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Functional magnetic resonance imaging
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PerceptPeak fMRI response

Perceptual and neural traveling waves 

Lee, Blake, & Heeger, Nature Neurosci (2005)
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Alignment across scanning sessions

Nestares & Heeger, Magn Reson Med (2000)

Wednesday, September 22, 2010



  

Percept

Brain

Predicted and measured responses

M
ea

su
re

d 
fM

RI
 r

es
po

ns
e

(%
 c

ha
ng

e 
im

ag
e 

in
te

ns
it

y)

Time (sec)
0 3 6 9

1

2

0

Lee, Blake, & Heeger, Nature Neurosci (2005)

Pr
ed

ic
te

d 
ne

ur
al

 a
ct

iv
it

y

Time

Wednesday, September 22, 2010



  

Latency (s)

#
 o

f 
tr

ia
ls

1 3

Behavior

fM
RI

 r
es

po
ns

e 
la

te
nc

y 
(s

ec
)

0 1 2 3
4.5

5.0

5.5

6.0

Distance (cm)

Behavioral latency
1-1.5 sec
1.5-2 sec
2-3 sec

6.5

Infer ~115 ms timing 
difference over ~3.5 mm 
distance.

Activity correlates with perceived latency

Lee, Blake, & Heeger, Nature Neurosci (2005)

Wednesday, September 22, 2010



  

t

FMRI
response

time to peak
peak amplitude

Local
contrast

Neural
activity

Estimating neural activity

Wednesday, September 22, 2010



  

t

FMRI
response

time to peak
peak amplitude

Local
contrast

Neural
activity

Estimating neural activity

Wednesday, September 22, 2010



  

t

FMRI
response

time to peak
peak amplitude

Local
contrast

Neural
activity

Estimating neural activity

Wednesday, September 22, 2010



  

Model of cortical activity
& hemodynamic response

Local
contrast

Rt
Rh
Rl

Neural
activity

e-t/τ1 sin(2 pi f1 t) - a e-t/τ2 sin(2 pi f2 t)Hemodynamic
impulse

Predicted
fMRI response 

9s

t

Wednesday, September 22, 2010



  

Estimated neural latency
N

eu
ra

l l
at

en
cy

Time

Lee, Blake, & Heeger, Nature Neurosci (2005)

0

0.5

1.0

1.5

2.0

2.5

0 1 2 3Es
ti

m
at

ed
 n

eu
ra

l l
at

en
cy

 (s
ec

)

Distance (cm)

DN
PN
SL

Observer

Ave speed = 2 cm/sec

Wednesday, September 22, 2010



  

Attention signals in V1

Gandhi, Heeger, & Boynton, PNAS (1999)
Wednesday, September 22, 2010



  

left eye right eye

Diverted attention

displayC

C2DA3B42D...
Detect repetition

C

Time

Lee, Blake, & Heeger, Nature Neurosci (2007)

Wednesday, September 22, 2010



  

fM
RI

 r
es

po
ns

e

Time (sec) Time (sec)

Rivalry (perceived) Diverted attention

Waves in V1 without 
attention/perception

0

.4

.8

-.4

-.8

0 3 6 9 0 3 6 9

Lee, Blake, & Heeger, Nature Neurosci (2007)

Wednesday, September 22, 2010



  

fM
RI

 r
es

po
ns

e

Time (sec) Time (sec)

Rivalry (perceived) Diverted attention

V2

0 3 6 9

0

.4

.8

-.4

-.8

0 3 6 9

Lee, Blake, & Heeger, Nature Neurosci (2007)

Wednesday, September 22, 2010



  

Diverting attention eliminates 
waves in V2 & V3

Lee, Blake, & Heeger, Nature Neurosci (2007)

Wednesday, September 22, 2010



  

Diverting attention eliminates 
waves in V2 & V3

Lee, Blake, & Heeger, Nature Neurosci (2007)

Wednesday, September 22, 2010



  

Models and testing them
Periodic perturbation

Simulations

Kang, Lee, Kim, Heeger, Blake, J Vis, 2010

binocular rivalry (Watanabe, Paik, & Blake, 2004). It is reasonable to expect, therefore,

that collinear facilitation could boost the stimulus strength of a pattern and, thereby,

increase the magnitude of self-adaptation associated with viewing that pattern. Second,

it is commonly believed that contrast adaptation plays an important role in triggering

switches in dominance during binocular rivalry (Shpiro, Moreno-Bote, Rubin, & Rinzel,

2009; Wilson, 2007), and we know that adaptation to a pattern prior to the onset of

rivalry (Blake & Overton, 1979; Wade & de Weert, 1986) or intermittently during ongoing

rivalry (Kang & Blake, 2010) reduces the dominance of that pattern during rivalry.

Combining these ideas about adaptation and applying them to the conditions of rivalry

used in the present paper, we see that collinearity can produce two opposing influences

on the strength of a rival target. On the one hand, neural activity associated with a

collinear pattern (i.e., the V stimulus) should be stronger owing to the recurrent

excitatory connections among neurons registering the presence of that pattern. On the

other hand, those stronger neural responses should produce greater self-adaptation of

that collinear stimulus. To confirm how these two factors might operate for perception of

traveling waves during binocular rivalry, we implemented the model proposed by Wilson

et al. (2001) to account for traveling waves. In the following section, we present results

from simulations of that model showing that it fails to account for the results of

Experiment 1. We then show that those results can be accommodated by adding a

single parameter to the model, one that controls the time course of adaptation in a

pattern-dependent manner.

Simulation of traveling waves

We adapted the network model shown schematically in Figure 1 to the conditions of

rival stimulation used in our studies. In our instantiation of the model, the dynamics of

traveling waves are governed by the following equations:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Subscripts A and B represent the two eyes, respectively, X is the stimulus pattern, and j

indicates the jth neuron among those N units (40 in our implementation of this model)

representing vertically elongated stimuli presented to the left and right eyes. E

represents the rate of neural activity governed by Equation 1, in which the time

constant !E equals 20 tu (tu refers to time unit, which is arbitrary); H is the term

embodying spiking adaptation. Each unit in the network receives an input P whose

value is determined by stimulus strength S (=30), by subtractive inhibition from

neighboring cells representing the stimulus presented to the contralateral eye and by

additive recurrent excitation from neighboring cells representing the stimulus presented

to the same eye. The notation [P] is the maximum operator applied to the external input

that compares P and 0 and returns the larger value. In this simulation, the extent of

reciprocal inhibition is governed by Equation 3, in which the constant "I is equal to 0.1

and #$ is equal to 1.5 irrespective of rival stimuli. In contrast, the extent of recurrent

excitation governed by Equation 4 changes depending on the pattern of the rival

stimulus, with #% equaling 2 for H stimulus, 2.5 for D stimulus, and 3 for V stimulus.

The constant "E was set to 0.04 for this simulation. Equation 5 determines the

inhibition for which !I is set to 11 tu. Slow adaptation is governed by Equation 6 in

which !H was set to 900 tu and adaptation rate "H equaled 0.3 (see other details in

Wednesday, September 22, 2010



  

Part I summary

• V1 activity correlated with spatio-temporal dynamics of 
perceptual waves during binocular rivalry.

• The velocity of neural waves in V1 matched the latency 
of perceptual waves.

• Neural waves in V1 were still present when attention was 
diverted, but weaker in amplitude and faster in velocity.

• V2 and V3 exhibited cortical waves of activity during 
rivalry but the waves were eliminated when attention 
was diverted.
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Implications

• Neural wave propagation is intrinsic to V1.

• Constrains models of processing and circuitry in V1 (waves 
are slow relative to action potential propagation and synaptic 
transmission).
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Columnar architecture
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Part II: Spatial resolution & 
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Yacoub, Harel, Ugurbil, PNAS (2008)

Human ocular dominance and 
orientation columns
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Orientation decoding

Boynton, Nat Neurosci (2008)
following Kamitani & Tong, Nat Neurosci (2008)
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Orientation

Orientation tuning model

Assuming each voxel contains orientation-selective neurons, each tuned to a 

different orientation, we characterize the orientation tuning of a voxel as a 

weighted sum of six hypothetical channels (or basis functions): 

We estimate these weights, using data from the training expt: 

Channel responses during the contrast suppression expt can now be computed: 

This analysis separates the original voxel responses into six channels, 

each tuned to a different orientation. 
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The measured voxel responses (Y) are related to the responses in the six

channels (X) by a weight matrix (W): 

Voxel responses

• Normalization explains cross-orientation suppression in human 
  visual cortex.

• Results similar to single-unit electrophysiology and LFPs in cat and 
  macaque.

• Forward model analysis can be applied broadly by assuming a basis 
  set of neural tuning curves. 

• The normalization model (Heeger, 1992) has been proposed to explain 

  stimulus-evoked responses of neurons in various visual cortical areas. 

Linear 

weighting
RectificationDivision

• We used fMRI to measure cross-orientation suppression and test the

  normalization model in human visual cortex.
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• 2x2x2.5mm, 24 slices perpendicular to the calcarine sulcus, TR=1.5s, TE=35ms.

• Stimuli presented in event-related design, stimulus duration: 1.5s, ISI: 3-6s.

• V1 defined using retinotopic mapping.

• Preprocessing: motion-correction, linear detrending, high-pass filtering.

• Responses pooled across N=4 subjects.

Channel tuned to target orientation Channel tuned to masked orientation

Fitted n = 3.23

Fitted ! = 0.02

Yt = voxel responses (training expt)

Ys = voxel responses (suppression expt)

W = weight matrix

Xt = channel responses (training expt)

Xs = channel responses (suppression expt)

vi(") = orientation tuning curves

Contrast
1% 10% 100%

n = 2

! = 0.1

Contrast (c)

v
i

x
i

Y = W X
Measure weight matrix using full-contrast oriented gratings:

Then for main expt, use inverse of W to estimate X from Y.

Brouwer & Heeger, Cosyne (2010) 
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Part II summary

Goal: measure activity in separate subpopulations of 
neurons that respond selectively to different features.

• Columnar scale spatial resolution is achievable but not 
routine.

• Coarse scale radial bias explains orientation decoding/
classification, not random sampling of fine-scale 
columnar architecture.

• Forward model and regression transforms voxel 
responses to selective “channel” responses.
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