Variance as a signature of neural computations during decision-making

Anne Churchland Cold Spring Harbor Laboratory

KITP Neuroscience

Sep 30, 2010

Friday, October 1, 2010

Cortical neurons are variable

•Background: behavior on a random dot motion decision task and a proposed neural mechanism

•Background: behavior on a random dot motion decision task and a proposed neural mechanism

•Predictions about <u>neural variability</u> inherent to that mechanism

•Background: behavior on a random dot motion decision task and a proposed neural mechanism

Predictions about <u>neural variability</u> inherent to that mechanism
<u>Neural variability</u> in the data

•Background: behavior on a random dot motion decision task and a proposed neural mechanism

- •Predictions about <u>neural variability</u>
- inherent to that mechanism
- •Neural variability in the data

•Predictions about <u>temporal</u>

correlations inherent to that mechanism

•Background: behavior on a random dot motion decision task and a proposed neural mechanism

- •Predictions about <u>neural variability</u>
- inherent to that mechanism
- •Neural variability in the data

•Predictions about <u>temporal</u>

<u>correlations</u> inherent to that mechanism
<u>Temporal correlations in the data</u>

•Background: behavior on a random dot motion decision task and a proposed neural mechanism •Predictions about <u>neural variability</u> inherent to that mechanism •Neural variability in the data •Predictions about temporal

<u>correlations</u> inherent to that mechanism
<u>Temporal correlations in the data</u>

saccade

Rhesus macaques

Churchland et. Al, 2008, Roitman & Shadlen, 2002

Accumulating evidence is a rare strategy that is limited to primates

Accumulating evidence is a rare strategy that is limited to primates
Accumulating evidence relies on circuitry only present in the visual system

Accumulating evidence is a rare strategy that is limited to primates
Accumulating evidence relies on circuitry only present in the visual system

4-choice decisions

Churchland A, Kiani R & Shadlen MN (2008). Decisionmaking₉with multiple alternatives. Nature Neuroscience 11(6).

Behavior on the 2-choice task

Friday, October 1, 2010

Friday, October 1, 2010

The bounded accumulation framework accounts for the monkey's speed and accuracy on the 2-choice task

Roadmap

•Background: behavior on a random dot motion decision task and a proposed neural mechanism •Predictions about <u>neural variability</u> inherent to that mechanism •Neural variability in the data •Predictions about temporal correlations inherent to that mechanism •Temporal correlations in the data

Single unit physiology.

Eye, Brain, and Vision (Scientific American Library, No 22); David H. Hubel, 1995

LIP neurons: basic responses properties

LIP neurons: basic responses properties

LIP neurons: basic responses properties

LIP neurons: basic responses properties

LIP neurons: basic responses properties

Friday, October 1, 2010

Memory saccade task: **towards** the response field

Memory saccade task: **towards** the response field

Friday, October 1, 2010

Memory saccade task: **away** the response field

Memory saccade task: **away** the response field

Memory saccade task: towards the response field

Memory saccade task: **towards** the response field

Friday, October 1, 2010

2-choice decisions

One choice target is in the response field
The motion stimulus is presented centrally

2 choice

Friday, October 1, 2010

Friday, October 1, 2010

Roadmap

•Background: behavior on a random dot motion decision task and a proposed neural mechanism

Predictions about <u>neural variability</u> inherent to that mechanism
<u>Neural variability</u> in the data
Predictions about <u>temporal</u> correlations inherent to that mechanism
Temporal correlations in the data

Time-

Time-

Friday, October 1, 2010

Roadmap

•Background: behavior on a random dot motion decision task and a proposed neural mechanism •Predictions about neural variability inherent to that mechanism •Neural variability in the data •Predictions about temporal correlations inherent to that mechanism •Temporal correlations in the data

Bounded accumulation: the right mechanism to explain LIP firing rates?

Churchland MM et al, **Stimulus** onset quenches neural variability: a widespread cortical phenomenon; *Nature Neuroscience*, 2010

VarCE doesn't depend on most task parameters

VarCE doesn't depend on most task parameters

VarCE for 2-choice vs 4-choice responses

VarCE doesn't depend on most task parameters

VarCE doesn't depend on most task parameters

VarCE depends on phi

Mean firing rate at decision time

Mean firing rate at decision time

VarCE at decision time

VarCE at decision time

VarCE at decision time

Roadmap

•Background: behavior on a random dot motion decision task and a proposed neural mechanism •Predictions about neural variability inherent to that mechanism •Neural variability in the data •Predictions about temporal correlations inherent to that mechanism •Temporal correlations in the data

VarCE during decision formation

VarCE during decision formation

VarCE during decision formation

Variance can distinguish neural mechanisms

Bounded accumulation

Time-

Variance of the conditional expectation (VarCE) 0.5 - 0.5

1.5

Variance can distinguish neural mechanisms

Variance can distinguish neural mechanisms

Correlation of the conditional expectation (corCE)

Time—→

Correlation of the conditional expectation (corCE)

Correlation of the conditional expectation (corCE)

Roadmap

•Background: behavior on a random dot motion decision task and a proposed neural mechanism •Predictions about neural variability inherent to that mechanism •Neural variability in the data •Predictions about temporal correlations inherent to that mechanism •Temporal correlations in the data

Covariance

Covariance

Correlation

........

Correlation

.. ..

Data:

Other models of decision-making

• VarCE and CorCE are useful tools

• VarCE and CorCE are useful tools

- Capture "variation in what is computed"

- VarCE and CorCE are useful tools
 - Capture "variation in what is computed"
 - Expose features of neural computations in decision making

e.g., integration, mixtures, termination bound, refutes change point and several plausible alternative models

- VarCE and CorCE are useful tools
 - Capture "variation in what is computed"
 - Expose features of neural computations in decision making

e.g., integration, mixtures, termination bound, refutes change point and several plausible alternative models

• The main limitation is in estimating $\boldsymbol{\varphi}$

Thanks

thanks to... •Mike Shadlen •Xiao-Jing Wang •Alex Pouget •Rishi Chaudhuri •Roozbeh Kiani

Experiments were done at the University of Washington regional primate research center

Funding NIH K99 EY019072

63

The same features of the VarCE are evident in a mean-matched estimate

The same features of the VarCE are evident in a subset of the data with a relatively stationary mean

Fano factor

$$\begin{pmatrix} s_{\langle N_1 \rangle}^2 & \cdots & r_{1m} \sqrt{s_{\langle N_1 \rangle}^2 s_{\langle N_m \rangle}^2} \\ \vdots & \ddots & \vdots \\ r_{1m} \sqrt{s_{\langle N_1 \rangle}^2 s_{\langle N_m \rangle}^2} & \cdots & s_{\langle N_m \rangle}^2 \end{pmatrix} = \begin{pmatrix} VarCE_1 & \cdots & Cov[N_1, N_m] \\ \vdots & \ddots & \vdots \\ Cov[N_m, N_1] & \cdots & VarCE_m \end{pmatrix}$$

 $Var[X] = Var[\langle X|Y \rangle] + \langle Var[X|Y] \rangle$

variance of conditional expectation

expectation of conditional variance

 $= \sigma_{\langle N_i \rangle}^2 + \left\langle \sigma_{N_i | \lambda_i}^2 \right\rangle$ Total measured VCE Point process variance variance (PPV)

Decision termination

Law of total variance

 $Var[X] = Var[\langle X|Y \rangle] + \langle Var[X|Y] \rangle$

variance of conditional expectation (VCE) expectation of conditional variance

Law of total variance

$$Var[X] = Var[\langle X|Y \rangle] + \langle Var[X|Y] \rangle$$

variance of conditional expectation (VCE)

expectation of conditional variance

Applied to **DSPPs**

Point process variance (PPV)

Law of total variance

$$Var[X] = Var[\langle X|Y \rangle] + \langle Var[X|Y] \rangle$$

variance of conditional expectation (VCE)

expectation of conditional variance

Applied to **DSPPs**

Point process variance (PPV)

Estimator of VCE

 $s_{\langle N_i \rangle}^2 = s_{N_i}^2 - \phi \overline{N_i}$

Friday, October 1, 2010