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      The fundamental problem of short term memory.

We can remember multiple stimuli over the time course of seconds.
  (e.g. speech, phone numbers…)

Isolated neurons forget synaptic inputs on the time course of milliseconds.

So to mediate short-term memory, networks of neurons must interact with
each other to keep our memories alive.

But what kind of interactions are capable of extending single neuron
memory to the cognitive timescale?  

And how can networks store multiple items in a temporal sequence?



    An Old Paradigm:  Persistent Activity Stabilized by
            Attractor Dynamics in Recurrent Networks

Seung 96

Line Attractor

Fixed Point 
Attractor Positive Feedback



       Probing sequence memory in the macaque brain.

Warden, M. R. et al. Cereb. Cortex 2007
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                            An Alternate Paradigm:
                 The liquid brain / echo state hypothesis

“ If the recurrent circuit is sufficiently complex, its inherent
dynamics automatically absorbs and stores information
from the incoming input stream ”.

-  Markram, Natschlager, and Maas, 2001
   also: Buonomano and Merzenich, 1995
           Mayor and Gerstner, 2003

 The basic idea of echo state network is to use
 a large reservoir RNN as a supplier of interesting
 dynamics from which the desired output is combined.”

- Herbert Jaeger 2001
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                            An Alternate Paradigm:
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Maass, Natschlager Markram, 2002:

N = 135 neurons
Membrane Time Const: 20ms
Synaptic Time Constants: 1 sec

Memory:  ~ 1 sec.



                                        Goals

Generate a theoretical framework within which one
can define the memory capacity of such networks.

Compute this capacity analytically.

Understand its dependence on circuit connectivity and
noise in the system.

Extract fundamental performance limits or tradeoffs.

Find and understand optimal networks which achieve
these performance limits: What are the design principles?



Signal Power = 1
Noise Power = ε

Storing temporal information in a spatial network state. 



Two Dual Viewpoints on Memory:

1) Memory = Ability to use the present to reconstruct the past.

i.e. How much does P(x | s) change when you change s.  This is
captured by the Fisher Information Matrix:

   Memory Traces through Fisher Information

Consider a change in the signal:  s -> s + ds.
Then the distribution of x(n) will change by an amount  ~   dsT J ds.

White, Lee, Sompolinsky, PRL., 2004.

2)  Memory = The ability of the past to change the present.  



The Matrix Nature of Memory
J00     J01      J02
J10     J11
J20
                                   Jlk
                            Jkl   Jkk

Jkk = Amount of information x(n) retains about a single pulse that
         enters the network k time steps in the past.

Jkl = Amount of interference between the memory traces of
        two pulses entering at different times k and l in the past.

k

Jkk



A Fundamental Performance Limit on Memory
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Instantaneous SNR at input:

For *any* choice of  W and v !

Signal Power = 1

Noise Power = ε

1/ε



A simple (but large) class of networks: normality.

Assume W is normal:  i.e. W has an orthogonal basis of eigenvectors.

Then the memory performance only depends on the eigenvalues
of W, or the spectrum of network time constants present in the system.

Fundamental memory constraint for normal networks:

Independent of W and v ! 

Normal networks cannot retain in their network state more SNR
about the past signal history, than the instantaneous SNR at the input.  
They can only it redistribute this SNR across time.



Examples of “Normal” Network Connectivities

S

Any symmetric network.

Translation invariant lattices.

Any antisymmetric network.

Any orthogonal network.



Memory Beyond the Normal Limit: Perturb Normality

Random Symmetric W Random Asymmetric W

Now JTot depends
on W and v.  

For a given W,
optimize JTot
over v.

JTot optimized over v



The nature of normal dynamics: 
independent decaying modes

Eigenvector = Preferred Pattern or Mode of Activity across Neurons
Eigenvalue = Decay time constant of that pattern (larger value -> slower decay)

  R(0) =  c1(0) V1 + c2(0) V2 +  …  cN(0) VN

   R(k) =  c1(k) V1 + c2(k) V2 +  …  cN(k) VN

                       ci(k) = ai
k   |ai| < 1

Total network activity R2 =  c1
2+ c2

2 + … + cN
2



   The nature of normal dynamics: 
     independent decaying modes - 
        the line attractor example
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1 1 ... 1 1
  .         .
  .         .
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w/N Slow mode:
(large eigenvalue) 

1
1
.
.
1

All other modes fast:
(small eigenvalues)

  R(0) =  c1(0) V1 + c2(0) V2 +  …  cN(0) VN

   R(k) =  c1(k) V1 + c2(k) V2 +  …  cN(k) VN

                       ci(k) = ai
k   |ai| < 1



             The nature of nonnormal dynamics: 
transient amplification from nonorthogonal eigenvectors

  R(0) =  c1(0) V1 + c2(0) V2 +  …  cN(0) VN

   R(k) =  c1(k) V1 + c2(k) V2 +  …  cN(k) VN

                       ci(k) = ai
k   |ai| < 1

Schmid Ann Rev of Fluid Mech, 2007



             An simple two neuron example of transient amplification

Murphy Miller Neuron  2009



    A Key Property of Nonnormal Networks:
          (Hidden) Feedforward Structure

Normal Non-normal

Ganguli and Latham, Neuron 2009
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The story so far
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Structure



Memory in the simplest feedforward network

JTot

Gain < 1

Signal Propagation Noise accumulation

O(1)

Gain > 1
O(N)  !!

Gain = 1 O(log N)



An upper bound on memory in any network

v
W v

W2 v

W3 v

Wk v

Wk-1 v

Dynamical propagation of a signal through network space.

|| Wk v ||

k
Time

Signal amplification profile
Jkk <= Jkk

Delay

k

Jkk



What about saturating nonlinearities?

Single neuron input output response



Signal Amplification in Nonlinear Dynamics

A Divergent Chain

Number of neurons
in a layer grows linearly in
the depth of the layer, so in
layer k
                 Nk ~ k

Strength of connections
between layer k and k+1:

                 ~ 1/k



Signal Amplification in Nonlinear Dynamics

A Divergent Chain with L layers

Number of neurons
in a layer grows linearly in
the depth of the layer, so in
layer k
                 Nk ~ k

Strength of connections
between layer k and k+1:

                 ~ 1/k

Jtot = L ~  square root of N



Consequences of finite dynamic range

For any network operating in a linear regime  in which neurons 
have a finite dynamic range.



Memory in nonlinear networks
Divergent chain: 135 layers,  ~ 9000 neurons

Memory that lasts 135 times in intrinsic neuronal processing time scale!
Intrinsic scale = 10ms  => 1.35 seconds of full sequence memory



The Liquid State Machine??

Too Normal! :(



The Liquid State Machine??

Chrisantha Fernando and Sampsa Sojakka, ECAL 2003



Better liquid states.

Patrick Huerre



Cylinder Wake Beyond the Instability.

Perry, Chong and Lim 1982



A Phenomenological Convective Instability.

Cossou and Chomaz PRL 97



Normal Non-normal

   Homogenous
Feedback Loops

Hidden feedforward 
amplification cascades

No matter how
signal enters, cannot
amplify signal, without
amplifying noise.

Allows differential
amplification of signal
versus noise.

Summary so far:

Question:  What if noise is negligible?   

Jaeger 2001:  Even with zero noise, one cannot accurately reconstruct 
gaussian inputs more than N time units into the past.    

Can one do better if the input signal is temporally sparse?  Idea: Use
compressed sensing to recover high dim sparse signals from small  numbers
of measurements.



Compressed Sensing
x sest

A Reconstruct

s0

T dim N dim T dim

s0             : T dimensional signal with a fraction f elements nonzero
x = As0   : N dimensional measurement vector with α = N/T < 1
 
In general, reconstructing s0 from x is ill posed:  
T-N dimensional space of possible signals s consistent with measurement constraints.



Compressed Sensing
x sest

A Reconstruct

s0

T dim N dim T dim

s0             : T dimensional signal with a fraction f elements nonzero
x = As0   : N dimensional measurement vector with a = N/T < 1

Approaches to constructing an estimate sest of s0 from x  when s0 is sparse:

L0 minimization:   sest = arg min s  Σi |si|0   subject to x = As    (hard)

Lp minimization:   sest = arg min s  Σi |si|p   subject to x = As    (convex for p ≥1)



Why L1?  Geometry behind compressed sensing

                 L1 minimization:   sest = arg min s  Σi |si|1   subject to x = As

x = As

s0



Question: When does L1 minimization work?

                 L1 minimization:   sest = arg min s  Σi |si|1   subject to x = As

s0             : T dimensional signal with a fraction f elements nonzero
x = As0   : N dimensional measurement vector with α = N/T < 1

When is perfect recovery possible: i.e. when is sest equal to s0?

Traditional approach:  What are sufficient conditions on A such that
perfect recovery is guaranteed?   (Donoho, Tao, Candes).

Problem:  many large random measurement matrices which violate such 
sufficient conditions nevertheless yield good signal reconstruction.

Statistical mechanics approach:  compute the typical performance of L1
minimization as a function of α and f for large random measurement 
matrices.



Statistical mechanics approach

                 L1 minimization:   sest = arg min s  Σi |si|1   subject to x = As

s0             : T dimensional signal with a fraction f elements nonzero
x = As0   : N dimensional measurement vector with α = N/T < 1

Define an energy function on the space of candidate signals whose ground
state is the solution to L1 minimization:

E(s) =  λ/2 ||  As - As0 ||2  + Σi |si|             later will take  λ -> infinity

This yields a Gibbs distribution

PG(s) =  exp( - β E(s) )                               later will take β -> infinity 

Now compute the typical error as a function of α and f:

Ds || s - s0 ||2 PG(s)

! 

" >>A,s0<<



Mean field theory of compressed sensing

E(u) =  λ/2 ||  Au ||2  + Σi | ui + s0
i|        u = s-s0

                                                                      Ank is zero mean unit variance gaussian

Self consistent equations for 
order parameters:

Q0 =  <<   < u >2
H  >>z,s0

ΔQ =  <<   < (δu) 2 >H  >>z,s0! 

H(u) =
"

2#Q
(u $ z Q0 /" )

2
+ % | u + s0 |

The full theory:

Mean field effective theory: ΔQ = Q1-Q0
z = zero mean unit variance gaussian

Interpretation of order parameters in terms of original problem:
Let sa and sb be two candidate signals drawn from the Gibbs distribution PG.

Q1 =   typical value of  1/T < ua ua >PG
Q0 =  typical value of  1/T < ua ub >PG



Order parameters and the geometry 
      of low energy configurations

Q1 =   typical value of  1/T < ua ua >PG
Q0 =  typical value of  1/T < ua ub >PG

ua

ub

ΔQ

Perfect Reconstruction Solutions

ΔQ ~ O(1/β2)
Q0 ~ O(1/β2)

Error Solutions

ΔQ ~ O(1/β)
Q0 ~ O(1)



Phase transitions in compressed sensing
α > αc(f) : perfect reconstruction possible
α < αc(f) : perfect reconstruction not possible

As f -> 0      αc(f) ->  f log 1/f    (expected from entropic arguments)

Ganguli, Sompolinsky PRL 2010

See also Donoho et.al. 2006



Compressed sensing in the error regime

Rise of the error near the phase transition depends only on the distribution of
nonzero elements near the origin.  Let δα be distance into error phase:

A gap in this distribution =>  Error rises sharply as 1/log(1/ δα)
Power law behavior (sν)  =>  Error rises as (δα)2/(1+ν)

Sharper confinement of nonzeros to origin (smaller ν) => shallower rise of
error Ganguli, Sompolinsky PRL 2010



The nature of errors in compressed sensing



Behavior of Lp norms under L1 minimization

A procedure to detect successful reconstruction even when you do
not know the true signal:  if the number of nonzeros in your 
reconstruction is less than the number of measurements, with 
overwhelming probability, you have found the true signal. 



High dimensional data analysis: a null
          model for sparse regression.

Ank = n’th T dimensional “input” data                   n = 1..N
yn   = n’th scalar  “output”  measurement              k=  1..T

We wish to explain the relation between inputs and outputs
via a sparse rule x:  I.e. yn = Σk Ankxk   for each n

Suppose we do L1 regularized regression and we
Get a candidate rule xest.

Is xest sparse?  Need a null model for sparsity in high dimensional
data analysis.  Analyze random data:  independent gaussian y and A



Memory as compressed sensing

   v   Wv  W2v … Wkv …Ank  = (Wkv)n     :



Memory performance in the annealed approximation

Memory curves for f = 0.04
Red: theory
Blue: simulations

Memory curve = 
reconstruction error as a 
function of time into the past

Ganguli, Sompolinsky NIPS 2010



Memory performance in the annealed approximation

Memory capacity
can exceed number of neurons:

  ~  N  /  (f log 1/f)

Tradeoff in memory capacity:

Small  τ: forget quickly
Long   τ: stimulus interference

Ganguli, Sompolinsky NIPS 2010



Implementing the annealed approximation

   v   Wv  W2v … Wkv …
Ank  = (Wkv)n     :

Ank  ~  Activity pattern across neurons k time steps after an input stimulus

Want Ank and Anl to be as random and uncorrelated as possible.

This can be achieved if the network connectivity is orthogonal:  W = ρO                                                                         

But not if W is a random gaussian matrix, or all to all connected, etc…

Random Orthogonal Random Gaussian



  Network Design Principles Underlying Sequence Memory

Multiple conflicting design constraints on sequence memory networks:
    (1)     Stability  of internal representations =>  remember distant past 
    (2)  Flexibility of internal representations  =>  acquire more recent inputs
    (3) Amplification of input signals without destructive noise amplification

Nonnormal networks, characterized by (possibly hidden) feedforward
structure, but not feedback networks, achieve all three, and exhibit
dynamical short-term memory representations

Within the class of general networks considered, only nonnormal
networks can do so.

At high SNR, compressed sensing can lead to improved memory
performance for temporally sparse inputs, but again, only with dynamical
short-term memory representations.


