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A QUANTITATIVE DESCRIPTION OF MEMERANE
CURRENT AND ITS APPLICATION TO CONDUCTION

AND EXCITATION IN NERVE

By A. L. HODGKIN axp A. F. HUXLEY
From the Physiological Laboratory, University of Cambridge
(Received 10 March 1952)
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INTRACELLULAR RECORDING FROM ANTIDROMICALLY

BUMMARY

1. Intracellular recording from motoneuronss in the lombar region of the
cat’s spinal cord has provided evidence on most of the controversinl issues
concerning antidromic responses of motoneurones,

2. The geometry of the antidromic pathway indicates that low safety-
fuctors for transmission would occur st the medullated-non-medullated
junction and st the axon-soma junction, and on thiz basis detailed explana-
tions are given for mest of the experimental obaervations. With blockage at
the latter site there is & simple N M (non-medullated) spike of about $0-40 mV,
in contrast to the S0 (soma-dendritic) spike of up to 100 m¥ on full anti-
dromic invasion, With blockage st the former site there is & very small
M (medullated) spike of aboot 1 mV.

ACTIVATED MOTONEUROMNES
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“The researches of many commentators have already thrown much
darkness on this subject, and it is probable that if they continue we shall
soon know nothing at all about it.”

Mark Twain
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Properties of the Na* indicator SBFI

* selective for changes in [Na*].
e low affinity (K; ~ 26 mM), linear

e non buffering

e accurately follows time course of [Na*].

Minta and Tsien, 1989



Methods

Patch clamp recordings

O whole cell recordings
O cell-attached Na* channel recording

High-speed optical recording

O RedShirt Imaging (1 kframes/s)

3D reconstruction of live cell

(J Two-photon microscope (Zeiss LSM510 -- 710)

Simulations

J Neuron



Interpretation of Na* signals

Changes in [Na*]. in a given neuronal compartment reflect:

Transmembrane Na* influx

O local Na* channel density
O Na* channel properties (molecular type, kinetics)
d shape of the action potential

Build-up of Na* concentration

d neuronal morphology (e.g. surface-to-volume
ratio)

Na* diffusion

Active extrusion by Na*/K* pump



The largest AP-evoked [Na*], increases are in the AIS
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The largest AP-evoked [Na*], increases are in the AlS
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The shapes of the Na* signals differ in different
neuronal compartments
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Inhibition of the Na*/K* pump has little effect on the
time course of Na* transients
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The time course of the axonal Na* transient reflects localized Na* influx into
AlS followed by diffusion to the soma and to the first myelinated internode
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Action potential generation requires a high sodium
channel density in the axon initial segment

Maarten H P Kole!, Susanne U Ilschner!, Bjorn M Kampa"", Stephen R Williams!2, Peter C Ruben'? &
Greg | Stuart!

The axon initial segment (AlS) is a specialized region in neurons where action potentials are initiated. It is commonly assumed
that this process requires a high density of voltage-gated sodium (Na™*) channels. Paradoxically, the results of patch-clamp studies
suggest that the Na™ channel density at the AIS is similar to that at the soma and proximal dendrites. Here we provide data
obtained by antibody staining, whole-cell voltage-clamp and Na* imaging, together with modeling, which indicate that the Na*
channel density at the AlS of cortical pyramidal neurons is ~50 times that in the proximal dendrites. Anchoring of Na* channels
to the cytoskeleton can explain this discrepancy, as disruption of the actin cytoskeleton increased the Na* current measured in
patches from the AlIS. Computational models required a high Na* channel density (~2,500 pS pm‘2) at the AlS to account for
observations on action potential generation and backpropagation. In conclusion, action potential generation requires a high Na*
channel density at the AlS, which is maintained by tight anchoring to the actin cytoskeleton.

Action potentials are the primary means of fast communication Here we describe studies of the distribution and properties of
between neurons. Work dating back to the mid-1950s, using sharp  MNa® channels in the AIS of cortical layer 5 pyramidal neurons.



MUST CHANNEL DENSITY REALLY BE SO MUCH
GREATER IN AIS THAN IN SOMA?

We used three approaches to estimate Na* charge transfer (channel density)
in soma, apical and basal dendrites, and in the axon



Shapes of Na* transients indicate a difference in
Na* channel density
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AF value, which is proportional to Na* charge transfer, is about 2
times higher in the AIS than in the soma. AF in the basal dendrites is
very much lower than in the soma.

AF

AF/F ~ ANa*

100 mV 5% AF/F

since F ~ volume,

AF ~ Na* flux




Direct evaluation of AP-mediated Na* charge
3 = transfer from the amplitude of Na* transients
and morphological data

30~

Qu.. = k ®* AF/F * Faraday constant ®

volume/surface area

Na* charge transfer (fC/um?)

Na* channel mediated charge transfer in
the proximal axon is ~3 times larger than
in the soma, and ~30 times larger than in
the basal dendrites

soma axon ApD BasD



A voltage-gated, non-inactivating Na* current contributes to the
apparent input resistance
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FUNCTIONAL CONSEQUENCES OF I\ p

» “Boosting” of synaptic excitation and inhibition
 Voltage-dependent rhythmic activity

« Determination of spike threshold



i i TTX
Inap i Whole cell recordings

10 pm control

[ 0
-200 pA

difference

. - «,4"_ K, 0
Cs* in electrode -M

Cd?* and synaptic blockers in the bath

V,,=-44 mV
k=49 mV"

V,,=-44 mV
k=48 mV"

[0.5 nS

0
V, (mV)

60 40 20 0

Astman et al, J. Neurosci. 2006



( "HaN k
co,’ co,

Na* CHANNELS THAT FAIL TO INACTIVATE
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300 um

50 um soma -50 um wash, 1min
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Persistent Na* conductance is predominately axonal
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In model, when Na* channel Sz
kinetics are realistically fast, \ T s
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High persistent Na* conductance, shifted voltage
dependence and fast tau m (not high channel
density) are responsible for preferential AlS spike
initiation
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Conclusions

Diffusion is the main regulator of [Na*], changes for short
time intervals

Na* channel mediated charge transfer in the soma is ~1/3
the value in the proximal axon and ~8 times larger than in
the basal dendrites

Na* conductance in the node is of the same order of
magnitude as in the AlS

Subthreshold depolarization only elicits I, in axon of Layer
5 pyramidal cells

We think that this large axonal I, is due to higher
propensity of the underlying Na* channels to enter the non-
inactivating gating mode

The unique properties of the axonal Na* channels explain
preferential axonal initiation of action potentials in Layer 5
pyramidal cells



Do the unique properties of the Na current
in the AIS reflect the difference in molecular
subtype of Na channel?



In NaV1.6 KO mice, spikes are still biphasic and threshold is shifted.




[Na*]. increases in the AIS associated with single
APs was not different in KO and WT animals.
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If it isn’t the channel subtype, what is responsible for the unique characteristics
of the AIS sodium channels?

Why did evolution bother to change the AIS sodium channel
subtype during the course of cortical maturation?



Differences between Na* channel properties in situ vs.
dispersed cells led us to postulate the existence of a
soluble factor, extrinsic to the Na* channel protein,

that prevents late channel openings

We focus our attention on polyamines, because they are
present in all eukaryotic cells they can be released from
the cells they are known to affect gating of a variety of
ion channels



Polyamine metabolism
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In polyamine-depleted slices, the “modal gating” episodes were as frequent
as in isolated neurons
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In polyamine-depleted slices, I, amplitudes were 5-10 times
larger than in control

non-depleted polyamine-depleted
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Exogenous spermine blocked I, component which was
elicited by polyamine depletion



Effect of polyamine depletion on |, is not related
to modification of synaptic input...
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Exogenous spermine causes an activity-dependent Na* channel
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Polyamines block Na* channels in a manner reminiscent
of the action of local anesthetic and anti-epileptic drugs
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Activity-dependent block explains the preferential
action of polyamines on Iy, and the underlying
repetitive late channel openings, which essentially
represent heightened activity of the channel




CONCLUSIONS

1. Layer 5 pyramidal neurons possess a prominent, TTX-sensitive
persistent Na current which contributes to synaptic integration and
strongly influences threshold.

2. The persistent current and the transient current reflect “modal
gating”of the same sodium channels

3. Somatic channels do not generated persistent current because they
are bolcked by endogenous intracellular polyamines

4. The polyamine block is activity-dependent

5. Modulation of polyamine levels may be an important factor in
regulating neuronal excitability, and hence, circuit function.
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