Weight dependent synaptic plasticity rules

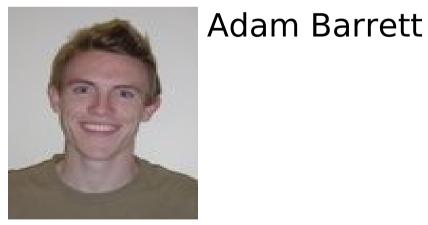
Mark van Rossum

Institute for Adaptive and Neural Computation University of Edinburgh, UK

Acknowledgements

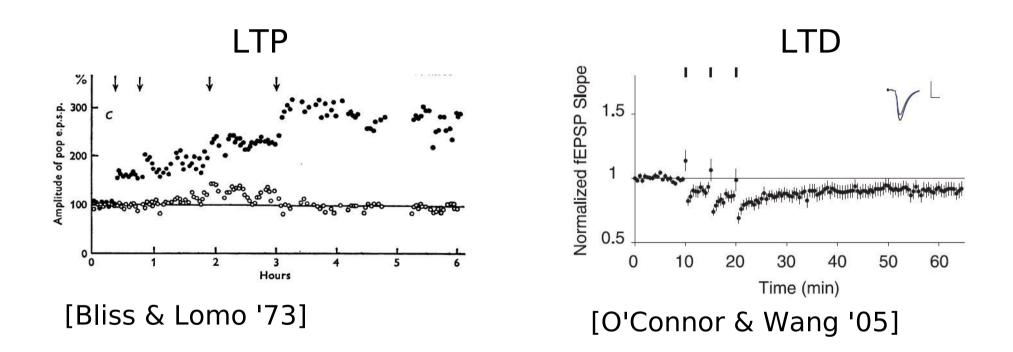
Maria Shippi

Guy Billings



Cian O'Donnell Engineering and Physical Sciences Research Council

Hebbian long term plasticity



Pairing high pre- and post synaptic activity => Long term potentation

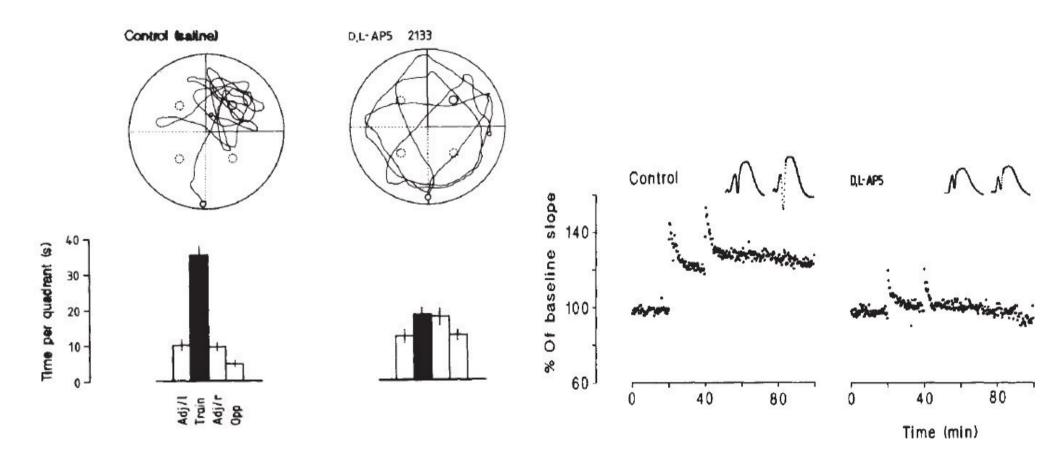
Pairing with low activity => Long term depression

Synaptic plasticity = memory?

[Martin, Greenwood, Morris, '00]

 Anterograde alteration prevent synaptic plasticity → anterograde amnesia
Yes (NMDA-block)

AP5 blocks learning



[Morris et al '86]

Synaptic plasticity = memory?

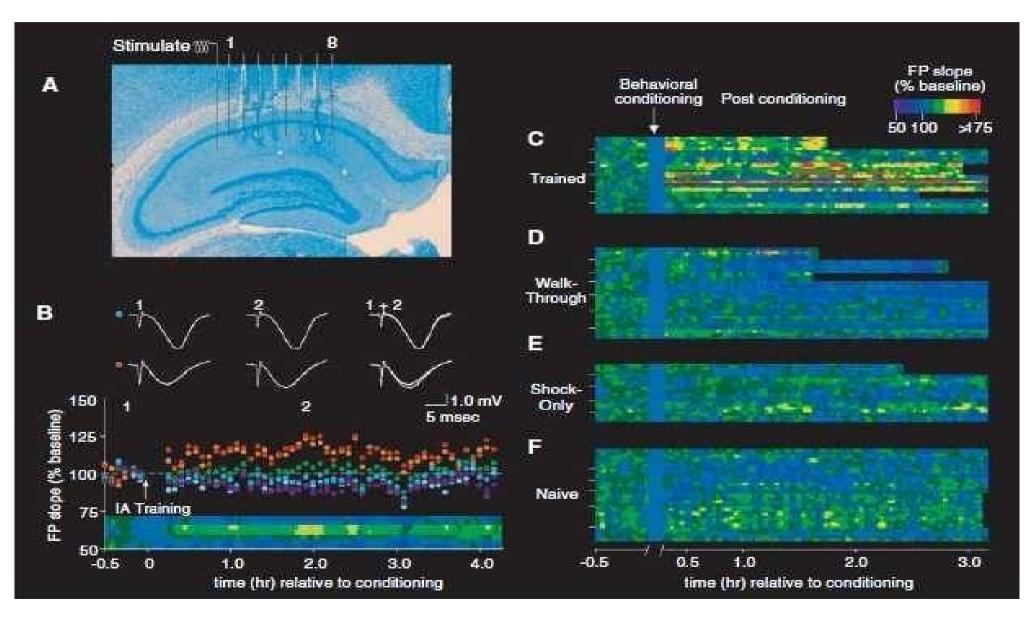
[Martin, Greenwood, Morris, '00]

 Anterograde alteration prevent synaptic plasticity → anterograde amnesia
Yes (NMDA-block)

Detectability

changes in behaviour and synaptic efficacy should be correlated Yes (Whitlock et al.)

Synaptic plasticity=memory?



[Whitlock,.. and Bear '06]

Synaptic plasticity = memory?

[Martin, Greenwood, Morris, '00]

 Anterograde alteration prevent synaptic plasticity → anterograde amnesia
Yes (NMDA-block)

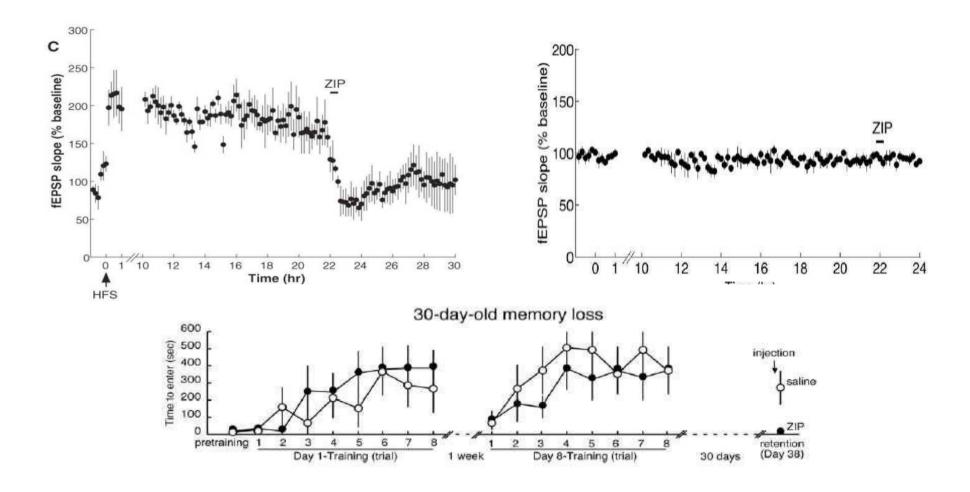
Detectability
 changes in behaviour and synaptic efficacy should be correlated

Yes (Whitlock et al.)

Retrograde alteration
 alter synaptic efficacies → retrograde amnesia

Yes (PKMζ), but...

Late LTP maintenance as an active process



ZIP disrupts one month old memory

[Pastalkova et al '06]

Synaptic plasticity = memory?

[Martin, Greenwood, Morris, '00]

 Anterograde alteration prevent synaptic plasticity → anterograde amnesia
Yes (NMDA-block)

Detectability
 changes in behaviour and synaptic efficacy should be correlated

Yes (Whitlock et al.)

Retrograde alteration
 alter synaptic efficacies → retrograde amnesia

Yes (PKMζ), but...

• Mimicry

change synaptic efficacies → new 'apparent' memory **Not quite yet...**

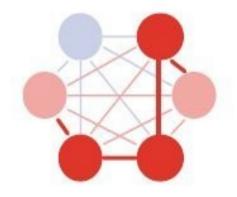
Computational modelling of synaptic plasticity

Ultimate goal: Quantitative, accurate models in health and disease

Complicated rules. Plasticity depends on:

- pre and post activity,
- reward, modulation, history, other synapses, homoeostasis..
- synaptic weight itself

Most models are oversimplified



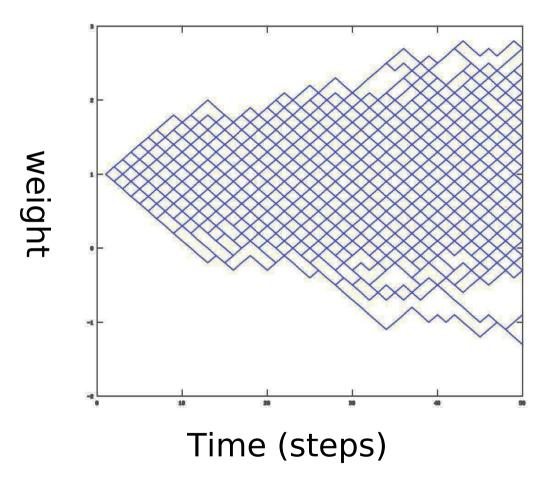
Plasticity due to random patterns: random walk

Random, independent sequence of LTP and LTD

weight

index

Synaptic weights divergence



- Diffusion of weights (Sejnowski '77)
- Run away, so need bounds on the weights

Dealing with synaptic weights divergence

Some possible solutions:

- Hard bounds
- BCM (*)

• Normalization/homeostasis (*) $\sum_{i} w_{i} = 1$

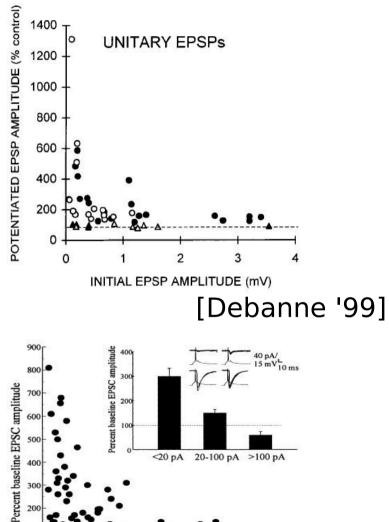
 $\sum_{i} w_i^2 = 1$

- Non-linear STDP (*)
- What is does biology say?
- The outcome of the rules depends strongly on the chosen solution...

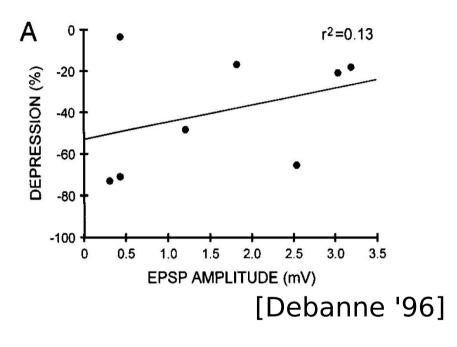
(*) Competitive

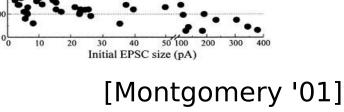
LTP/LTD is weight dependent

Long term potentiation



Long term depression





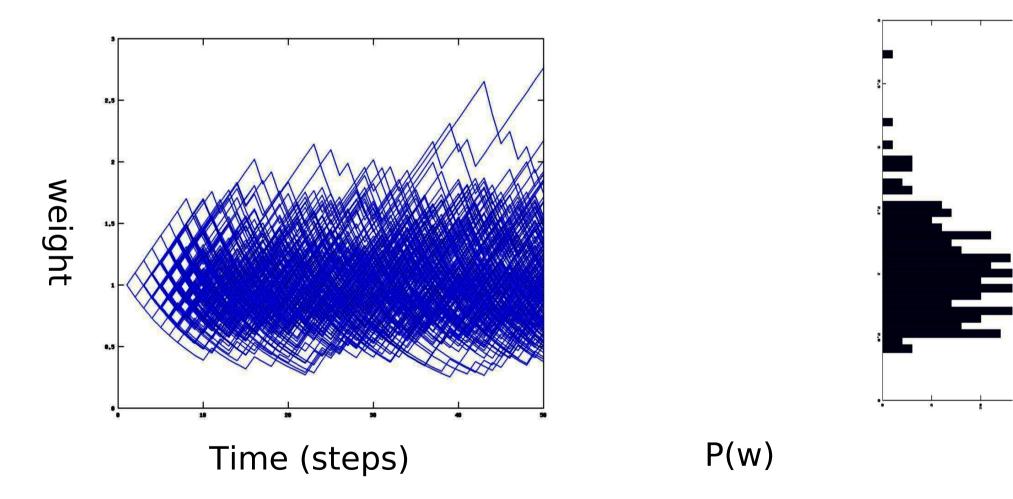
<20 pA 20-100 pA >100 pA

Weight dependent random walk

weight

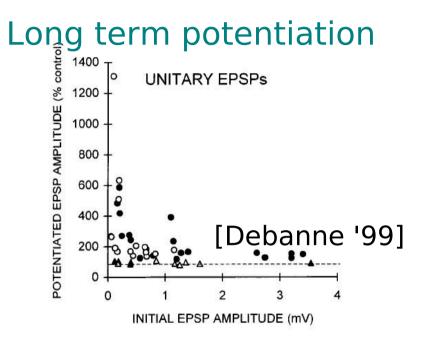
index

Weight dependent learning rules

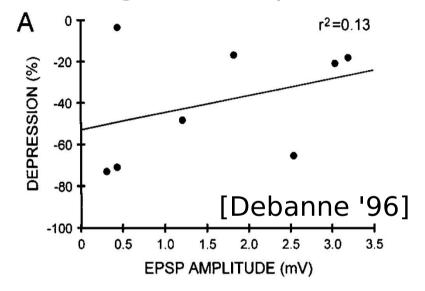


- Weight dependent plasticity prevents run away
- Leads to realistic weights distributions [MvR et al.'00]

Simple model



Long term depression



Simple description

Relative change:

$$\frac{\Delta W^{-}}{W} = -c_1; \quad \frac{\Delta W^{+}}{W} = \frac{c_2}{W}$$

Absolute change:

$$\Delta W^{-} = -c_1 W; \quad \Delta W^{+} = c_2$$

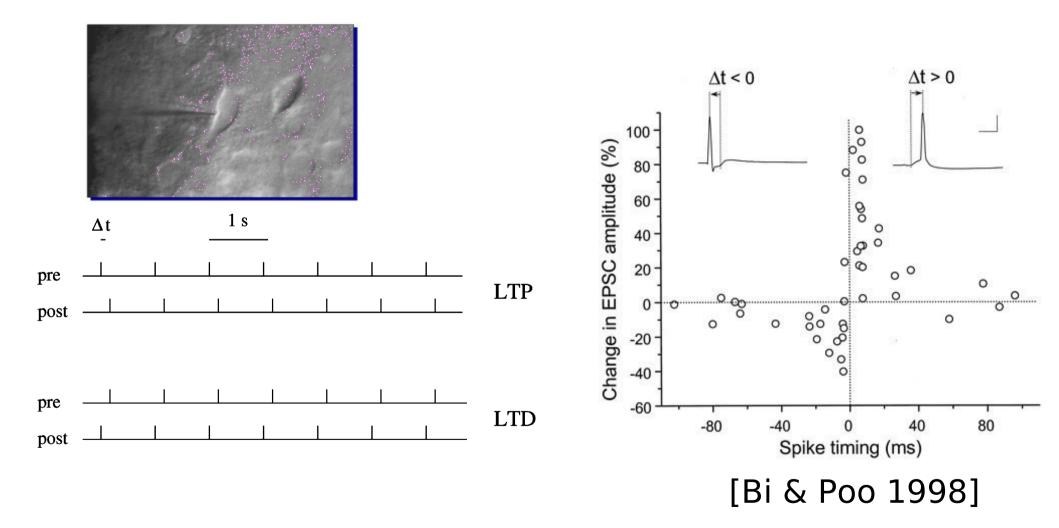
Table of contents

Weight dependent STDP in single neurons and networks

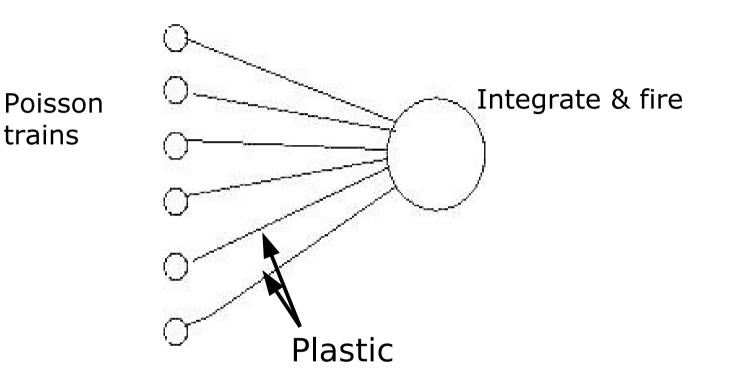
• Spine volume dynamics can implement weight dependence

• Weight dependence increases information capacity

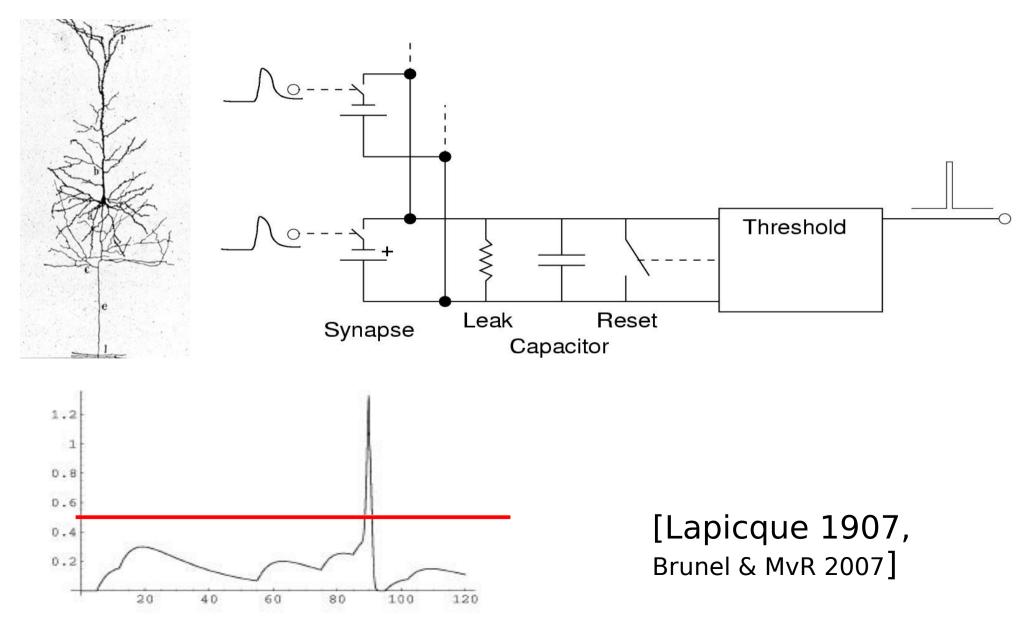
Spike Timing Dependent Plasticity Experimental data



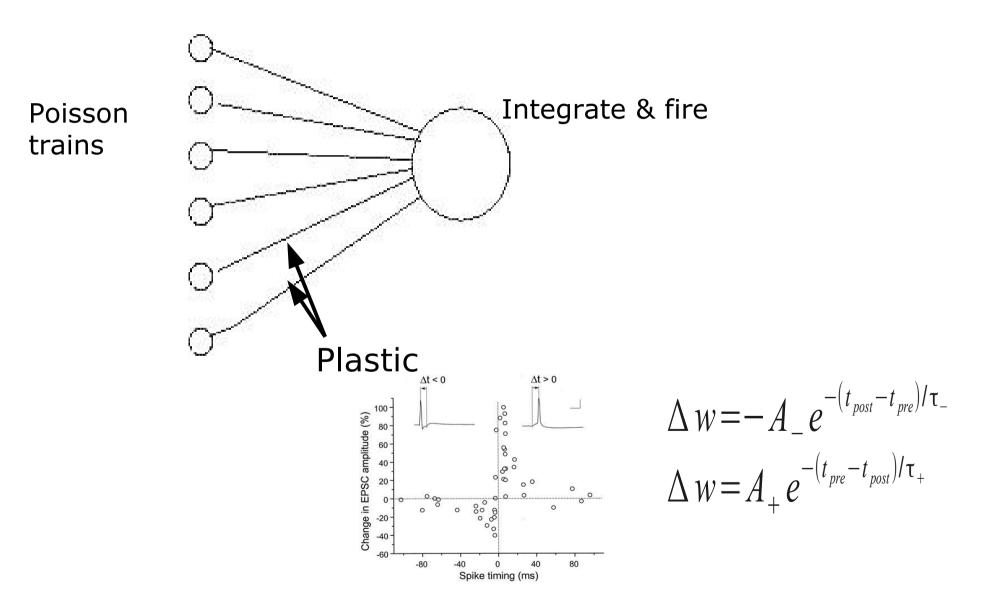
Modelling STDP



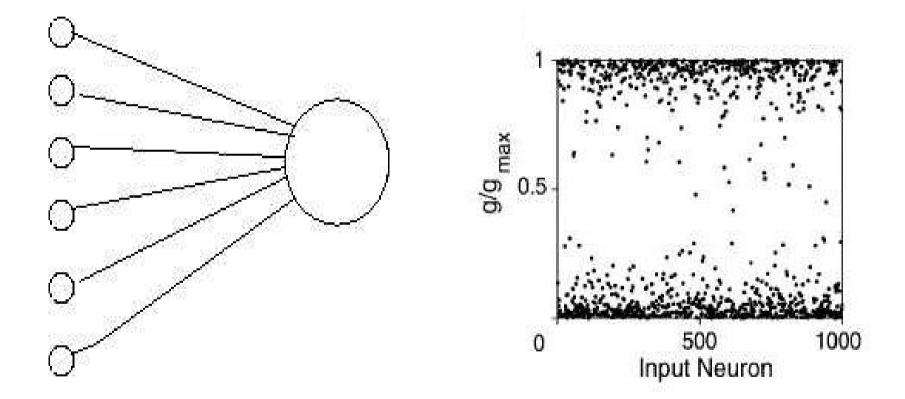
Integrate-and-fire neurons



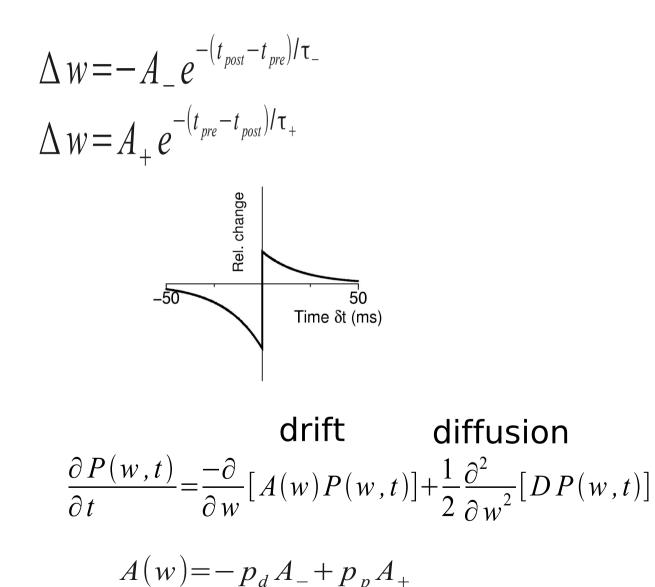
Modelling STDP



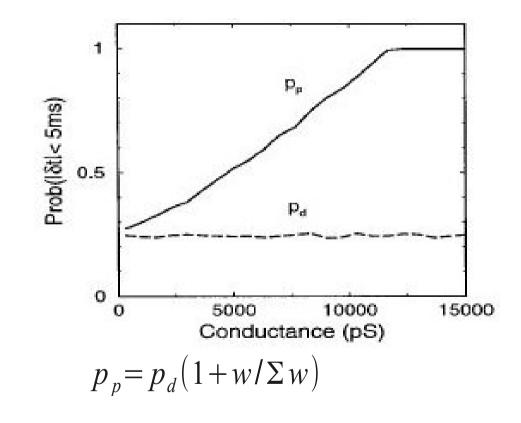
Modelling STDP



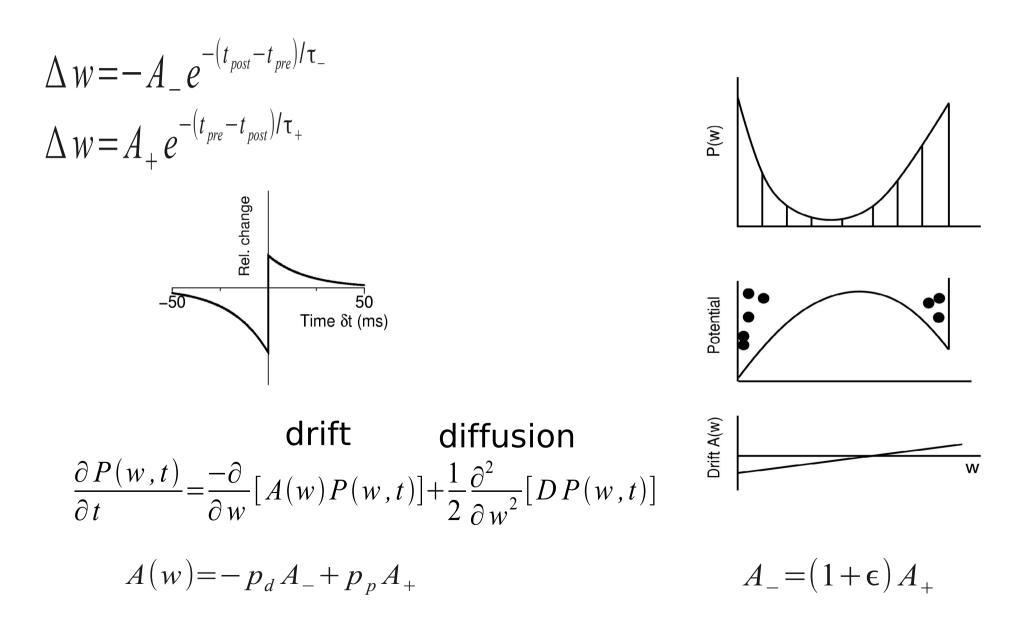
Fokker-Planck approach



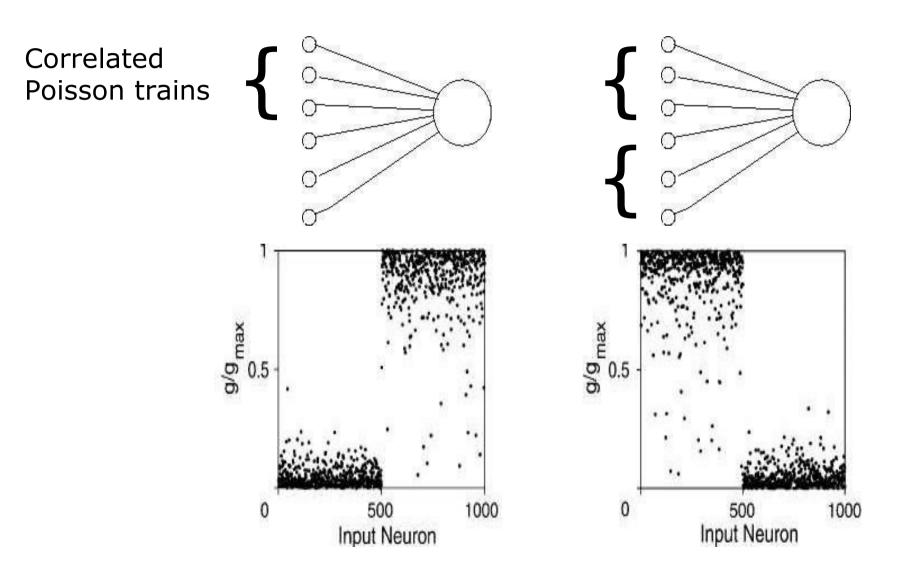
Modelling STDP



Fokker-Planck approach



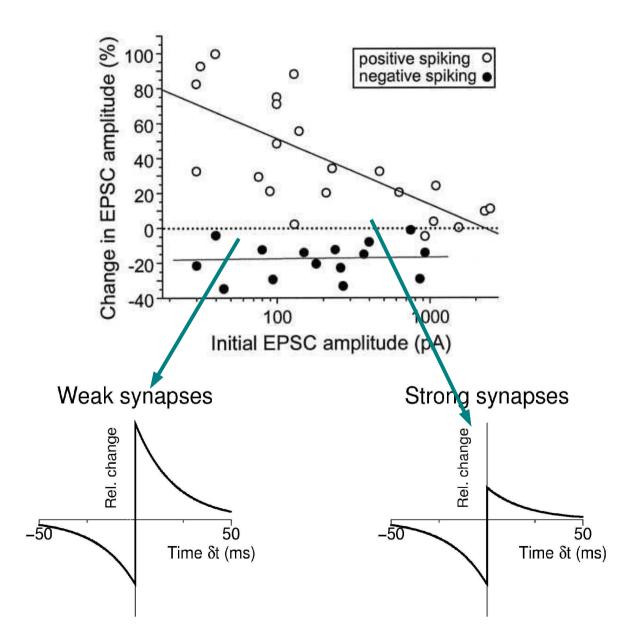
Modelling STDP



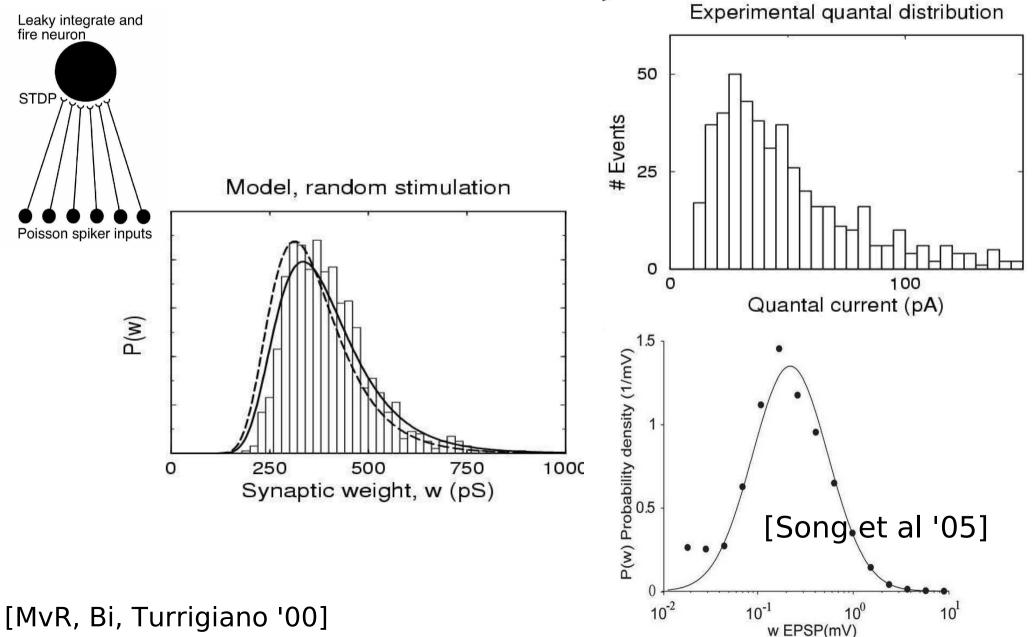
- Require hard bounds on weights
- Competitive

[Song & Abbott '01]₂₈

However, STDP is weight dependent ('soft bounds')

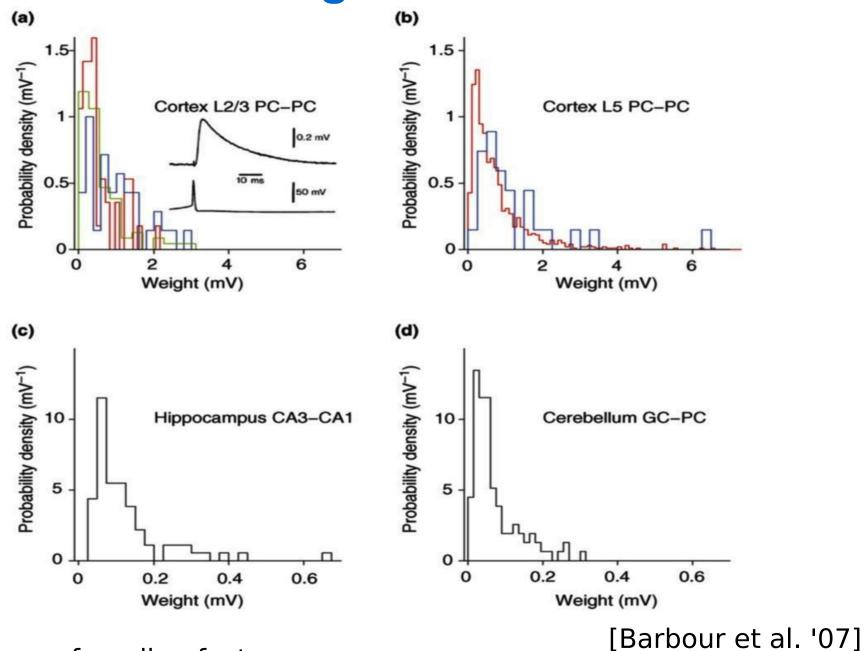


Weight dependence leads to observed weight distribution



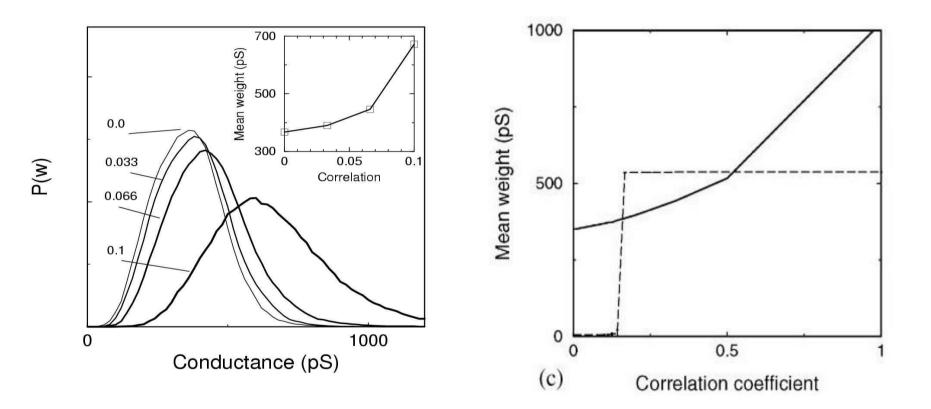
30

Data on weight distribution



Note many confounding factors

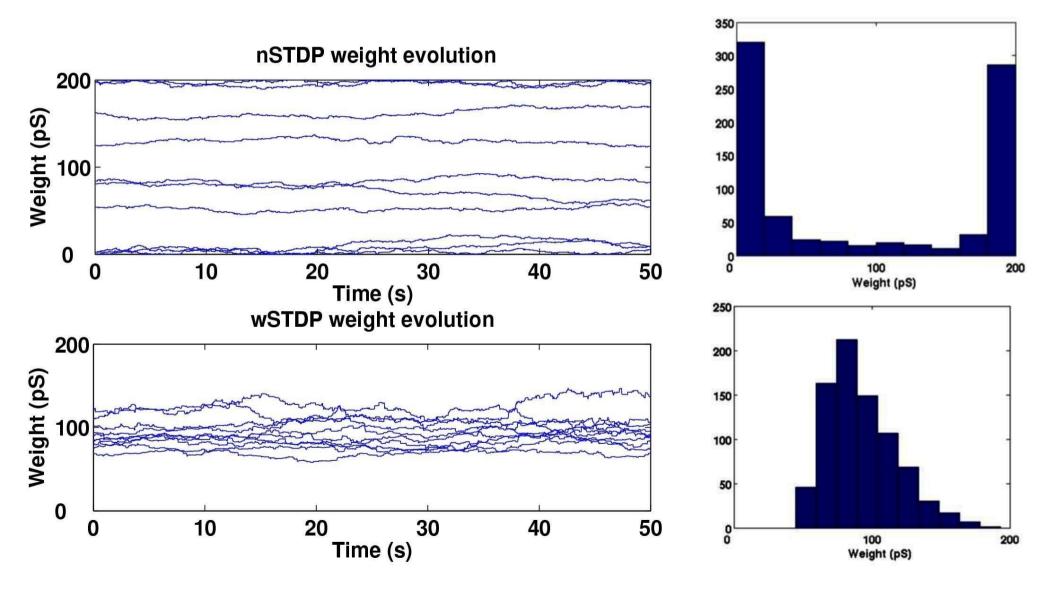
Learning correlations



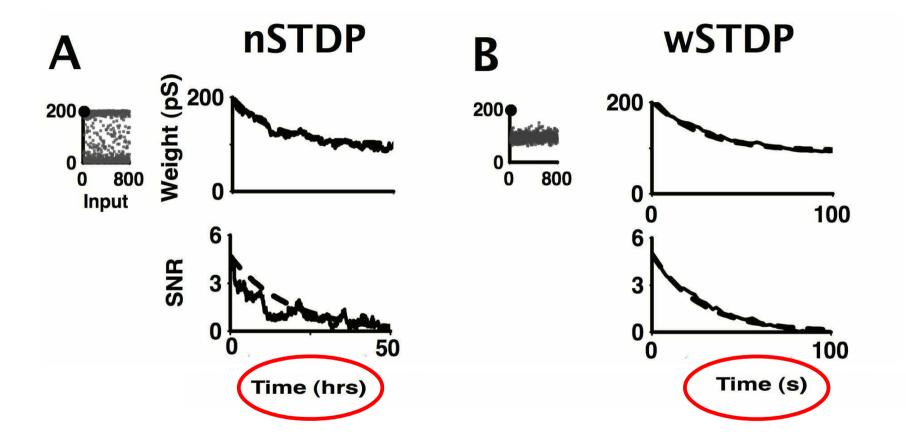
Similar to Oja's rule. Weakly competitive.

[MvR & Turrigiano '01]

Ongoing background activity leads to weight fluctuations

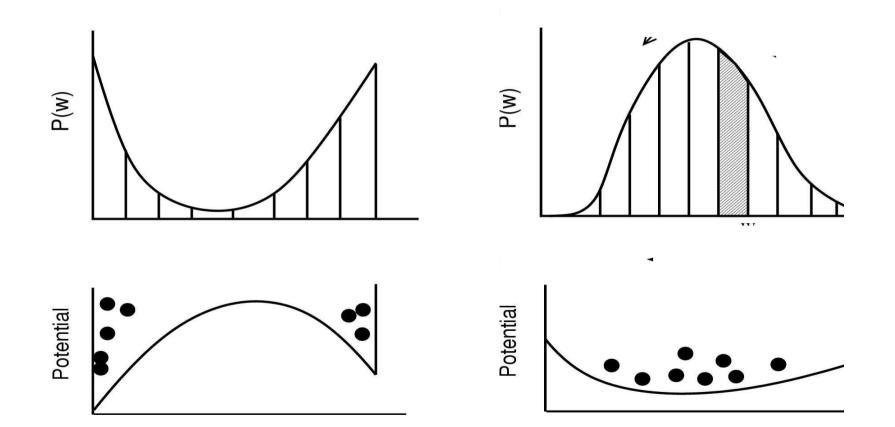


Weight dependence leads to volatile memories



- Spontaneous activity leads to memory decay
- Decay is exponential
- Decay is much faster for weight dependent STDP

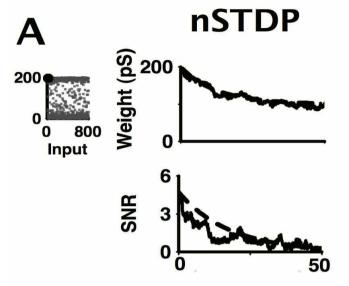
How weight dependence leads to quick forgetting

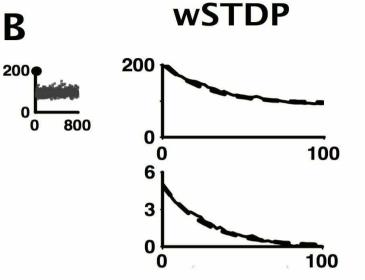


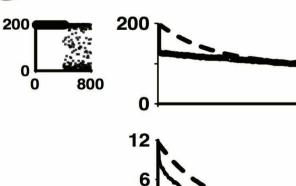
Weight dependence leads to volatile memories

B

0



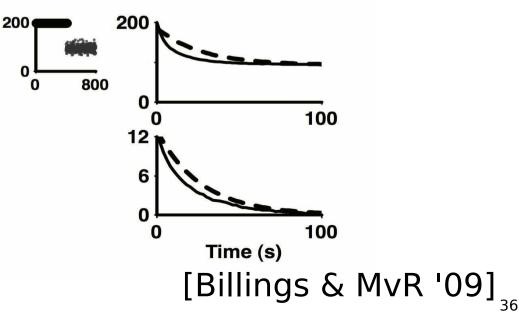




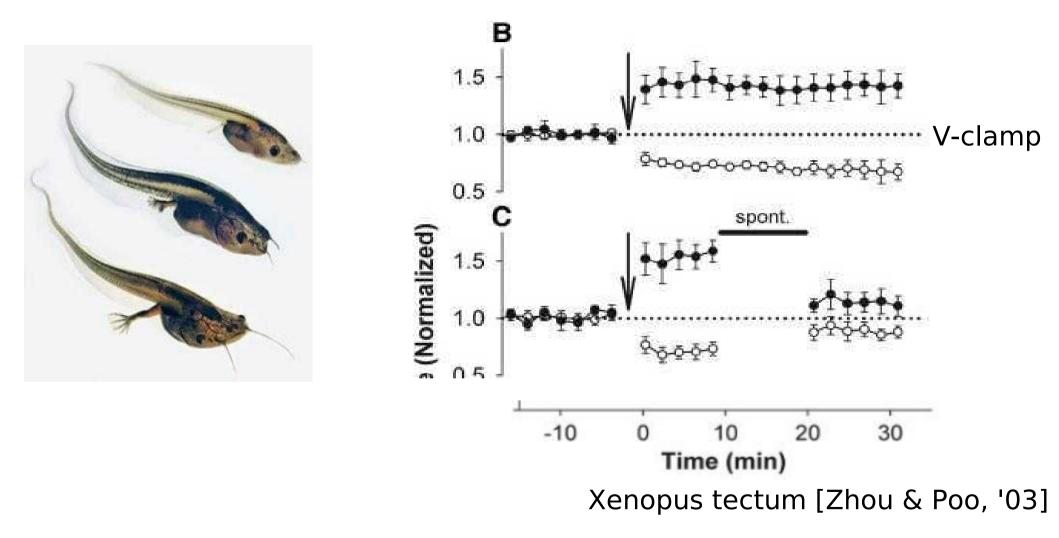
0 0

50

Time (hrs)

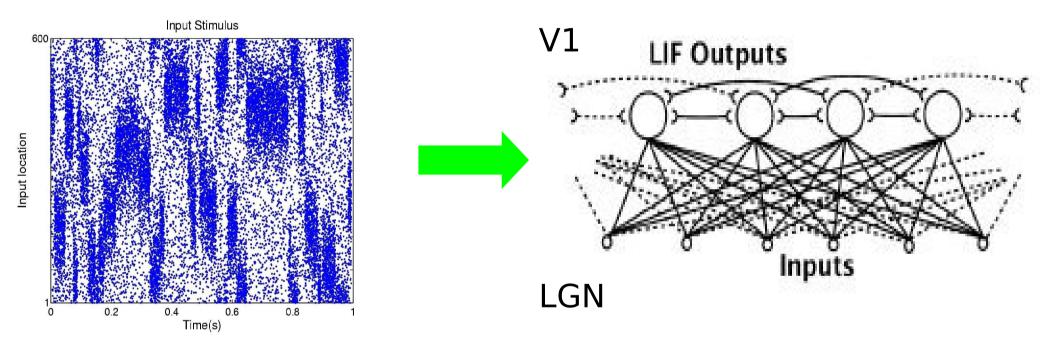


Experimental data: erasure by spontaneous activity



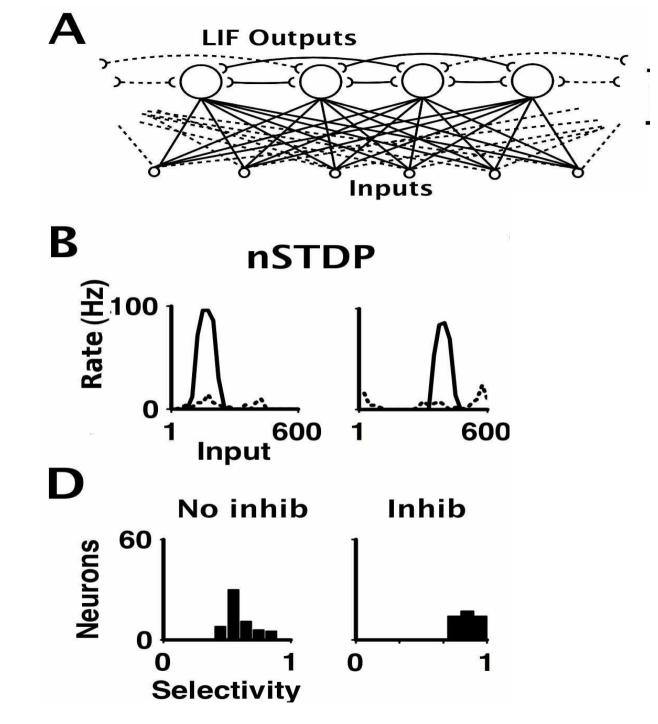
Are memories in *networks* are unstable?

Stability of receptive fields in networks

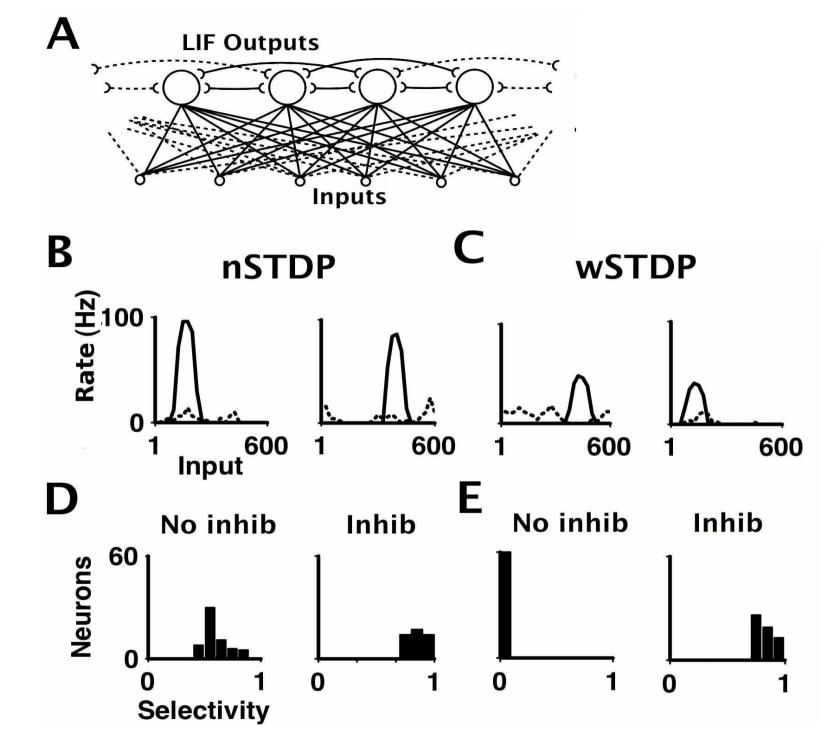


V1-like network

- Integrate and fire
- Variable lateral inhibition
- Sometimes plastic recurrent connections

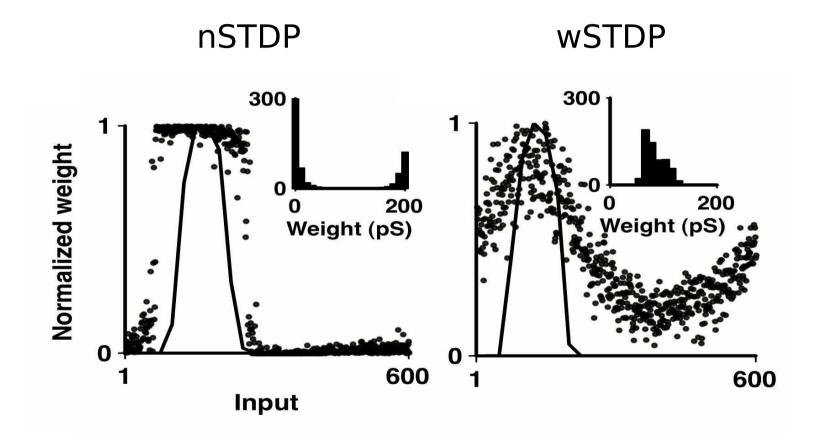


nSTDP: Spontaneous symmetry breaking [Song & Abbott '01]

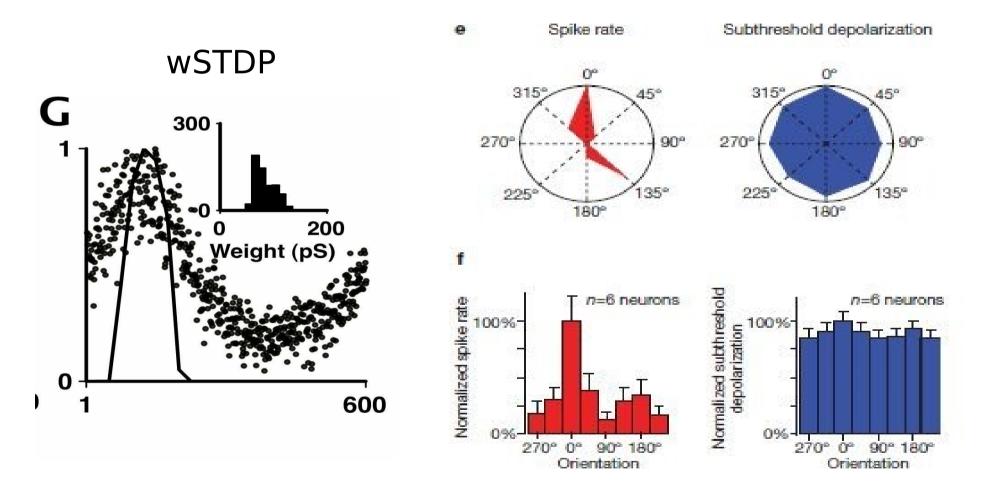


Weight dependent plasticity requires inhibition for selectivity $_{_{40}}$

Broad tuning underlies receptive field



Input tuning in experiments

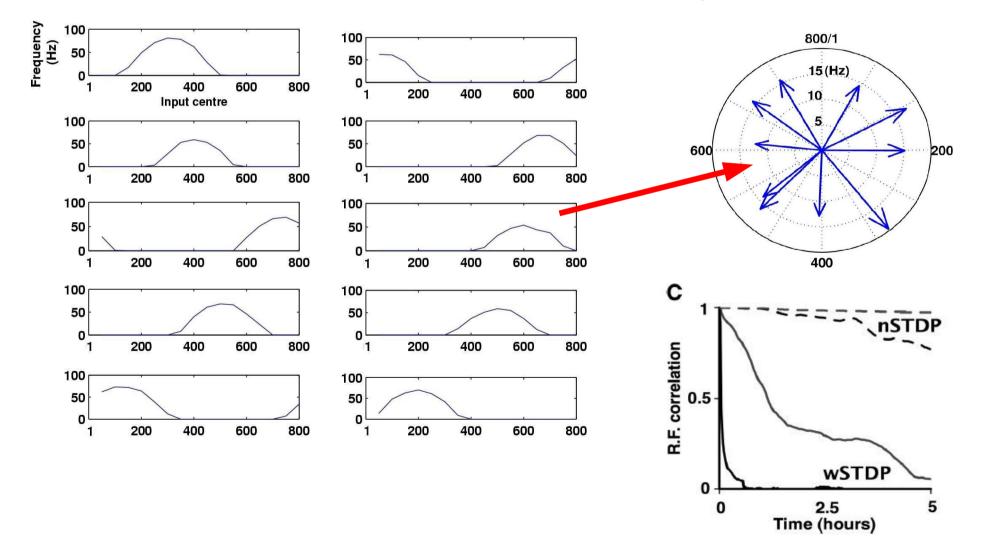


[Jia and Konnerth 2010]

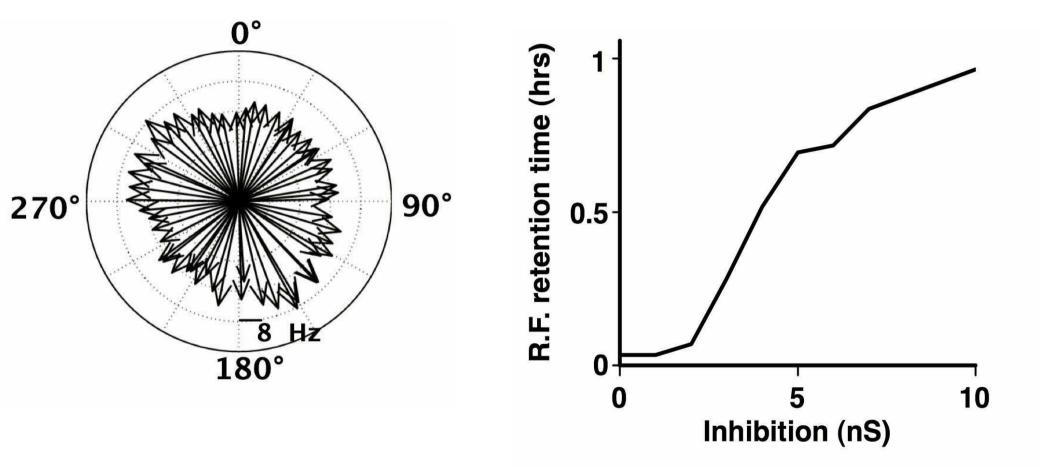
Stability of receptive fields

Receptive fields

Population vectors



Inhibition rescues network stability



[Billings & MvR 2009]

Experimental evidence for effect of inhibition on stability

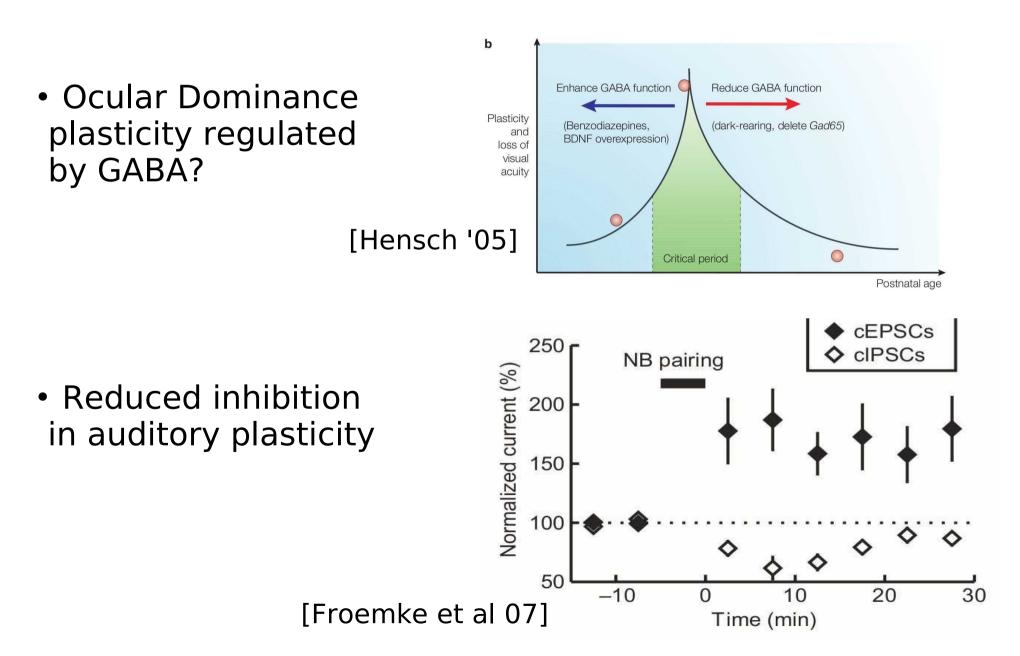


Table of contents

Weight dependent STDP in single neurons and networks

- The observed weight dependence leads to realistic weight distributions
- The receptive fields are much less stable, but lateral inhibition can rescue and modulate retention
- Spine dynamics can implement weight dependence

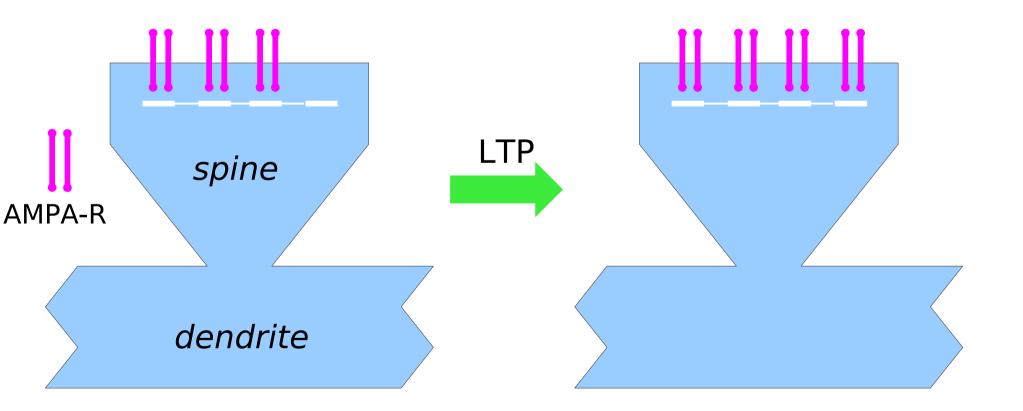
• Weight dependence increases information capacity

Table of contents

- Weight dependent STDP in single neurons and networks
- Spine dynamics can implement weight dependence

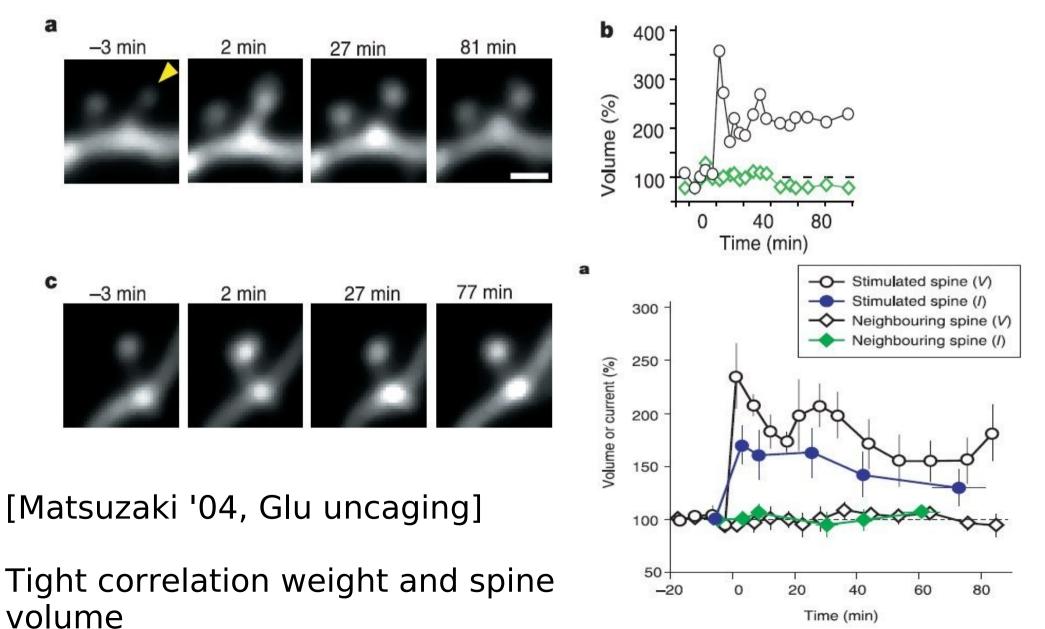
• Weight dependence increases information capacity

Biophysical implementation

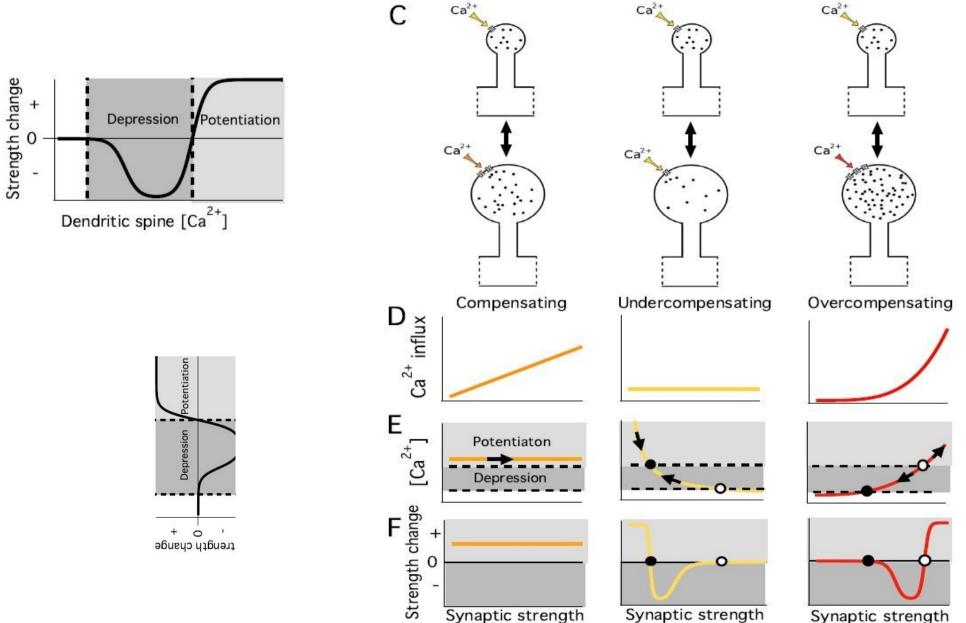


Simple model for weight dependence: biophysical saturation

Spine morphology is remarkably plastic



Three Ca-volume scenarios

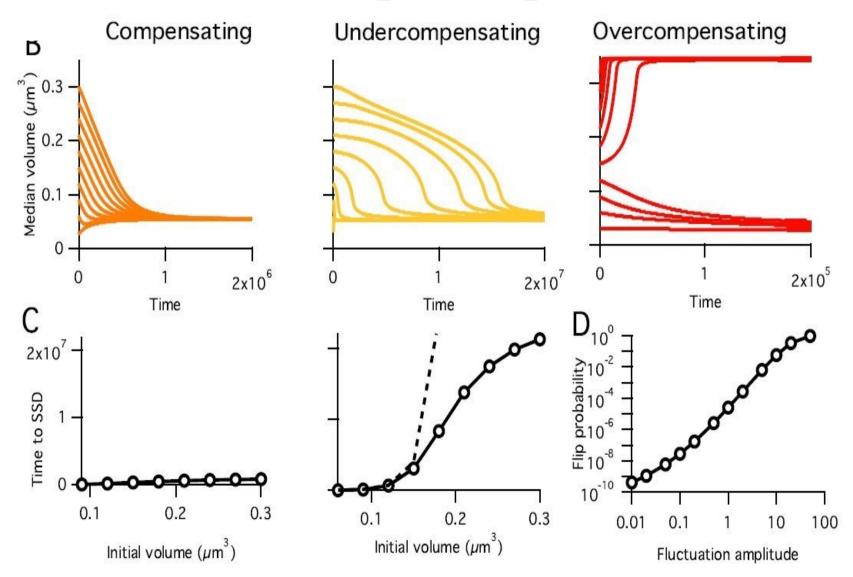


[O'Donnell & MvR, submitted]

Three scenarios

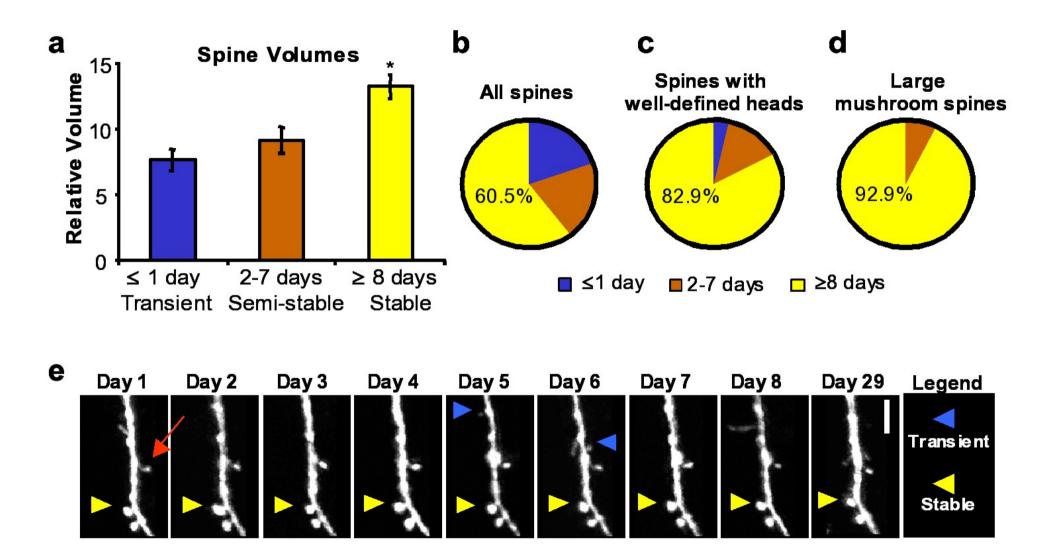


Undercompensating synapses freezes large weights



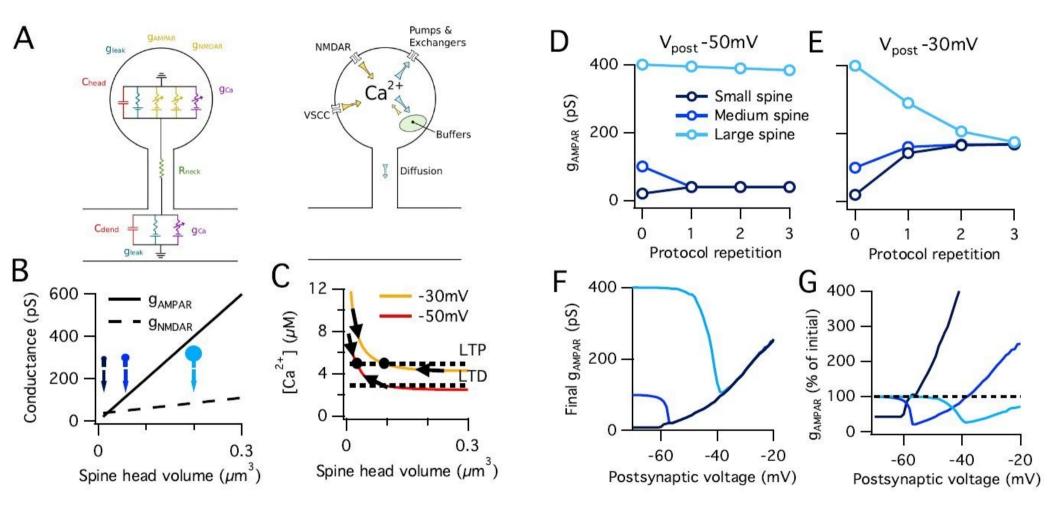
Note, contrasts with most softbound rules.

Large spines are more stable



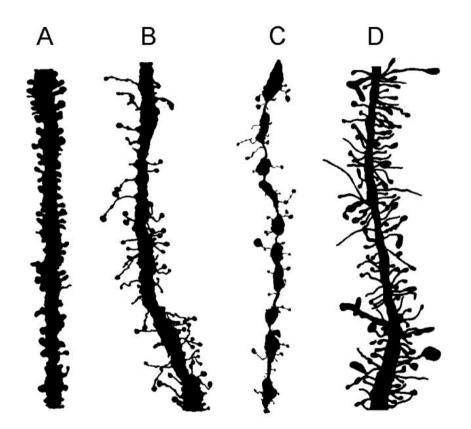
[from Trachtenberg '02 Supp Info]

Biophysical implementation

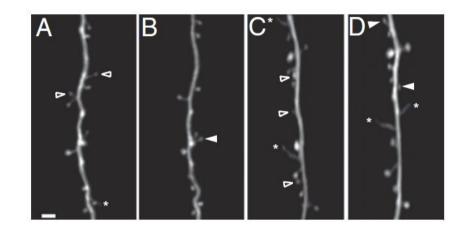


see also [Kalantzis & Shouval '09]

Relation to disease?

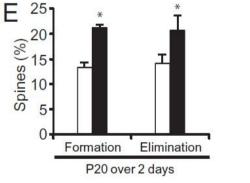


[Fiala et al. '02]



Control

Fmr1 KO



[Pan et al. '10]

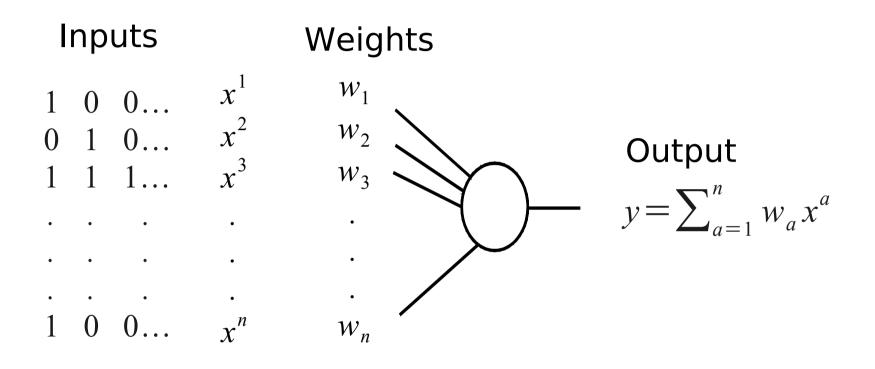
Table of contents

• Weight dependent STDP in single neurons and networks

- Spine dynamics can affect plasticity rules
 - Spine morphology likely under-compensates Ca influx
 - Leads to weight dependent learning rules
 - Leads to stabilization of large spines

• Weight dependence increases information capacity

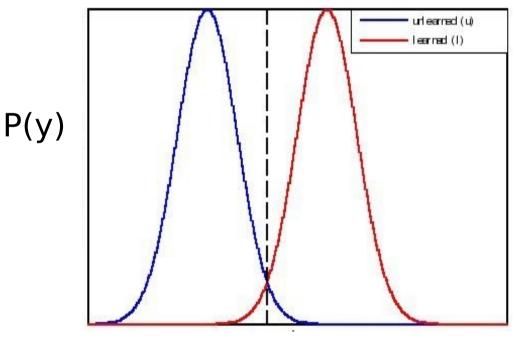
Weight dependent learning and information storage



- Binary patterns *x*
- Weights are bounded
- Ongoing learning, interrupted by recognition test

Measuring memory storage capacity

Separate learned from novel patterns ('lures') Response in test phase:

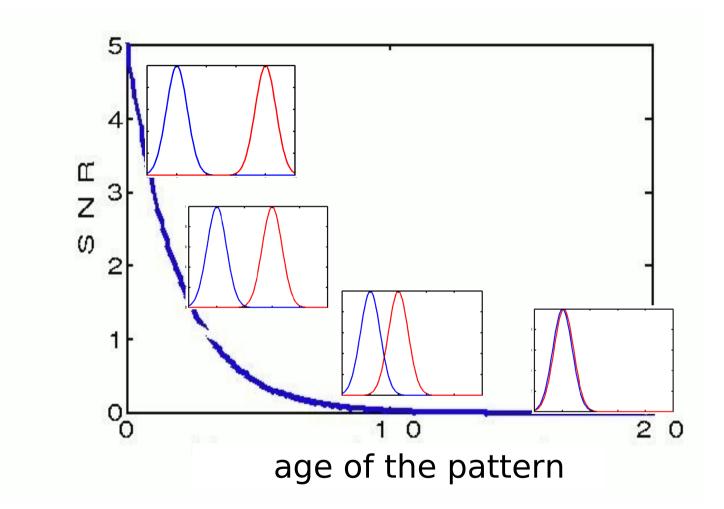


Neuron's output y

Characterize with Signal-to-Noise Ratio:

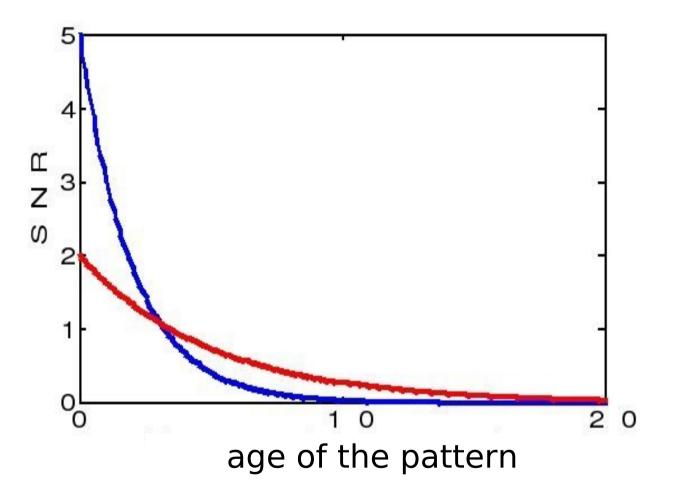
$$SNR = \frac{2[\langle y_u \rangle - \langle y_l \rangle]^2}{Var(y_u) + Var(y_l)}$$

Ongoing learning: new memories overwrite old ones



Exponential-like decay (but in principle many time-scales)

Trade-off: memory strength vs decay

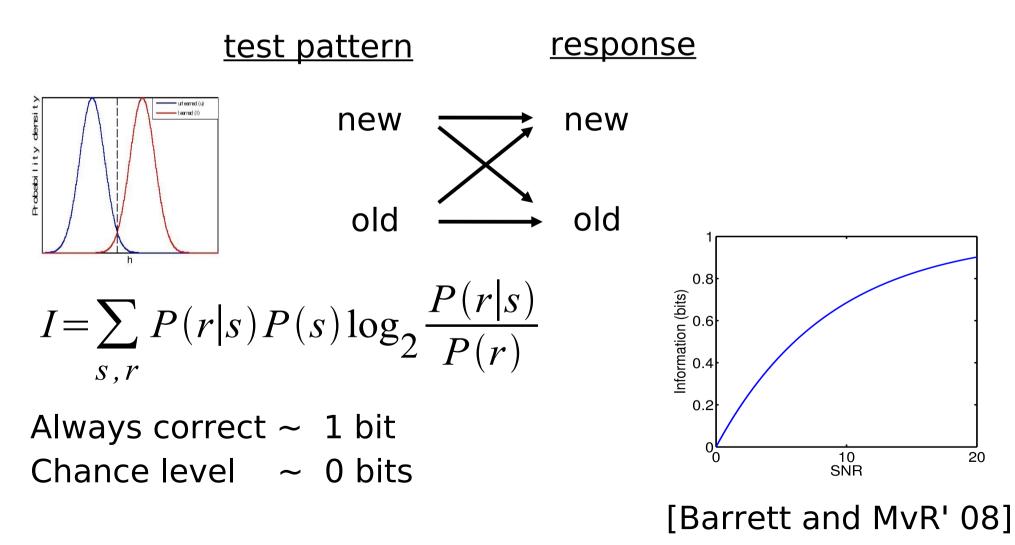


What is better:

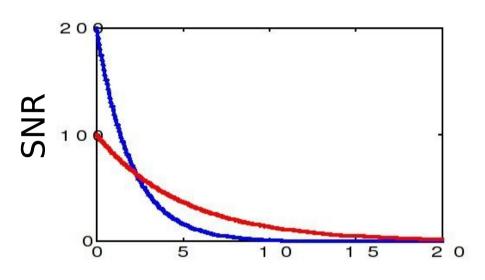
• High initial SNR, or slow decay? [Fusi and Abbott '07]

Using Shannon information to resolve trade-off

How much **information** about the pattern is gained by inspecting the output?

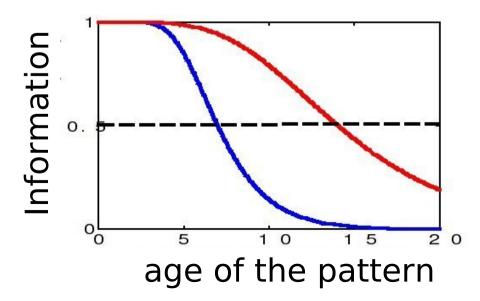


Relation between SNR and information



Independent patterns, **Total** information **per** synapse:

$$I_{syn} = \frac{1}{N_{syn}} \sum_{t} I(t)$$



Best to store many patterns with low SNR, but what about weight dependence

Optimizing learning rules numerically

In general

$$\Delta w_i = f(x_i, y, w)$$

But patterns are binary:

$$\Delta w_i^+ = f(x_i = 1, y = const, w)$$
$$\Delta w_i^- = f(x_i = 0, y = const, w)$$

Modelling learning

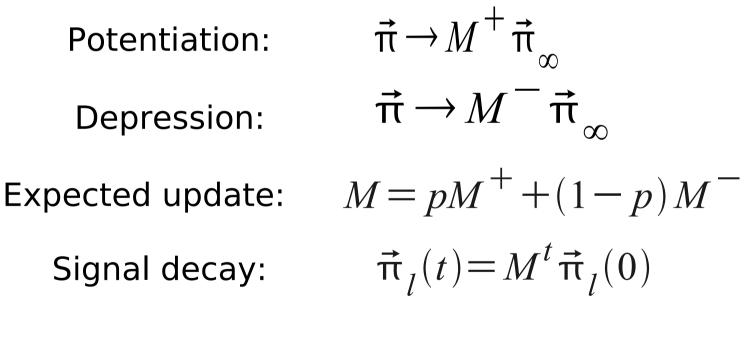
- Discretize array of possible weights (100 bins)
- Learning rule characterized by transition matrices M^+ (high input), and M^- (low input) [Fusi and Amit '02].

• Note, learning not stochastic.

Modelling learning

Modelling learning

• Learn from equilibrium weight distribution $\vec{\pi}_{\infty}$



$$M \vec{\pi}_{\infty} = \vec{\pi}_{\infty}$$

Weight independent learning

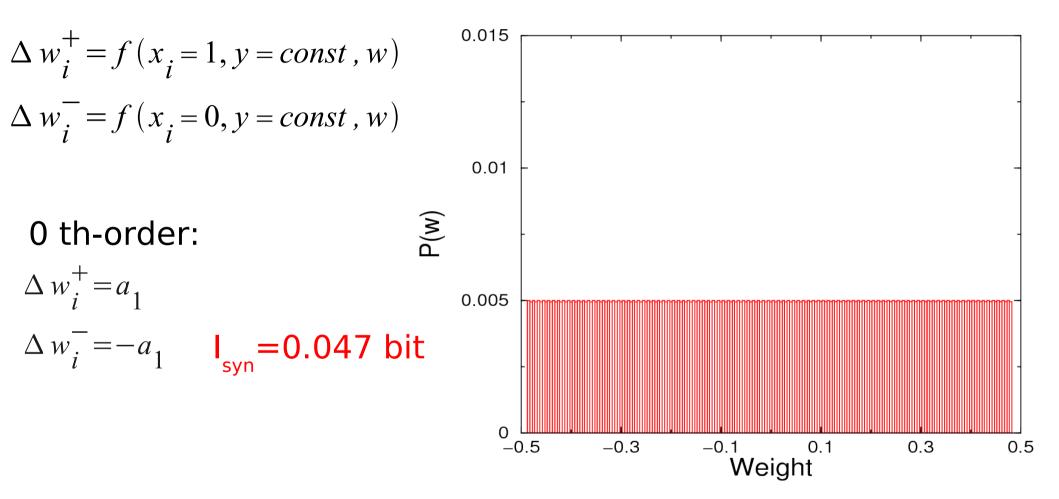
$$\Delta w_i^+ = f(x_i = 1, y = const, w)$$

$$\Delta w_i^- = f(x_i = 0, y = const, w)$$

0 th-order:

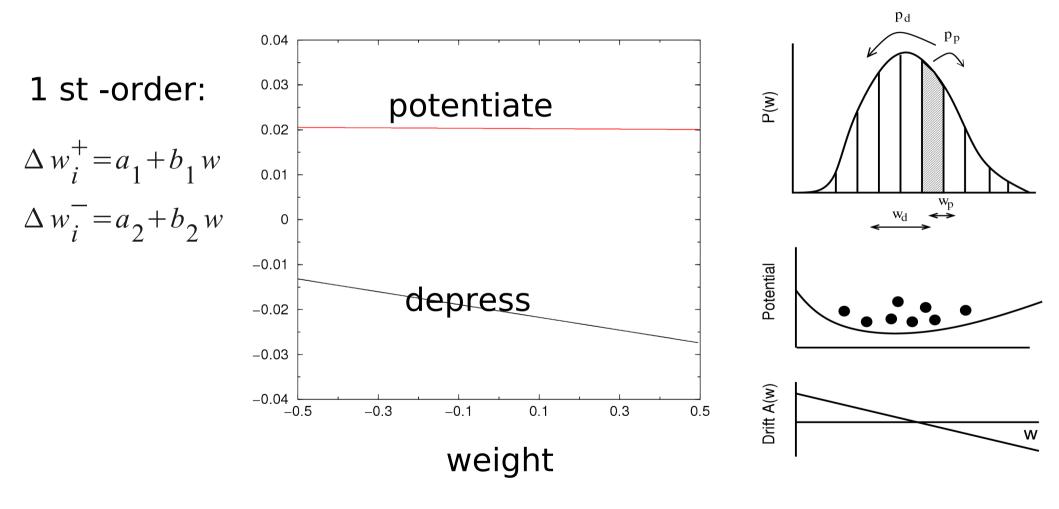
$$\Delta w_i^+ = a_1$$
$$\Delta w_i^- = -a_1$$

Weight independent learning

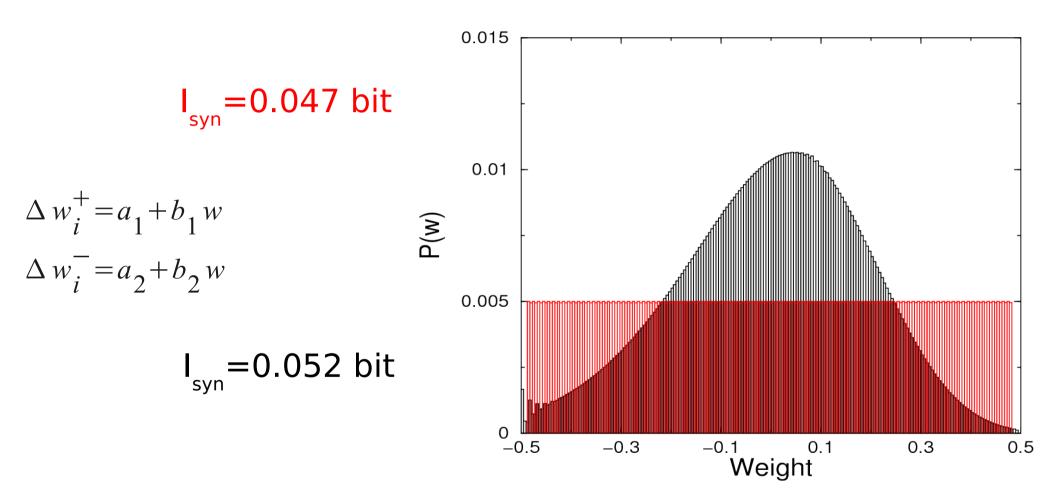


Optimal learning rule balances LTD against LTP

Weight dependent learning increases capacity

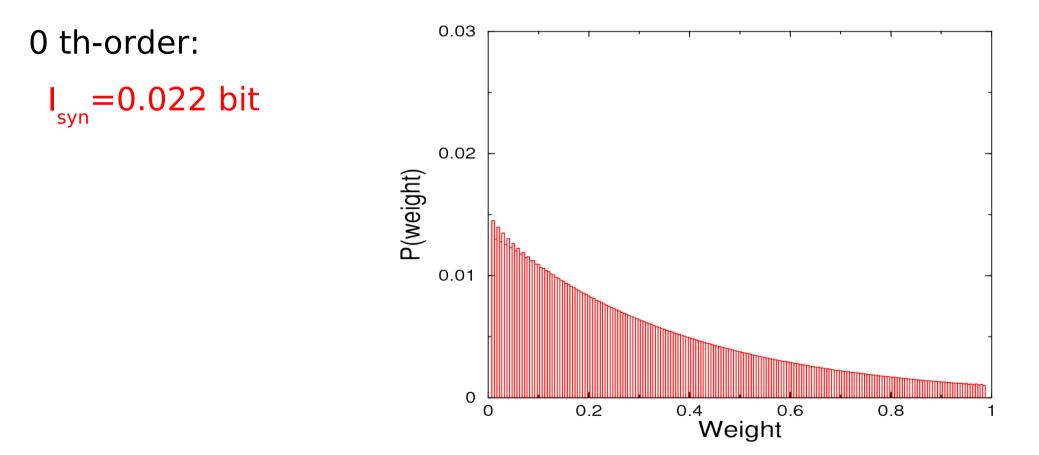


Weight dependent learning increases capacity

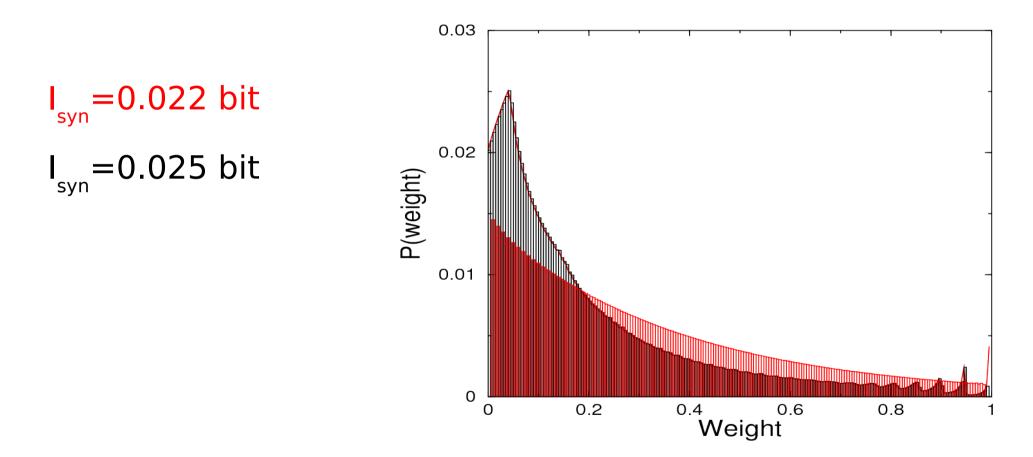


- Weight dependent learning increases capacity
- •Higher order does not further increase capacity (significantly)

Restricting to excitatory synapses



Restricting to excitatory synapses



- Using excitatory-only synapses reduces capacity
- •Weight dependent rule is again better

Why does it matter that weights are excitatory?

$$SNR = \frac{2[\langle y_u \rangle - \langle y_l \rangle]^2}{Var(y_u) + Var(y_l)}$$

Note

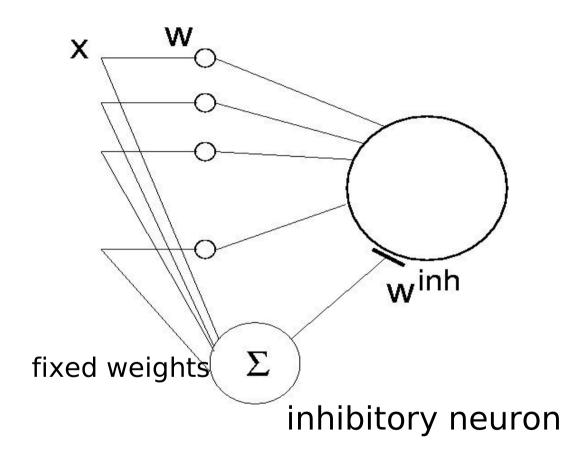
$$var(y) \propto var(wx)$$

= $var(x)var(w) + var(x)\langle w \rangle^{2} + var(w)\langle x \rangle^{2}$

So SNR is better if $\langle w \rangle = 0$

$$= var(x)var(w) + var(w)\langle x \rangle^{2}$$

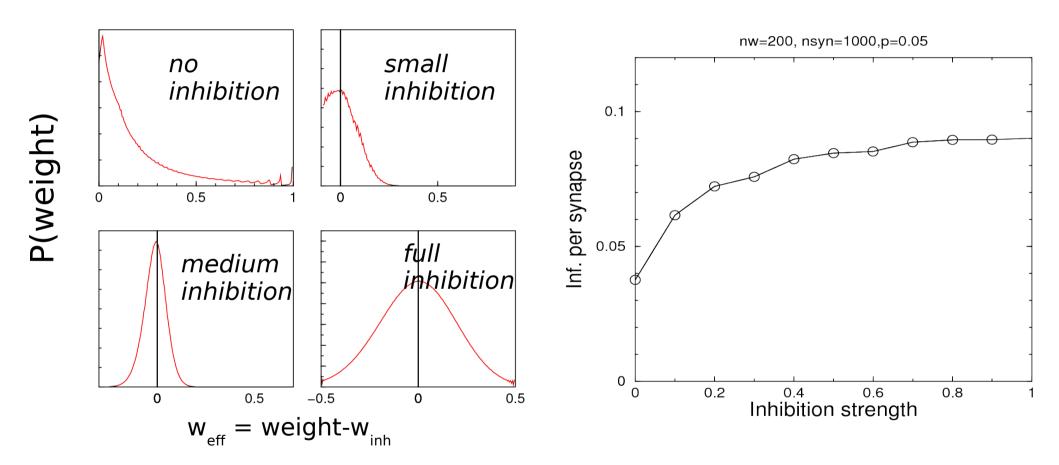
Increasing capacity by implementing feed-forward inhibition



$$y = \sum_{i} w_{i} x_{i} - w^{inh} \sum_{i} x_{i} = \sum_{i} (w_{i} - w^{inh}) x_{i}$$

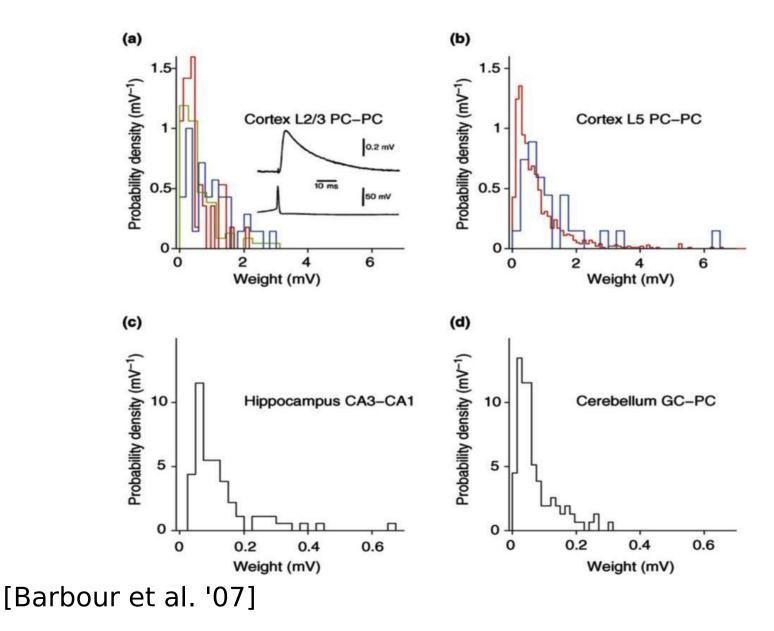
So $\langle w_{eff} \rangle = \langle w_{i} - w^{inh} \rangle$ can be made 0

Weight distribution at various levels of inhibition



• Synapses cluster around effective weight 'zero' (balance)

Data on weight distribution



Further improvement: sparse patterns

$$SNR = \frac{(\langle y_u \rangle - \langle y_l \rangle)^2}{\frac{1}{2} \left(Var(y_u) + Var(y_l) \right)}$$

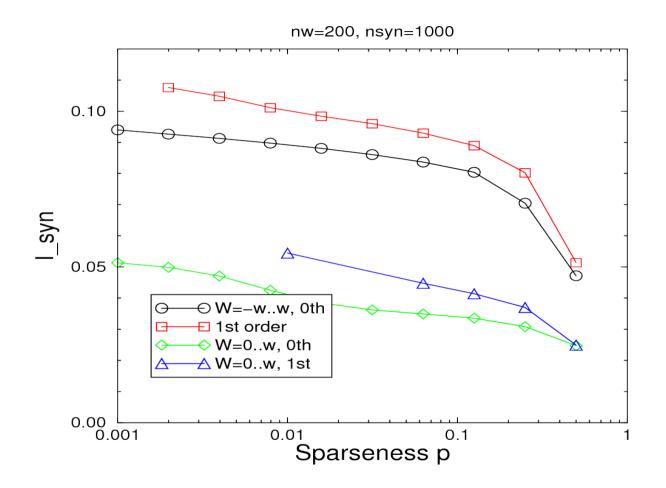
Note

$$var(y) \propto var(wx)$$

= $var(x)var(w)+var(w)\langle x \rangle^{2}$

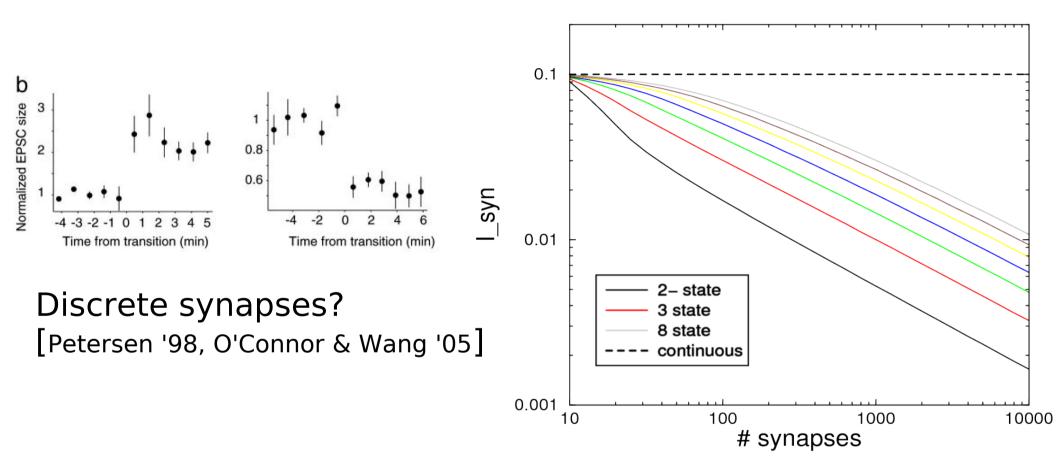
So SNR is better if $\langle x \rangle = 0$ Use sparse patterns

Pattern sparseness increases capacity



Sparse patterns further increase information capacity (Little effect on distributions)

Comparison discrete synapses



- Few synapses: discrete synapses perform well [Barrett, MvR '08]
- Decay $I_{syn} \propto 1/\sqrt{n_{syn}}$ as transitions are made stochastic [Fusi & Amit '02, Fusi & Abbott '07]

Equilibrium distribution for optimal learning depends on # states

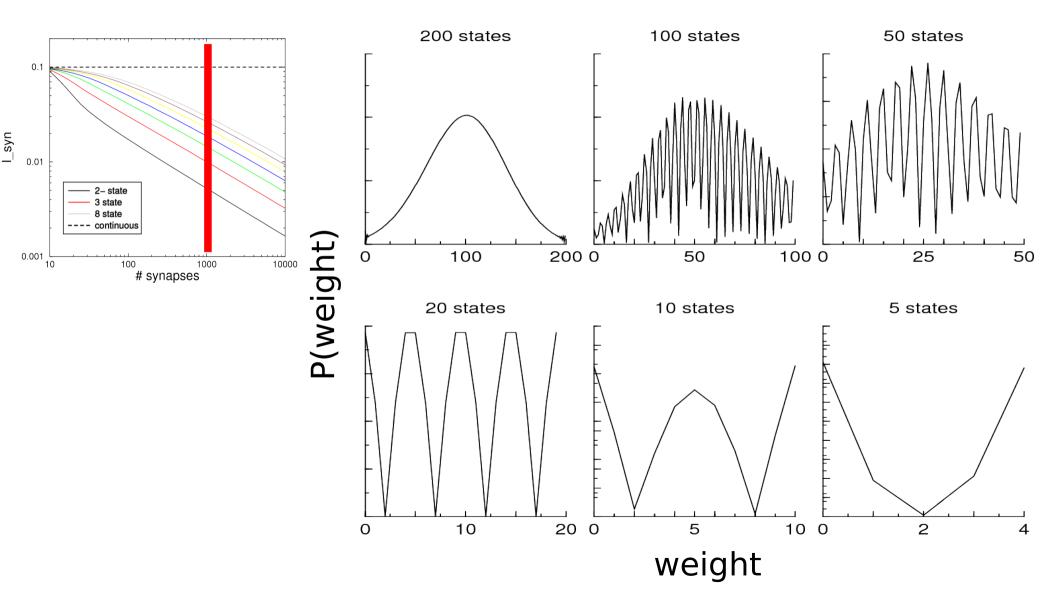


Table of contents

- Weight dependent STDP in single neurons and networks
- Spine dynamics can implement weight dependence

- Weight dependence increases information capacity
 - Small, significant increase
 - Feedforward inhibition and sparseness help
 - Might also hold in networks [Huang & Amit, in press]

Open questions

- Why are large spines more stable from a computational viewpoint?
- Relation to long term stability mechanisms, e.g. protein synthesis, synaptic tagging ?
- How general are these findings ?

Discussion

•Towards realistic models of synaptic plasticity

- •Synaptic plasticity is weight dependent:
 - Realistic weight distribution
 - Shorter memory time, but is rescued by inhibition
 - Improves storage capacity

•Spine volume dynamics could underlie weight dependence