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Hebbian long term plasticity

[Bliss & Lomo '73]

LTP LTD

[O'Connor & Wang '05]

Pairing high pre- and post synaptic activity =>
Long term potentation

Pairing with low activity =>  
Long term depression
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Synaptic plasticity = memory?

Anterograde alteration 
prevent synaptic plasticity → anterograde amnesia
Yes (NMDA-block)

[Martin, Greenwood, Morris, '00]
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AP5 blocks learning

[Morris et al '86]
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Synaptic plasticity = memory?

Anterograde alteration 
prevent synaptic plasticity → anterograde amnesia
Yes (NMDA-block)

Detectability
changes in behaviour and synaptic efficacy should be correlated
Yes (Whitlock et al.)

[Martin, Greenwood, Morris, '00]
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Synaptic plasticity=memory?

[Whitlock,.. and Bear '06]
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Synaptic plasticity = memory?

Anterograde alteration 
prevent synaptic plasticity → anterograde amnesia
Yes (NMDA-block)

Detectability
changes in behaviour and synaptic efficacy should be correlated
Yes (Whitlock et al.)

Retrograde alteration 
alter synaptic efficacies → retrograde amnesia
Yes (PKMζ), but...

[Martin, Greenwood, Morris, '00]
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Late LTP maintenance 
as an active process

ZIP disrupts one month old memory [Pastalkova et al '06]
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Synaptic plasticity = memory?

Anterograde alteration 
prevent synaptic plasticity → anterograde amnesia
Yes (NMDA-block)

Detectability
changes in behaviour and synaptic efficacy should be correlated
Yes (Whitlock et al.)

Retrograde alteration 
alter synaptic efficacies → retrograde amnesia
Yes (PKMζ), but...

Mimicry
change synaptic efficacies → new ‘apparent’ memory
Not quite yet...

[Martin, Greenwood, Morris, '00]
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Ultimate goal: Quantitative, accurate models in health 
and disease

Complicated rules. Plasticity depends on:

  - pre and post activity,

  - reward, modulation, history, other synapses, homoeostasis..

  - synaptic weight itself

Most models are oversimplified

Computational modelling of synaptic 
plasticity
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Plasticity due to 
random patterns: random walk

index

w
e
ig

h
t

Random, independent sequence of LTP and LTD
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Synaptic weights divergence

Time (steps)

w
e
ig

h
t

 Diffusion of weights (Sejnowski '77)
 Run away, so need bounds on the weights 
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Dealing with synaptic weights 
divergence

 Hard bounds
 BCM (*) 
 Normalization/homeostasis (*)

 Non-linear STDP (*) 

∑i
w i=1

∑i
w i
2=1

Some possible solutions:

 What is does biology say?
 The outcome of the rules depends strongly on the chosen
solution...

(*) Competitive
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LTP/LTD is weight dependent 

Long term depression

[Debanne '96][Debanne '99]

[Montgomery '01]

Long term potentiation
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Weight dependent random walk

index

w
e
ig

h
t
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Weight dependent learning rules 

Time (steps) P(w)

w
e
ig

h
t

 Weight dependent plasticity prevents run away
 Leads to realistic weights distributions [MvR et al.'00] 
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Simple model

Long term depression

[Debanne '96]
[Debanne '99]

Simple description

W−

W
=−c1 ;

W

W
=

c2
W

Long term potentiation

W −=−c1W ; W =c2

Relative change: Absolute change:
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Table of contents

 Weight dependent STDP in single neurons and networks

 Spine volume dynamics can implement weight dependence

 Weight dependence increases information capacity
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Spike Timing Dependent Plasticity 
Experimental data

[Bi & Poo 1998] 



21

Modelling STDP

Poisson
trains

Integrate & fire

Plastic
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Integrate-and-fire neurons

[Lapicque 1907,
Brunel & MvR 2007]
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Modelling STDP

Poisson
trains

Integrate & fire

Plastic

Δw=−A−e
−(t post−t pre)/ τ−

Δw=A+ e−(t pre−t post )/ τ+
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Modelling STDP

Poisson
trains
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Fokker-Planck approach

∂ P w ,t 
∂ t

=
−∂

∂w
[Aw P w ,t ]

1
2

∂2

∂w2 [D P w ,t ]

A(w )=− pd A−+ p p A+

drift diffusion

Δw=−A−e
−(t post−t pre)/ τ−

Δw=A+ e−(t pre−t post )/ τ+
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Modelling STDP

p p= pd (1+w /Σw)
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Fokker-Planck approach

∂ P w ,t 
∂ t

=
−∂

∂w
[Aw P w ,t ]

1
2

∂2

∂w2 [D P w ,t ]

A(w )=− pd A−+ p p A+

drift diffusion

A−=(1+ϵ)A+

Δw=−A−e
−(t post−t pre)/ τ−

Δw=A+ e−(t pre−t post )/ τ+
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Modelling STDP

 Require hard bounds on weights
 Competitive

Correlated
Poisson trains

[Song & Abbott '01]

{ {
{
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However, STDP is weight dependent 
('soft bounds') 
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Weight dependence leads to observed 
weight distribution

[Song et al '05]

[MvR, Bi, Turrigiano '00]
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Data on weight distribution

Note many confounding factors
[Barbour et al. '07]



32

Learning correlations

Similar to Oja's rule.
Weakly competitive. [MvR & Turrigiano '01]
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Ongoing background activity leads 
to weight fluctuations
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Weight dependence leads to 
volatile memories 

   

Spontaneous activity leads to memory decay
Decay is exponential
Decay is much faster for weight dependent STDP 
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How weight dependence leads to 
quick forgetting
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Weight dependence leads to 
volatile memories 

[Billings & MvR '09]
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Experimental data: erasure by 
spontaneous activity

Xenopus tectum [Zhou & Poo, '03]

V-clamp

Are memories in networks are unstable?
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Stability of receptive fields
 in networks

V1-like network 
 Integrate and fire 
 Variable lateral inhibition
 Sometimes plastic recurrent connections

LGN

V1
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nSTDP: Spontaneous symmetry breaking [Song &Abbott '01]



40
Weight dependent plasticity requires inhibition for selectivity
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Broad tuning underlies 
receptive field

nSTDP wSTDP
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Input tuning in experiments

[Jia and Konnerth 2010]

wSTDP



43

Receptive fields Population vectors

Stability of receptive fields
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Inhibition rescues network stability

[Billings & MvR 2009]
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Experimental evidence for effect of 
inhibition on stability

 Ocular Dominance
 plasticity regulated
 by GABA?

[Hensch '05]

 Reduced inhibition
 in auditory plasticity

[Froemke et al 07]
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Table of contents

 Weight dependent STDP in single neurons and networks
- The observed weight dependence leads to 

realistic weight distributions
- The receptive fields are much less stable, 

but lateral inhibition can rescue and modulate retention

 Spine dynamics can implement weight dependence

 Weight dependence increases information capacity
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Table of contents

 Weight dependent STDP in single neurons and networks

 Spine dynamics can implement weight dependence

 Weight dependence increases information capacity
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Biophysical implementation

AMPA-R

LTP

Simple model for weight dependence: biophysical saturation

spine

dendrite
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Spine morphology is remarkably plastic

[Matsuzaki '04, Glu uncaging]

Tight correlation weight and spine 
volume
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Three Ca-volume scenarios

[O'Donnell & MvR, submitted]
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Three scenarios
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Undercompensating synapses freezes 
large weights

Note, contrasts with most softbound rules.
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Large spines are more stable

[from Trachtenberg '02 Supp Info]



54

Biophysical implementation

see also
[Kalantzis & Shouval '09]
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Relation to disease?

[Fiala et al. '02] [Pan et al. '10]
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Table of contents

 Weight dependent STDP in single neurons and networks

 Spine dynamics can affect plasticity rules
- Spine morphology likely under-compensates Ca influx
- Leads to weight dependent learning rules
- Leads to stabilization of large spines

 Weight dependence increases information capacity
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Weight dependent learning
and information storage
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Measuring memory storage capacity

SNR=
2[〈 yu〉−〈 yl〉]

2

Var  yuVar  yl

Separate learned from novel patterns ('lures')
Response in test phase:

Characterize with
Signal-to-Noise Ratio:

Neuron's output y

P(y)
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Ongoing learning: new memories 
overwrite old ones   

       age of the pattern   

Exponential-like decay (but in principle many time-scales)
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Trade-off: memory strength vs decay   

What is better:
   High initial SNR, or slow decay? [Fusi and Abbott '07]

       age of the pattern   
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Using Shannon information 
to resolve trade-off

test pattern response

new

old old

new

How much information about the pattern is gained 
by inspecting the output?

I=∑
s ,r

P r∣sP s log
2
P r∣s
P r 

Always correct ~  1 bit
Chance level    ~  0 bits

[Barrett and MvR' 08]
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Relation between 
SNR and information

I syn=
1
N

syn
∑t I t 

Independent patterns,
Total information per synapse: 

S
N

R
In

fo
rm

a
ti

o
n

       age of the pattern   

Best to store many patterns
with low SNR, 
but what about weight dependence
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Optimizing learning rules numerically

In general

But patterns are binary:

 w
i
= f  x

i
=1, y =const ,w 

 w
i
−= f  x

i
=0, y =const ,w

 wi= f  xi , y ,w 
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Modelling learning

● Discretize array of possible weights (100 bins)

● Learning rule characterized by transition matrices 

          (high input),  and          (low input) [Fusi and Amit '02].M M−

M = 
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1

 M− = 
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


 Note, learning not stochastic.
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Modelling learning

M− = 
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 M− 
0
1
0
0
0
0
 = 

1
0
0
0
0
0
 M− 

0
0
0
0
0
1
= 

0
0
0
1
0
0
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Modelling learning

● Learn from equilibrium weight distribution       ∞

Potentiation:

Depression:

M
∞

M ∞
=∞

Expected update: M= pM1− pM−

Signal decay:  l t =M t l 0

M−
∞
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Weight independent learning 

 w
i
=a

1

 w
i
−=−a

1

 wi
= f  xi=1, y= const , w 

 w
i
−= f  x

i
=0, y= const , w 

0 th-order:
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Weight independent learning 

I
syn

=0.047 bit

 w
i
=a

1

 w
i
−=−a

1

 wi
= f  xi=1, y= const , w 

 w
i
−= f  x

i
=0, y= const , w 

0 th-order:

Optimal learning rule balances LTD against LTP
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Weight dependent learning increases 
capacity

 w
i
=a

1
b
1
w

 wi
−=a2b2w

weight

potentiate

depress

1 st -order:
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Weight dependent learning increases 
capacity

Weight dependent learning increases capacity

Higher order does not further increase capacity (significantly)

I
syn

=0.047 bit

 w
i
=a

1
b
1
w

 wi
−=a2b2w

I
syn

=0.052 bit
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Restricting to excitatory synapses

I
syn

=0.022 bit

0 th-order:
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Restricting to excitatory synapses

Using excitatory-only synapses reduces capacity
Weight dependent rule is again better

I
syn

=0.022 bit

I
syn

=0.025 bit
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Why does it matter that weights are 
excitatory?

var  y ∝ var wx 

= var  x var w var  x 〈w 〉2var w  〈 x 〉2

So SNR is better if 〈w 〉=0

Note

SNR=
2[〈 yu〉−〈 yl〉]

2

Var  yuVar  yl

=var x var w var w 〈 x 〉2
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Increasing capacity by implementing 
feed-forward inhibition

y=∑i
wi xi−winh∑i

xi=∑i
wi−w inh xi

So  can be made 0 〈weff 〉=〈wi−winh〉

inhibitory neuron

fixed weights
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Weight distribution at various levels of 
inhibition

P
(w

e
ig

h
t)

w
eff

 = weight-w
inh

 Synapses cluster around effective weight 'zero' (balance)

no
inhibition

small
inhibition

full
inhibition

medium
inhibition
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Data on weight distribution

[Barbour et al. '07]
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Further improvement: sparse patterns

var  y  ∝ var wx 
= var  x var w var w 〈 x 〉2

So SNR is better if 
Use sparse patterns

〈 x 〉=0

Note

SNR=
〈 yu〉−〈 y l 〉

2

1
2 Var  yuVar  y l 
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Pattern sparseness increases capacity

Sparse patterns further increase information capacity
(Little effect on distributions)
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Comparison discrete synapses

 Few synapses: discrete synapses perform well [Barrett, MvR '08]

 Decay  as transitions are made stochastic
[Fusi & Amit '02, Fusi & Abbott '07]

I syn∝1/nsyn

Discrete synapses? 
[Petersen '98, O'Connor & Wang '05]
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Equilibrium distribution for optimal 
learning depends on # states

weight

P
(w

e
ig

h
t)
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Table of contents

 Weight dependent STDP in single neurons and networks

 Spine dynamics can implement weight dependence

 Weight dependence increases information capacity
- Small, significant increase
- Feedforward inhibition and sparseness help
- Might also hold in networks [Huang &Amit, in press]
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Open questions

 Why  are large spines more stable from a 
computational viewpoint?

 Relation to long term stability mechanisms, e.g.
protein synthesis, synaptic tagging ?

 How general are these findings ?
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Discussion

Towards realistic models of synaptic plasticity

Synaptic plasticity is weight dependent:
- Realistic weight distribution
- Shorter memory time, but is rescued by inhibition 
- Improves storage capacity

Spine volume dynamics could underlie weight 
dependence


