On the MSW effect of the neutrino background

Alex Friedland, LANL & IAS

In collaboration with Cecilia Lunardini, IAS

Feb 6, 2003 KITP

Introduction: why neutrino background?

- Interactions with background matter modify neutrino dispersion relation (Wolfenstein, 1977)
 - → the modification is *flavor-dependent*
 - → plays an important role in neutrino flavor evolution
- Ordinarily (in Sun, Earth) the interaction is with background electrons and nucleons
- ❖ In certain cases, neutrino number density ≥ number density of "normal matter"
 - → neutrino "self-induced" refraction may be important

Supernova & Early Universe

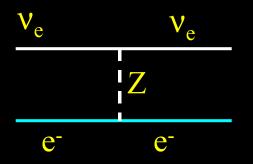
- * In the early Universe, $n_{\nu} \sim n_{\gamma} \gg n_{baryons}, (n_e n_{\bar{e}})$
 - → neutrino self-refraction is relevant for studies of flavor evolution: effects of lepton chemical potential, lepton asymmetry generation through active-sterile conversions, etc.
- - → various applications, e. g., synthesis of heavy elements

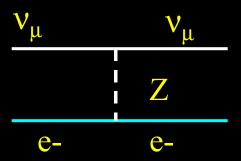
Early Work

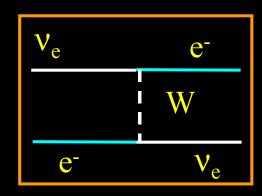
Fuller, Mayle, Wilson & Schramm, ApJ., 1987 Notzold & Raffelt, Nucl. Phys., 1988

- Recognized the importance of neutrino selfrefraction in supernova
- Treated the problem by analogy with "conventional MSW"

"Conventional MSW"





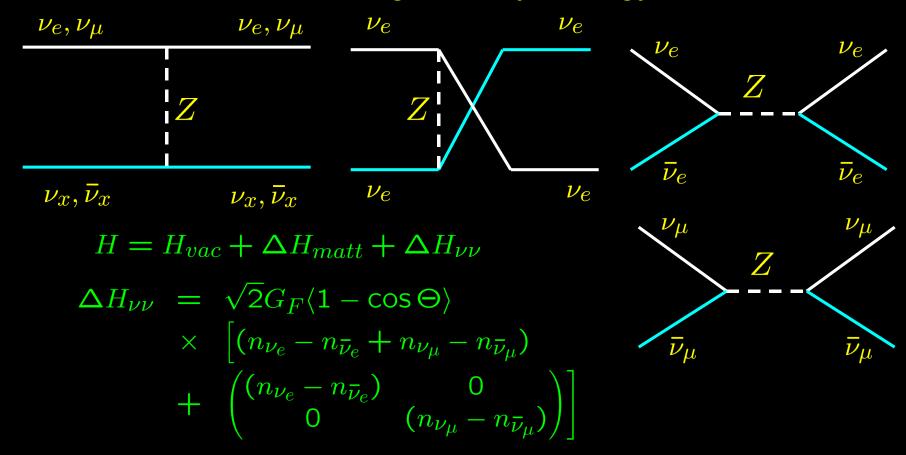


Evolution Hamiltonian for a single neutrino

$$H = H_{vac} + \Delta H_{matt}$$

$$\Delta H_{matt} = \sqrt{2}G_F(n_e - n_{\overline{e}})\begin{pmatrix} 1+1 & 0\\ 0 & 1 \end{pmatrix}$$

Early works constructed the Hamiltonian due to the neutrino background by analogy



Things are not that simple, however...

The effect of the neutrino background on active-active oscillations is qualitatively different

(J. Pantaleone, PLB 1992, PRD 1992)

The NC weak interaction Hamiltonian

$$H_{NC} = \frac{G_F}{\sqrt{2}} \left(\sum_a j_a^{\mu} \right) \left(\sum_b j_{b\mu} \right)$$

possesses a U(2) flavor symmetry:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} \to U \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$

♣ Any result derived from it should also obey U(2)

Flavor off-diagonal terms

If all neutrino states (both in the "beam" and "background") are rotated, the Hamiltonian in the new basis should be exactly the same as in the old basis

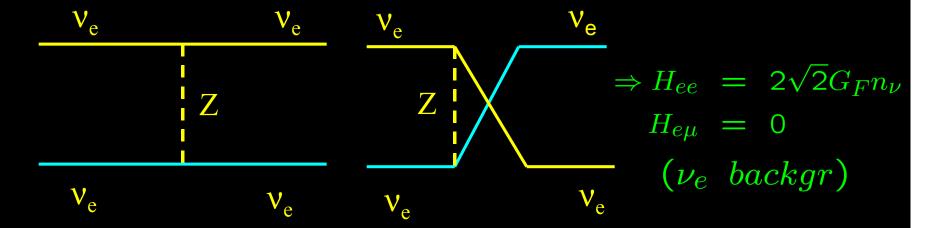
$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} \to U \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} \qquad U H_{\nu\nu} (U \nu_x) U^{\dagger} = H_{\nu\nu} (\nu_x)$$

- The diagonal Hamiltonian used in earlier studies was not U(2) invariant
- ❖ The Hamiltonian ∆H_{vv} generically cannot be diagonal

What would be U(2) invariant?

* Consider v_e in v_e BG. Since NC cannot change flavor, there will be no flavor transitions

The two relevant diagrams are



Consider now v_{μ} in v_{e} BG. Assume that Hamiltonian is again flavor-diagonal.

Only one flavor-diagonal diagram

❖ Putting things together, one gets for v_e BG

$$H_{\nu\nu} = \sqrt{2}G_F n_{\nu} \langle 1 - \cos \Theta \rangle \left[1 + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right].$$

Density matrix of the background neutrino

Now, if we rotate the background $v_e \rightarrow v_x$ and use U(2), we find

$$H_{\nu\nu}^{(i)} = \sum_{j} \sqrt{2} G_F n_{\nu}^{(j)} (1 - \cos \Theta_{ij}) \left[1 + \begin{pmatrix} |\nu_e^{(j)}|^2 & \nu_e^{(j)} \nu_{\mu}^{(j)*} \\ \nu_e^{(j)*} \nu_{\mu}^{(j)} & |\nu_{\mu}^{(j)}|^2 \end{pmatrix} \right]$$

Pantaleone argued that

- 1. Under certain assumptions, neutrino ensemble can be described by a system of single particle equations
- 2. The Hamiltonian for each neutrino mode is given by H_{yy} above

- This result was also later rederived by
 - * Sigl & Raffelt, Nucl. Phys. B, 1993
 - * McKellar & Thomson, PRD, 1994

in the context of a more general analysis of the flavor evolution of a neutrino ensemble (collisions and well as refraction, Pauli blocking, etc)

- Subsequent studies used the density matrix vv Hamiltonian as a starting point
- Neutrino evolution in the early Universe (equilibration of flavors)
 - Lunardini & Smirnov, PRD 2001
 - Pastor, Raffelt & Semikoz, PRD 2002
 - Dolgov, Hansen, Pastor, Petcov & Raffelt, Nucl Phys B, 2002
 - ❖ Wong, Y. Y., PRD 2002
 - ❖ Abazajian, Beacom & Bell, PRD 2002

.

- ...and in the supernova core (r-process)
 - Qian & Fuller, PRD 1995
 - * Pantaleone, PLB, 1995
 - **Sigl, PRD, 1995**
 - * McLaughlin, Fetter, Balantekin & Fuller, PRC 1999
 - Pastor & Raffelt, PRL,2002

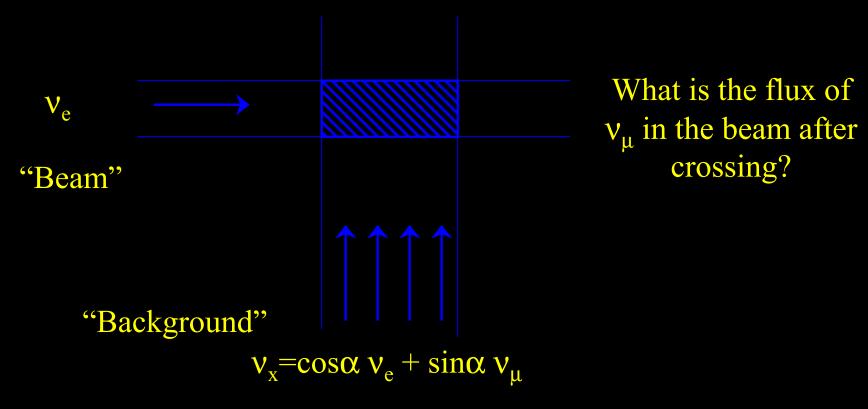
• • • • • • •

Questions

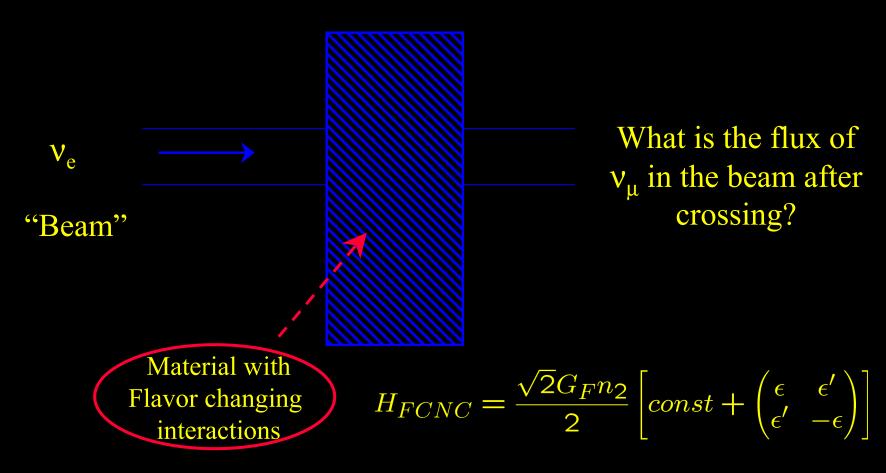
- What is the physical mechanism behind the density matrix Hamiltonian?
 - Can one have a simple picture, from first principles?
- What physical assumptions go into the derivation?
- What is the justification for using the single-particle approach? (a priori a multi-particle problem)

Naïve attempt to "derive" result from first principles

Consider toy problem: two intersecting beams



Similar to FCNC problem?



KITP, Feb 6, 2003

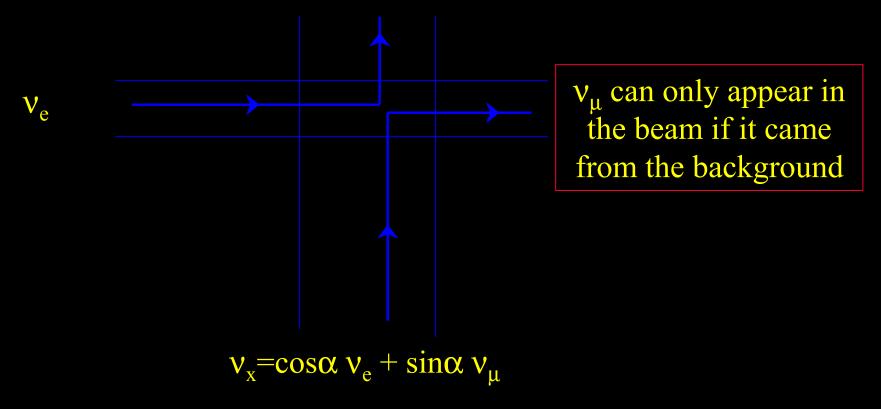
Alex Friedland, LANL & IAS

The FCNC case is easy to understand

- ***** Usual (incoherent) scattering: flux(v_u) $\propto \epsilon^{\prime 2}$ N
- **❖** Coherent scattering (forward direction): amplitudes add up $\text{flux}(v_{\mu})$ $\propto |\epsilon'| N|^2$
- ⇒ prescription:
 - *Take amplitude for elementary process
 - Multiply by # of scatterers
 - Square to find the rate

Elementary event: two neutrino system

NC interactions conserve flavor



Elementary event: two neutrino system

Beam and BG neutrinos exchange momenta

$$H_{2\nu} = \sqrt{2} \frac{G_F}{V} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} \nu_e(p)\nu_e(k) \\ \nu_e(p)\nu_\mu(k) \\ \nu_\mu(p)\nu_\mu(k) \\ \nu_\mu(p)\nu_\mu(k) \end{pmatrix}$$

Initial state: $|\psi\rangle = |\nu_e\rangle|\nu_x\rangle = (\cos\alpha, \sin\alpha, 0, 0)$

Small-t evolution: conversion probability agrees with intuition

$$t \to t + \delta t$$

 $P(e, x \to \mu, any) \propto \sin^2 \alpha$

- * Amplitude of measuring neutrino v_x as v_v is \propto sin α
- Multiply by number of scattering events
- ightharpoonup Find that the flux of v_{μ} goes like $\propto \sin^2 \alpha$
- But the density matrix Hamiltonian yields

$$P_{
u_e
ightarrow
u_\mu} \propto \sin^2 2lpha$$

The puzzle

- * The result P $\propto \sin^2 2\alpha$ looks paradoxical
 - *The conversion amplitude for an elementary process has a maximum for $\alpha = \pi/2$ (background composed of pure ν_{μ} states)
 - But the density matrix Hamiltonian predict no conversion in this case! Why?

Hidden physical assumptions?

- Maybe the density matrix Hamiltonian is only valid under some physical assumptions?
- Maybe the result could be understood only once those assumptions are included?

Pantaleone, 1992

- ❖ For general conditions, the flavor evolution of massive neutrinos is a many-body phenomenon
- Massive neutrinos: require averaging. The diagrams diagonal in the propagation (mass) eigenstate sum coherently but the exchange diagrams do not.

Sigl & Raffelt; McKellar & Thomson:

No such assumptions mentioned

Changing background?

- Additional problem: usually coherent scattering assumes that the scatterers are unchanged (one cannot say on what particle the scattering occurred)
- But in our case, the background definitely changes, to conserve flavor
- How to take it into account?

Key point

- Let's consider the change of the background more carefully
- **Consider the beam neutrino** $v_e(|e\rangle)$ scattering from several background neutrinos $v_x(|x \times x \dots\rangle)$

```
|e\rangle|xxx...xx\rangle \Rightarrow |e\rangle|xxx...xx\rangle + ia|Exch\rangle,
```

where $a \propto G_F dt$ and

$$|Exch\rangle = |x\rangle|exx...xx\rangle + |x\rangle|xex...xx\rangle + |x\rangle|xxe...xx\rangle +$$

* Compute the expectation value of the " ν_{μ} number" operator in the final state, $|\mu\rangle\langle\mu|$, to determine the flux of ν_{μ}

$$\langle F|\widehat{\mu}|F\rangle$$

 $\hat{\mu}$ only acts on the states of the beam

$$\langle F|\hat{\mu}|F\rangle = a^2 \langle x|\hat{\mu}|x\rangle$$

$$\times (\langle exx...x| + \langle xex...x| + ...)$$

$$(|exx...x\rangle + |xex...x\rangle + ...)$$

$$a^2 \sin^2 \alpha \times (N_2^2 - N_2) \cos^2 \alpha + N_2$$

• In large N limit, $\propto N^2 \sin^2 2\alpha$, precisely as expected!

Lessons:

- As a result of the elementary scattering event, the background changes
- ❖ Only terms that are ∝ N² should be kept; terms proportional to N correspond to incoherent scattering
- * There is no conversion $\propto N^2$ in the ν_{μ} background because the states $|e\mu\mu...\rangle$, $|\mu e\mu...\rangle$, $|\mu \mu e...\rangle$, etc are mutually orthogonal
- ❖ The part of the changed background that gets coherently amplified is the projection on the initial state

$$|x...xex...\rangle = \langle x|e\rangle|x...xxx...\rangle + \langle y|e\rangle|x...xyx...\rangle$$

Two beams

Consider interactions between two beams, with N₁ and N₂ particles, treating beam and BG symmetrically

$$|eee...\rangle|xxx...\rangle \Rightarrow |eee...\rangle|xxx...\rangle + ia|Exch\rangle,$$
 where
$$N_1$$
 $|Exch\rangle = (|xee...e\rangle + |exe...e\rangle + |eex...e\rangle + ...)
$$\times (|exx...x\rangle + |xex...x\rangle + |xxe...x\rangle + ...).$$$

 \bullet N₁N₂ terms

In |Exch>, project each of the states on the initial direction and orthogonal directions, for example

$$|xee...\rangle = \langle e|x\rangle |eee...\rangle + \langle \mu|x\rangle |\mu ee...\rangle.$$

❖ Do this for the N₁N₂ terms and add the result

$$|Exch\rangle = N_1 N_2 \langle e|x\rangle \langle x|e\rangle |eee...\rangle |xxx...\rangle + N_2 \langle \mu|x\rangle \langle x|e\rangle (|\mu ee...\rangle + |e\mu e...\rangle + ...) |xxx...\rangle + N_1 \langle e|x\rangle \langle y|e\rangle |eee...\rangle (|yxx...\rangle + |xyx...\rangle + ...) + \langle \mu|x\rangle \langle y|e\rangle (|\mu ee...\rangle + |e\mu e...\rangle + ...) (|yxx...\rangle + |xyx...\rangle + ...)$$

Incoherent piece. If dropped, the rest good be rewritten ...

... to first order in a, as a product of single particle rotated states

| otated states |
$$t \to t + \delta t$$
 | $|eee...ee\rangle | xxx...xx\rangle \longrightarrow |e'e'e'...e'e'\rangle | x'x'x'...x'x'\rangle$.

| $|e'\rangle = |e\rangle + iN_2a[1/2 \times |\langle x|e\rangle|^2 |e\rangle + \langle \mu|x\rangle\langle x|e\rangle |\mu\rangle]$,

| $|x'\rangle = |x\rangle + iN_1a[1/2 \times |\langle e|x\rangle|^2 |x\rangle + \langle e|x\rangle\langle y|e\rangle |y\rangle]$.

This looks close to what is predicted by the density matrix Hamiltonian, but not exactly!

$$H_{\nu\nu} = aN_2 \begin{pmatrix} \cos^2 \alpha & \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha & \sin^2 \alpha \end{pmatrix} \Rightarrow$$

$$t \to t + \delta t$$

$$|e\rangle \Longrightarrow |e\rangle + iN_2 a[\cos^2 \alpha |e\rangle + \sin \alpha \cos \alpha |\mu\rangle],$$

* The difference is the factor of $\frac{1}{2}$. It came about because the term $\propto N_1N_2$ had to be split between beams

But this makes sense, because doing otherwise amounts to counting the interaction energy twice!

*****Writing

$$|e'\rangle = |e\rangle + iN_2a[|\langle x|e\rangle|^2|e\rangle + \langle \mu|x\rangle\langle x|e\rangle|\mu\rangle],$$

$$|x'\rangle = |x\rangle + iN_1a[|\langle e|x\rangle|^2|x\rangle + \langle e|x\rangle\langle y|e\rangle|y\rangle],$$

would give

$$|Exch\rangle = \langle 2 N_1 N_2 \langle e|x \rangle \langle x|e \rangle |eee...\rangle |xxx...\rangle + ...$$

Does this have any physical effect?

Correct evolution equation

- To find out, we need to get the correct evolution equation.
- We have the result of the evolution for small δt $|\psi(t+\delta t)\rangle |\psi(t)\rangle = i\sqrt{2}G_FN_2/V$ $\times [|\phi\rangle\langle\phi|\psi\rangle 1/2 \times |\langle\phi|\psi\rangle|^2|\psi\rangle]$

This result is independent of the basis \rightarrow can be used for any t

$$i\psi_i' = \sqrt{2}G_F n_2(\phi_i \phi_j^* \psi_j - 1/2|\phi_j \psi_j^*|^2 \psi_i)$$

U(2) invariant

Solution

The equation is of the form.

$$i\psi' = (H_0 + C(|\phi\psi^*|)\mathbb{I})\psi$$

The solution is

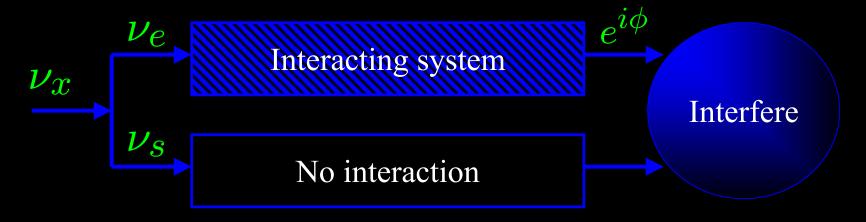
$$\psi_1(t) = \exp\left[-i\int^t C(|\phi_0(\tilde{t})\psi_0(\tilde{t})^*|)d\tilde{t}\right]\psi_0(t)$$

where ψ_0 solves $i\psi' = H_0\psi$

- Precession in the flavor space according to H₀; the C term gives an overall phase
- This phase depends on the relative angles between beam and background, |φ_i ψ_i*|²=cos²θ_{relative}

How to probe the phase?

- The phase appears as a result of interaction between neutrinos
- Idea: try to probe this phase by constructing a superposition state, part of which interacts with the medium and part doesn't
- Consider active-sterile oscillations



Active-sterile case

The standard Hamiltonian for the active-sterile oscillations is

$$H_{es} = 2\sqrt{2}G_F n_2 \begin{pmatrix} \cos^2 \alpha & 0\\ 0 & 0 \end{pmatrix} = 2\sqrt{2}G_F n_2 |\langle x|e\rangle|^2 |e\rangle\langle e|$$

Carrying out an analysis similar to the active-active case, we get

$$H_{es} = 2\sqrt{2}G_F n_2[|\langle x|e\rangle|^2|e\rangle\langle e| - 1/2|\langle z|e\rangle|^2|\langle x|e\rangle|^2]$$

- Just like in the active-active case, this evolution Hamiltonian also contains an additional term
- This term is, once again, an overall phase
- It is nonlinear, so the naïve interference argument does not apply

Does the extra term ever become important?

- What are the conditions for it to be an overall phase?
- Maybe it never matters for neutrino flavor evolution?
- To understand this, consider the case when the background is in a quantum superposition state

Entangled background

- Standard formula assumes each neutrino in the ensemble has its own wavefunction (Hartree approximation, no quantum entanglement)
- ❖ What about the entangled background, say
 |x x x ...⟩ + |y y y ...⟩ ?
- Our method is general, can be used even for this case

- Repeat the toy experiment, but with the background $|x \times x \dots\rangle + |y y y \dots\rangle$. What is the v_{μ} flux?
- Just as before, perform exchanges

$$|eee...\rangle(|xxx...\rangle + |yyy...\rangle) \Rightarrow$$

$$|eee...\rangle(|xxx...\rangle + |yyy...\rangle) + ia|Exch\rangle,$$

$$|Exch\rangle = |xee...\rangle|xee...\rangle + |xee...\rangle|xex...\rangle + ...$$

$$+ |yee...\rangle|eyy...\rangle + |yee...\rangle|yey...\rangle + ...$$

- \clubsuit The flux of ν_{μ} is nonzero
- States of the type $\exp[i\phi_1]|e \ e \ e \ ...\rangle| \ x \ x \ x \ ...\rangle + \exp[i\phi_2]|e \ e \ e \ ...\rangle|y \ y \ y \ ... \rangle$ form. The phase is now *relative*, and has a physical effect

Conclusions

- vv refraction Hamiltonian can be simply derived from first principles as an interference effect, once the change in the background state is properly included
- No special assumptions, i.e. decoherence between certain states, are necessary
- The standard formalism overcounts neutrino interaction energy, but...
- ...The correct equation differs only by an overall phase, both for active-active and active-sterile oscillations, with no effect on oscillation physics under normal conditions