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Why care about the micro-biophysics of AP initiation?

The axon initial segment and vertebrate self-respect
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Theoretical reasons to care?

How Spike Generation Mechanisms Determine the Neuronal
Response to Fluctuating Inputs

Nicolas Fourcaud-Trocmé, David Hansel, Carl van Vreeswijk, and Nicolas Brunel
Centre National de la Recherche Scientifique Unité Mixte de Recherche 8119, Neurophysique et Physiologie du Systeme Moteur, Unité de Formation et de
Recherche Biomédicale, Université Paris 5 René Descartes, 75270 Paris Cedex 06, France

Experimental implications

How sharp are spikes in cortical neurons?
Our work shows that the spike slope factor, A, is one of the main

parameters on which the response of a neuron to fluctuating
inputs depends. Activation curves of Na™ channels have been
measured in several preparations, including neocortical pyrami-
dal cells (Fleidervish et al., 1996}, hippocampal pyramidal cells,
granule cells, and basket cells (Martina and Jonas, 1997; Fricker et
al., 1999; Ellerkmann et al., 2001). These authors used Boltzmann
functions to fit the observed data. Using their best-fit parameters,
one finds A4 in the range of 3—6 mV for these types of cells.
However, in all cases, there are few data points in the region of the
threshold, leading to a considerable uncertainty in the estimate of
this parameter. Therefore, more experiments are needed to de-
termine the spike slope factor of cortical neurons.

Fourcaud-Trocme et al. 2009,
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Cooperative gating in clustered Ca2+ channels
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Cooperative gating in clustered K+ channels

structure cooperative activation
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Cooperative gating in clustered Na+ channels

structure cooperative activation
0 . — ]
1
;
3 P.=0.216
2 P =0. 054
;
;
0. 2
1
:
clustering 0 .

Lol =

i 1
:-. - l.. L sa Falw w L) 3 ) NN N U X

" O KK (EEEEEE] IEEEE (EEEEREEE] - -15 -iu —5 u
PA
,10 a true believer, there can be no plainer demonstration of ... “ cooperative gating

D. Bray & Th. Duke (2004)
~conformational spread: the propagation of allosteric states in large multiprotein complexes*.

Undrovinas, Fleidervish, Makielski, Circ. 1992
Post et al. Biochim. Biophys. Acta 1985
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Cortical neurons have really rapid AP onsets

cortical r}euron

MP rate of change (V/s)

Merﬁ?t?rane poter;t?gl (mV)

Naundorf, Wolf, Volgushev (2006, 2007)

See also Gerstner & Richardson‘s work on fitting adaptive EIF to cortical neurons.
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Cortical neurons have really rapid AP onsets

cortical neuron __ cooperative model
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See also Gerstner & Richardson‘s work on fitting adaptive EIF to cortical neurons.
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Single cell and network dynamics

Collective network states:

Rhythms and Synchrony Asynchronouse states
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Important single cell properties: Important single cell properties :

subthreshold oscilations, synaptic o
delays, phase response curves ...
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Information preservation in network dynamics

input intrinsic
modulated dynamcs
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Information preservation in network dynamics

input intrinsic
modulated dynamcs
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Information preservation in network dynamics

input intrinsic
modulated dynamcs
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Degrading information by dynamics

Generic chaotic dynamics will in general lead
to information decay.

neurons' spikes
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Degrading information by dynamics

Generic chaotic dynamics will in general lead
to information decay. oAt

neurons' spikes
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Stretching and folding of phase space characterized by
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Degrading information by dynamics

Generic chaotic dynamics will in general lead
to Information decay.

neurons' spikes

time

Kolgomorov-Sinai-Entropy : Hx g

Rate of information loss about initial condition
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Degrading information by dynamics

Generic chaotic dynamics will in general lead
to information decay. oAt

neurons' spikes

Kolgomorov-Sinai-Entropy : Hyp g = Z A

A; >0 Pesin (1977)

time

time

Pesin Theory: KS-Entropy from complete Lyapunov spectrum.
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lrreqular activity in cortical circuits

ca. 10 000 synaptic inputs
irregular firing
mean current typically below threshold
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lrreqular activity in cortical circuits

ca. 10 000 synaptic inputs
irregular firing
mean current typically below threshold
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van Vreeswijk & Sompolinsky (1996)
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Balanced chaos and single neuron dynamics

What is the nature of chaos in balanced states?
Binary neurons:

Infinite largest Ly et

Note:

Elementary single neuron instability

van Vreeswijk and Sompolinsky (1996, (AP threshold) not represented.

|&F neurons, all inhibitory
No positive Lyapunov e

Zillmer, et al. (2006)
Jahnke, Memmesheimer, Timme (2008
Zillmer, N. Brunel, D. (2009)
Jahnke, Memmesheimer, Timme (200¢
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Balanced theta networks

theta neuron:
spike

resting ~ threshold -1 0 0 ’1 é !
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Balanced theta networks

theta neuron:
spike

]
resting threshold

Tmbi = (1 — cos6;) + I; () (1 + cos 6;)
Li(t) = lext + Z 2J;5Tm0(0;(t) — m)

jepre(i)
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Balanced theta networks

theta neuron:
spike

resting threshold

1 2 3
J i = (1 — cos 6;) + () (1 + cos 0;)
T N Ii(t) = Texe + Y 2JijTm6(0;(t) — )
ext jepre(i)

N neurons, connected with probability K /N

synaptic strength: J =—-J /K

ijepre(i)
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The Lyapunov spectrum

(i) Single theta neuron equation can be ¢ G e 0
solved analytically. 01 '
(i1) Individual neurons follow autonomous -

dynamics between spikes. 1

D(fS) =
Enables numerically exact calculation of the

. 1 —d;-(ts) di (ts) — rows i*
complete Lyapunov spectrum: |

o =

Explicit formula for time of next spike in the Q-
network.

Explicit map for all single neuron phases at

next spike time.

column j*

i';i‘ (t,g_)g + cht

) ) . Ei" ts — - — .
Event based simulations numerically exact ! di- () (Vie (t5) 4+ Jivj+ )2 + Toxt
Exact single-spike Jacobian D of the phase D
map known: precise propagation of all -
possible network state perturbations. L(fp) _ H D(fﬂ)
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Extensive Network Chaos
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Maximum Lyapunov exponent positive and finite.
Size invariant Lyapunov spectrum.
Extensive number of unstable degrees of freedom.
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KS-Entropy density

HKS :thN
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hKS . dynamical entropy production per neuron
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Information degradation spike by spike
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Maximal Lyapunov exponent, fraction of unstable directions and
KS-Entropy increase with firing rate.

Information loss on the order of 1 bit / spike / neuron.

Sensory cortex activity codes up to
1/2 bit/spike of sensory information.
e.g. Panzeri et al. Neuron (2001)
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Varying the single neuron instability

Preserve all computational advantages of the theta neuron but
make instability of spike threshold a free parameter.

Voltage representation:
,r-theta neuron®

AP onset rapidness . r
ratio of

membrane time constant
and

time scale of initial

AP upstroke

Same network structure as before: N

ext
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Impact on spike statistics?

Firing rate distribution
I
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CV value distribution

Firing rates and cv values
In the network
Mean firing rate 2.4 Hz | essentially insensitive to
0 cV 1.5 AP initiation dynamics.
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Impact on collective dynamics?

Two initial conditions.
Phases of all neurons slightly perturbed at t=0.
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Divergence of network states after initial perturbation
depends on single neuron instability?
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Impact on collective dynamics?
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Extensive Chaos for all r.

Fraction of unstable degrees of freedom decreases when
Increasing single neuron instability.
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Fighting information loss by single neuron instability

Maximum Lyapunov exponent KS-Entropy per neuron and spike
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Changing the time scale of action potential initiation can
reduce maximum Lyapunov exponent and dynamical
entropy production by orders of magnitude.
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What about excitation??

Two population networks of r-theta neurons:
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Activating excitatory interactions while
preserving input current statistics.
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More chaos In mixed circuits

e.g.r=1

40 — 1 bit/spike

Activating excitatory connections inceases Lyapunov
exponent and dynamical entropy production.
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Taming chaos in mixed circuits

Maximum Lyapunov exponent KS-Entropy per neuron and spike
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Changing the time scale of action potential initiation also
reduces maximum Lyapunov exponent and dynamical
entropy production as in inhibitory networks.
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Conclusions

« Balanced chaos extensive: KS-entropy per neuron and spike
« KS-entropy on the order of 1 bit / neuron and spike
« Excitatory circuits typically increase entropy production.

 Onset rapidness of APs is a key property setting the stength of
chaos in balanced networks.

 Single neuron instability supresses entropy production by
network dynamics.

 Cortical AP generators might be taylored to tune the network
dynamics towards the edge of chaos.

Perspectives — Open Questions

« Extensive network chaos? Why?
 Impact of cellular parameters (synaptic dynamics)
 Entropy production by stochasticity of synaptic transmission.
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