Neutrino Bounds on Astrophysical Sources and New Physics

Haim Goldberg Northeastern University, Boston

March 3, 2003 KITP Neutrino Conference

- Introduction: neutrino and hadron shower Characteristics
- Neutrino acceptances and exposures: hadronic and electromagnetic
- Bounds on the high energy neutrino flux
- Model-independent bounds on new physics interactions
- Implications for TeV-scale gravity
- Conclusions

Work done with: Luis Anchordoqui, Jonathan Feng and Alfred Shapere Phys. Rev. D **66**, 103002 (2002) [hep-ph/0207139].

Shower characteristics

Neutrino showers

- Long interaction length > any atmospheric depth
 ⇒ showers above detector
- Large EM component
- Curved front
- Signal spread in time (μs)

Hadron showers

- Short Interaction length ~ 40 g/cm² ⇒ shower maximum high in the atmosphere (X_{max} ~ 800 - 900 g/cm²)
- EM component damped in ~ 40 − 60 g/cm² ⇒ only muons survive at ground
- Flat shower front (> 100 km)
- Short signal (ns)

Northeastern University, Boston Haim Goldberg

Neutrino Bounds on Astrophysical Sources and New Physics

March 3, 2003 KITP Neutrino Conference

$$(A\Omega)_{\text{eff}}(E_{\text{sh}},t) \equiv \int_{\theta_{\min}}^{\theta_{\max}} A(t) \mathcal{P}(E_{\text{sh}},\theta,t) 2\pi \sin\theta \, d\theta$$

Effective aperture P. Billoir, in Venice 1999, Neutrino telescopes, Vol. 2, p. 111

$$\int \theta^{max} \int (\partial \phi - \partial \phi) d\phi = 0$$

 $h_{
m max}$

= 15 km, $H \approx 8$ km

= total observation time of the detector

$$(4\Omega)_{\text{eff}}(E_{\text{sh}},t) \equiv \int_{0}^{\theta_{\text{max}}} A(t) \mathcal{P}(E_{\text{sh}},\theta,t) 2\pi \sin\theta \, d\theta$$

Exposure

 $\mathcal{E}(E_{\rm sh}) \approx \int_0^T dt \int_0^{h_{\rm max}} (A\Omega)_{\rm eff}(E_{\rm sh}, t) \frac{\rho_{\rm atm}(0)}{\rho} e^{-h/H} dh$

 $ho_{
m water}$

Neutrino exposure: ground arrays

Neutrino exposure: fluorescence detectors (FD)

Hadronic and EM similar

- FD's sensitive to total EM activity along shower axis
- Because π^{\pm} mostly interact before decay, 80-90% of energy in hadronic showers is EM
- Adopt total FE exposure for both hadronic and EM showers from a total of five running periods ("epochs") (1983-1992) as reported in

R. M. Baltrusaitis *et al.*, Nucl. Instrum. Meth. A **240** (1985) 410; R. M. Baltrusaitis *et al.*, Nucl. Instrum. Meth. A **264** (1988) 87. D. J. Bird *et al.* [HIRES Collaboration], Astrophys. J. **424** (1994) 491.

• The additional periods enhance the first-epoch FE exposure by a factor of 3.

Results of searches for deeply penetrating QH showers

AGASA Collaboration

- Searched for QH showers with $X_{\rm max} \ge 2500$ g/cm²
- X_{\max} determined by
 - fit to lateral distribution of charged particles at ground level
 - fit to curvature of shower front
- expected hadronic backg'd 1.72 events
- only one event with $X_{\rm max}$ clearly > 2500 g/cm²

Fly's Eye

- X_{\max} determined by 3-parameter fit to charged particle density
- 5000 events, 11 years, no neutrino candidates
- combined data imply upper bound of 3.5 neutrino-induced events at 95% CL

Working equations for bounds

Event rate

$$N = \sum_{i,X} \int dE_i \, N_A \, \frac{d\Phi_i}{dE_i} \, \sigma_{iN \to X}(E_i) \, \mathcal{E}_{iX}(E_i)$$

- $i = \nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$
- $d\Phi_i/dE_i$ = source flux of neutrino species *i*.
- $\mathcal{E}_{iX}(E_i)$ = appropriate exposure measured in cm³ we sr \cdot time.

Exposures for SM processes

- 20% of energy \rightarrow hadronic recoil
- Examples for AGASA (charged current)

 $\mathcal{E}_{\nu_e X}(E_{\nu_e}) = \min\{\mathcal{E}_{had}(0.2E_{\nu_e}) + \mathcal{E}_{EM}(0.8E_{\nu_e}), \mathcal{E}_{sat}\}$ $\mathcal{E}_{\nu_{\mu}X}(E_{\nu_{\mu}}) = \mathcal{E}_{\text{had}}(0.2E_{\nu_{\mu}})$

Examples for Fly's Eye (charged current):

 $\mathcal{E}_{\nu_e X}(E_{\nu_e}) = \mathcal{E}(E_{\nu_e})$ $\mathcal{E}_{\nu_{\mu}X}(E_{\nu_{\mu}}) = \mathcal{E}(0.2E_{\nu_{\mu}})$

• Neutral current RHS = $\mathcal{E}_{had}(0.2E_{\nu_i})$ (AGASA), $\mathcal{E}(0.2E_{\nu_i})$ (FE)

March 3, 2003 KITP Neutrino Conference

Neutrino Bounds on Astrophysical Sources and New Physics

Bounds on astrophysical neutrino fluxes (cont'd)

Model-independent local bounds (continued)

• Take $\Delta=1,$ and total mixing

$$\langle E_i d\Phi_i / dE_i \rangle = \frac{1}{6} \langle E_\nu d\Phi_\nu / dE_\nu \rangle$$

and use SM cross sections to obtain model-independent local upper bound on total ν flux at 95% CL.

Global bounds assuming particular flux behavior

• Illustrative choices

$$\frac{d\Phi_{\nu}}{dE_{\nu}} = J_0 \left(\frac{E_{\nu}}{E_0}\right)^{-\gamma} , \gamma = 1.5 \text{ or } 2.0$$

• Can now integrate and obtain bounds over entire energy range for each γ .

March 3, 2003 KITP Neutrino Conference

Neutrino Bounds on Astrophysical Sources and New Physics

Haim Goldberg Northeastern University, Boston Radio Ice Čerenkov Experiment:

searches for radio pulses from EM showers created by electron neutrino collisions in ice.

Goldstone Lunar Ultra-high energy neutrino Experiment:

searches for microwave Čerenkov pulses from EM showers induced by neutrinos in the Moon's rim.

Bounds on neutrino cross sections

Assume Protheroe-Johnson flux

- Input nucleon spectrum E^{-2} , cutoff energy $10^{12.5}$ GeV, source evolution $(1+z)^4$ as a minimum
- \bullet Expected event rate at AGASA and FE with SM cross section \sim 0.02/yr
- Keep new physics flavor-blind, negligible EM component
- Illustrate with two cases for new physics

(1) $y = E_{\rm sh}/E_{\nu} = 1$: all energy into shower. Example: TeV scale black hole production. D'Eath,

Payne, Phys. Rev. D **46**, 694 (1992).

(2) y = 0.1: leading particle effect. Example: KK graviton exchange in NC interaction Kachelriess,

Plumacher, hep-ph/0109184.

 Model-independent condition on cross section is now

 $N_A \left\langle \sigma_{\nu N \to X}(E_{\nu}) \right\rangle \left\langle \mathcal{E}(y E_{\nu}) \right\rangle \left\langle E_{\nu} d\Phi_{\nu} / dE_{\nu} \right\rangle < 3.5$

averaged over an energy interval of 1 e-folding.

March 3, 2003 KITP Neutrino Conference

Neutrino Bounds on Astrophysical Sources and New Physics

Haim Goldberg Northeastern University, Boston

νN cross section bounds (cont'd)

Comparison to previous bounds C. Tyler, A. V. Olinto and G. Sigl, Phys. Rev. D **63**, 055001 (2001) [hep-ph/0002257] (TOS)

- Updated exposure \rightarrow gain factor of 9
- Cosmogenic flux source cutoff energy of $10^{12.5}$ vs. $10^{11.5}$ in TOS (just at cutoff CR energy) \rightarrow gain factor of 4
- 95% CL limits \rightarrow lose factor of 4
- → net improvement on bounds by about order of magnitude

Implications for TeV-scale gravity

Extra dimensions

- General idea: our 4-dimensional universe is embedded in a larger geometry with *n* extra spatial dimensions
- Compactify on n-torus, common radius R
- Regaining Newton's law at distances large compared to *R* implies

$$M_{\rm Pl}^2 = 8\pi \ M_D^{2+n} \ R^n$$

with M_D related to the (4 + n)-dimensional Planck mass

• Exciting possibility: R is large enough so that $M_D \sim 1 \text{ TeV}$ I. Antoniadis, Phys. Lett. B 246, 377 (1990); J. D. Lykken, Phys. Rev. D 54, 3693 (1996) [hep-th/9603133]; N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429, 263

(1998) [hep-ph/9803315]

• Striking implication: existence of tower of massive gravitons $(K\bar{K})$

Tabletop Gravity

Newtonian gravity good down to 0.2 mm Hoyle et al., PRL86 (2001) 1418 \rightarrow for $n = 1 M_D > 5000$ TeV: uninteresting

Astrophysics

For n = 2(3) limits on rate of supernova cooling through KK graviton emission require

 $M_D > 10(600) {
m ~TeV}$ Cullen-Perelstein, PRL83 (1999) 268; Hannestad-Raffelt, PRL87

(2001) 051301; hep-ph/0110067

Accelerator experiments

• LEP – direct graviton emission (single photons, Z's): for $n = 4(6), \ M_D > 870(610)$ GeV L3 Collaboration,

PLB470 (1999) 281

• Tevatron – virtual KK graviton exchange in $e^+e^$ and $\gamma\gamma$ production: $M_D > 1.0 - 1.2$ TeV, depending on brane tension cutoff

Northeastern University, Boston Haim Goldberg

Neutrino Bounds on Astrophysical Sources and New Physics

March 3, 2003 KITP Neutrino Conference

Proposal that collapse to TeV-scale BHs occurs in high energy particle collisions Banks, Fischler, hep-th/9906038; Emparan, Horowitz, Myers, Phys. Rev. Lett.

Black holes

85, 499 (2000) [hep-th/0003118]; Giddings, Katz, J. Math. Phys. 42, 3082 (2001) [hep-th/0009176]; Giddings, Thomas, hep-ph/0106219;

Dimopoulos,Landsberg, Phys. Rev. Lett. 87, 161602 (2001) [hep-ph/0106295].

- These evaporate primarily to SM particles
- Parton-parton cross section is \sim geometric $\hat{\sigma} \simeq \pi r_s^2$, where Schwarzschild radius

$$r_s(M_{\rm BH}) = \frac{1}{M_D} \left[\frac{M_{\rm BH}}{M_D} \right]^{\frac{1}{1+n}} \left[\frac{2^n \pi^{(n-3)/2} \Gamma(\frac{n+3}{2})}{n+2} \right]^{\frac{1}{1+n}}$$

Black hole production by neutrinos in cosmic rays

March 3, 2003 KITP Neutrino Conference

Neutrino Bounds on Astrophysical Sources and New Physics

March 3, 2003 KITP Neutrino Conference

Bounds on TeV-scale gravity

- Total exposure + cosmogenic flux + σ \longrightarrow expected event rates for different value of x_{\min} and M_D
- Requiring that event rate satisfy the 95% CL bound \longrightarrow determine lower bound on M_D for each x_{\min}

March 3, 2003 KITP Neutrino Conference

Neutrino Bounds on Astrophysical Sources and New Physics

Haim Goldberg Northeastern University, Boston

Bounds on TeV-scale gravity (cont'd)

Can now generate 95% exclusion plot in $M_D - x_{\min}$ space, $n = 1 \dots 7$ from bottom.

March 3, 2003 KITP Neutrino Conference

Neutrino Bounds on Astrophysical Sources and New Physics

Comparison with D0 Collaboration bounds

• These are obtained from 95% CL upper bounds on anomalous 4-point functions generating $\gamma\gamma$ or

 e^+e^- pairs. B. Abbott *et al.* [D0 Collaboration], Phys. Rev. Lett. **86**, 1156 (2001) [arXiv:hep-ex/0008065].

• The 4-pt function arises through virtual KK graviton *s*-channel intermediate states. Giudice, Rattazzi,

Wells, Nucl. Phys. B 544, 3 (1999); Han, Lykken and Zhang, Phys. Rev. D 59, 105006 (1999); Hewett, Phys.

Rev. Lett. **82**, 4765 (1999).

• Sum diverges, so need cutoff introduced as brane-softening factor Λ - expect $\Lambda \leq M_D$.

M. Bando *et al*, Phys. Rev. Lett. **83**, 3601 (1999); M. Bando, T. Noguchi, arXiv:hep-ph/0011374; H. Murayama, J. D. Wells, arXiv:hep-ph/0109004.

Table 1: Lower limits on M_D at 95% CL in TeV.

Λ/M_D	$M_{D,\min}$ (TeV)		
	n = 4	n = 6	n=7
0.5	0.80	0.63	0.58
0.6	0.88	0.76	0.73
0.7	0.95	0.89	0.88
0.8	1.01	1.01	1.04
0.9	1.07	1.14	1.21
1.0	1.13	1.26	1.38

• For $\Lambda < M_D$, present bounds 1.3 - 1.4 TeV exceed Tevatron bounds ~ 1 TeV.

Summary of results and conclusions

- New bounds obtained on the cosmic neutrino flux from existing limits on quasi-horizontal deeply developing showers, taking into account the combined exposures of the AGASA and Fly's Eye experiments. Results significantly strengthen existing limits.
- They also present severe constraints on top-down models where the cascade decay of exotic elementary X particles or topological defects are responsible for the events detected with energies ≥ 10¹¹ GeV. This is because neutrinos are typically a significant component in X decays, and have a hard spectrum extending up to M_{GUT} ~ 10¹⁶ GeV, and our bounds are typically exceeded when the proton flux from top-down models is normalized to the observed spectrum.
- Complete neutrino exposure was combined with the flux of cosmogenic neutrinos, to derive model-independent upper bounds on the neutrino-nucleon cross section. These bounds strengthen existing limits by roughly one order of magnitude.

Summary of results and conclusions (cont'd)

• Considered TeV-scale gravity models to study BH production. Upper bounds on the neutrino-nucleon cross section implied lower limits on the fundamental Planck scale, which represent the best existing limits on TeV-scale gravity for $n \ge 5$ extra spatial dimensions.