
$$

where ψ_{0} solves $i \psi^{\prime}=H_{0} \psi$
\& Precession in the flavor space according to H_{0}; the C term gives an overall phase
\& This phase depends on the relative angles between beam and background, $\left|\phi_{j} \psi_{j}^{*}\right|^{2}=\cos ^{2} \theta_{\text {relative }}$

How to probe the phase?

\& The phase appears as a result of interaction between neutrinos
\& Idea: try to probe this phase by constructing a superposition state, part of which interacts with the medium and part doesn't
\& Consider active-sterile oscillations

Active-sterile case

* The standard Hamiltonian for the active-sterile oscillations is

$$
H_{e s}=2 \sqrt{2} G_{F} n_{2}\left(\begin{array}{cc}
\cos ^{2} \alpha & 0 \\
0 & 0
\end{array}\right)=2 \sqrt{2} G_{F} n_{2}|\langle x \mid e\rangle|^{2}|e\rangle\langle e|
$$

\& Carrying out an analysis similar to the active-active case, we get

$$
H_{e s}=2 \sqrt{2} G_{F} n_{2}\left[|\langle x \mid e\rangle|^{2}|e\rangle\langle e|-1 / 2|\langle z \mid e\rangle|^{2}|\langle x \mid e\rangle|^{2}\right]
$$

\& Just like in the active-active case, this evolution Hamiltonian also contains an additional term
\& This term is, once again, an overall phase
\& It is nonlinear, so the naïve interference argument does not apply

Does the extra term ever become important?

\& What are the conditions for it to be an overall phase?
\& Maybe it never matters for neutrino flavor evolution?
\& To understand this, consider the case when the background is in a quantum superposition state

Entangled background

\& Standard formula assumes each neutrino in the ensemble has its own wavefunction (Hartree approximation, no quantum entanglement)
\& What about the entangled background, say

$$
|x x x \ldots\rangle+\mid y \text { y } y \ldots\rangle ?
$$

\& Our method is general, can be used even for this case
\& Repeat the toy experiment, but with the background $|x x x \ldots\rangle+\mid y$ y $y \ldots\rangle$. What is the v_{μ} flux?
\& Just as before, perform exchanges

$$
\begin{aligned}
& \mid \text { eee.... }(|x x x x \ldots\rangle+|y y y \ldots . .\rangle) \Rightarrow \\
& |e e e . . .\rangle(|x x x x . .\rangle+\mid y y y y . . .)+i a|E x c h\rangle, \\
& |E x c h\rangle=|x e e \ldots\rangle|x e e \ldots\rangle+|x e e . .\rangle|x e x \ldots\rangle+\ldots \\
& +\mid \text { yee... }\rangle \mid \text { еуy... }\rangle+\mid \text { уес... }\rangle \mid \text { уеу... }\rangle+\ldots
\end{aligned}
$$

\& The flux of v_{μ} is nonzero
\& States of the type exp[i申 $\left.\phi_{1}\right]$ e e e ...)| $\left.\mathrm{xxx} \ldots\right\rangle+$ exp[i申 $\left.\phi_{2}\right]$ e e e ...) ly y y ... \rangle form. The phase is now relative, and has a physical effect

Conclusions

* vv refraction Hamiltonian can be simply derived from first principles as an interference effect, once the change in the background state is properly included
* No special assumptions, i.e. decoherence between certain states, are necessary
* The standard formalism overcounts neutrino interaction energy, but...
\& ...The correct equation differs only by an overall phase, both for active-active and active-sterile oscillations, with no effect on oscillation physics under normal conditions

