Variance as a signature of neural computations during decision-making

Anne Churchland Cold Spring Harbor Laboratory

KITP Neuroscience

Cortical neurons are variable

Roadmap

Roadmap

- Background: behavior on a random dot motion decision task and a proposed neural mechanism

Roadmap

- Background: behavior on a random dot motion decision task and a proposed neural mechanism
-Predictions about neural variability inherent to that mechanism

Roadmap

- Background: behavior on a random dot motion decision task and a proposed neural mechanism
-Predictions about neural variability inherent to that mechanism
- Neural variability in the data

Roadmap

- Background: behavior on a random dot motion decision task and a proposed neural mechanism
-Predictions about neural variability inherent to that mechanism - Neural variability in the data -Predictions about temporal correlations inherent to that mechanism

Roadmap

- Background: behavior on a random dot motion decision task and a proposed neural mechanism
- Predictions about neural variability inherent to that mechanism - Neural variability in the data - Predictions about temporal correlations inherent to that mechanism -Temporal correlations in the data

Roadmap

- Background: behavior on a random dot motion decision task and a proposed neural mechanism
- Predictions about neural variability inherent to that mechanism - Neural variability in the data - Predictions about temporal correlations inherent to that mechanism - Temporal correlations in the data

2-choice decisions

Rhesus macaques

Choice and reaction time on the 2 -choice decision task

Churchland et. Al, 2008, Roitman \& Shadlen, 2002

Choice and reaction time on the 2 -choice decision task

Churchland et. Al, 2008, Roitman \& Shadlen, 2002

Choice and reaction time on the 2 -choice decision task

Churchland et. Al, 2008, Roitman \& Shadlen, 2002

Choice and reaction time on the 2 -choice decision task

Churchland et. Al, 2008, Roitman \& Shadlen, 2002

Choice and reaction time on the 2 -choice decision task

Churchland et. Al, 2008, Roitman \& Shadlen, 2002

Choice and reaction time on the 2 -choice decision task

Churchland et. Al, 2008, Roitman \& Shadlen, 2002

Choice and reaction time on the 2 -choice decision task

Churchland et. Al, 2008, Roitman \& Shadlen, 2002

Choice and reaction time on the 2 -choice decision task

Churchland et. Al, 2008, Roitman \& Shadlen, 2002

Choice and reaction time on the 2 -choice decision task

Churchland et. Al, 2008, Roitman \& Shadlen, 2002

Choice and reaction time on the 2 -choice decision task

Churchland et. Al, 2008, Roitman \& Shadlen, 2002

Choice and reaction time on the 2 -choice decision task

Churchland et. Al, 2008, Roitman \& Shadlen, 2002

Choice and reaction time on the 2 -choice decision task

Churchland et. Al, 2008, Roitman \& Shadlen, 2002

Decisions in other animals?

Decisions in other animals?

QAccumulating evidence is a rare strategy that is limited to primates

Motion strength (\% coh)

Decisions in other animals?

QAccumulating evidence is a rare strategy that is limited to primates QAccumulating evidence relies on circuitry only present in the visual system

Decisions in other animals?

QAccumulating evidence is a rare strategy that is limited to primates QAccumulating evidence relies on circuitry only present in the visual system

Motion strength (\% coh)

Tony Zador at Cold Spring Harbor

4-choice decisions

Churchland A, Kiani R \& Shadlen MN (2008). Decisionmaking ${ }^{2}$ with multiple alternatives. Nature Neuroscience 11(6).

Behavior on the 2 -choice task

Behavior on the 2^{-}and $4^{-c h o i c e ~ t a s k s ~}$

Behavior on the 2^{-}and $4^{-c h o i c e ~ t a s k s ~}$

Behavior on the 2^{-}and $4^{-c h o i c e ~ t a s k s ~}$

Behavior on the 2^{-}and $4^{-c h o i c e ~ t a s k s ~}$

Behavior on the 2^{-}and $4^{-c h o i c e ~ t a s k s ~}$

Behavior on the 2^{-}and $4^{-c h o i c e ~ t a s k s ~}$

Behavior on the 2^{-}and $4^{-c h o i c e ~ t a s k s ~}$

Behavior on the 2^{-}and $4^{-c h o i c e ~ t a s k s ~}$

Behavior on the 2^{-}and $4^{-c h o i c e ~ t a s k s ~}$

Behavior on the 2^{-}and $4^{-c h o i c e ~ t a s k s ~}$

Behavior on the 2^{-}and $4^{-c h o i c e ~ t a s k s ~}$

A framework for understanding 2-choice decisions

Bound for "left" choice
Accumulated
evidence

A framework for understanding ${ }^{2}$-choice decisions

Bound for "left" choice
Accumulated
evidence

A framework for understanding 2-choice decisions

Bound for "left" choice
Accumulated
evidence

A framework for understanding 2-choice decisions

Accumulated
evidence

[^0]
A framework for understanding ${ }^{2}$-choice decisions

Accumulated
evidence

A framework for understanding ${ }^{2}$-choice decisions

Accumulated
evidence

A framework for understanding ${ }^{2}$-choice decisions

Accumulated
evidence

A framework for understanding 2-choice decisions

Ratcliff, 1978; Ratcliff \& Smith, 2004

A framework for understanding ${ }^{2}$-choice decisions

Ratcliff, 1978; Ratcliff \& Smith, 2004

A framework for understanding 2-choice decisions

Ratcliff, 1978; Ratcliff \& Smith, 2004

A framework for understanding ${ }^{2}$-choice decisions

Ratcliff, 1978; Ratcliff \& Smith, 2004

A framework for understanding 2-choice decisions

Ratcliff, 1978; Ratcliff \& Smith, 2004

The bounded accumulation framework

 accounts for the monkey's speed and accuracy on the 2 -choice task

Roadmap

- Background: behavior on a random dot motion decision task and a proposed neural mechanism
- Predictions about neural variability inherent to that mechanism
- Neural variability in the data
- Predictions about temporal correlations inherent to that mechanism - Temporal correlations in the data

Single unit physiology.

Eye, Brain, and Vision (Scientific American Library, No 22); David H. Hubel, 1995

Is there evidence in the brain to support bounded accumulation?

Is there evidence in the brain to support bounded accumulation?

Is there evidence in the brain to support bounded accumulation?

Is there evidence in the brain to support bounded accumulation?

Is there evidence in the brain to support bounded accumulation?

Is there evidence in the brain to support bounded accumulation?

LIP neurons: basic responses properties

LIP neurons: basic responses properties

Response Field

LIP neurons: Memory saccade task

Response Field

LIP neurons: Memory saccade task

Response Field

LIP neurons: Memory saccade task

Response Field

LIP neurons: Memory saccade task

Response Field

LIP neurons: Memory saccade task

Response Field

Memory saccade task: towards the response field

Memory saccade task: away the response field

Memory saccade task: away the response field

Memory saccade task: towards the response field

2-choice decisions

2-choice decisions

2-choice decisions

2-choice decisions

LIP responses during decision-formation

LIP responses during decision-formation

2 choice

LIP responses during decision-formation

LIP responses during decision-formation

LIP responses during decision-formation

@Dip and recovery

LIP responses during decision-formation

9Dip and recovery QGradual build-up of firing rate

LIP responses during decision-formation

9Dip and recovery QGradual build-up of firing rate

LIP responses during decision-formation

9Dip and recovery QGradual build-up of firing rate

LIP responses during decision-formation

9Dip and recovery QGradual build-up of firing rate

LIP responses during decision-formation

9Dip and recovery QGradual build-up of firing rate

LIP responses during decision-formation

9Dip and recovery QGradual build-up of firing rate

LIP responses during decision-formation

4 choice

LIP responses during decision-formation

4 choice

QDip and recovery

Firing rate (sp / s)

LIP responses during decision-formation

4 choice

9 Dip and recovery QGradual build-up of firing rate

Firing rate $(\mathrm{sp} / \mathrm{s})$

LIP responses during decision-formation

4 choice

9 Dip and recovery QGradual build-up of firing rate

Firing rate $(\mathrm{sp} / \mathrm{s})$

LIP responses during decision-formation

4 choice

9 Dip and recovery QGradual build-up of firing rate

Firing rate $(\mathrm{sp} / \mathrm{s})$

LIP responses during decision-formation

4 choice

9 Dip and recovery QGradual build-up of firing rate

Firing rate $(\mathrm{sp} / \mathrm{s})$

LIP responses during decision-formation

4 choice

9 Dip and recovery QGradual build-up of firing rate

Firing rate $(\mathrm{sp} / \mathrm{s})$

Roadmap

- Background: behavior on a random dot motion decision task and a proposed neural mechanism
-Predictions about neural variability inherent to that mechanism
- Neural variability in the data
- Predictions about temporal
correlations inherent to that mechanism - Temporal correlations in the data

Bounded accumulation: the right mechanism?

Time \longrightarrow

Bounded accumulation: the right mechanism?

Bounded accumulation: the right mechanism?

Bound for "right" choice

Variance can distinguish neural mechanisms

Variance can distinguish neural mechanisms

Bound for "right" choice
 Time

Variance can distinguish neural mechanisms

Bound for "right" choice
 Time

Variance can distinguish neural mechanisms

Bound for "right" choice
 Time

Variance can distinguish neural mechanisms

Bound for "right" choice
 Time

Variance can distinguish neural mechanisms

Bound for "right" choice

Time \longrightarrow

Variance can distinguish neural mechanisms

Bound for "right" choice

Time \longrightarrow

Variance can distinguish neural mechanisms

Bound for "right" choice

Time \longrightarrow

Variance can distinguish neural mechanisms

Bound for "right" choice Bound for "right" choice

Time \longrightarrow

Variance can distinguish neural mechanisms

Bound for "right" choice Bound for "right" choice

Time

Variance can distinguish neural mechanisms

Time

Time

Roadmap

- Background: behavior on a random dot motion decision task and a proposed neural mechanism
- Predictions about neural variability inherent to that mechanism
- Neural variability in the data - Predictions about temporal correlations inherent to that mechanism -Temporal correlations in the data

Bounded accumulation: the right mechanism to explain LIP firing rates?

Computing VarCE from neural data

Computing VarCE from neural data

σ_{N}^{2}
\uparrow Total spike
count
variance

Computing VarCE from neural data

$$
N=\left[\begin{array}{l}
n_{1} \\
n_{2} \\
\vdots \\
n_{n}
\end{array}\right]
$$

N-CN variance

Computing VarCE from neural data

$$
N=\left[\begin{array}{l}
n_{1} \\
n_{2} \\
\vdots \\
n_{n}
\end{array}\right]
$$

$$
\overbrace{N}^{2}
$$

$$
\operatorname{Var} C E=\sigma_{N}^{2}-\phi \bar{N}
$$ variance

Computing VarCE from neural data

100 ms

Churchland MM et al, Stimulus onset quenches neural variability: a widespread cortical phenomenon; Nature

Neuroscience, 2010

VarCE doesn't depend on most task parameters

VarCE doesn't depend on most task parameters

VarCE for 2-choice vs 4 -choice responses

Q Stochastic evidence is accumulated differently for 2 vs 4 choice tasks
Q 2^{-}vs $4^{-c h o i c e ~ t a s k s ~ i n v i t e ~ d i f f e r e n t ~ s t r a t e g i e s ~}$

VarCE doesn't depend on most task parameters

VarCE doesn't depend on most task parameters

VarCE during the pre-decision period

VarCE depends on phi

Mean firing rate at decision time

Mean firing rate at decision time

Firing rate (spikes per s)

VarCE at decision time

VarCE at decision time

VarCE at decision time

Roadmap

- Background: behavior on a random dot motion decision task and a proposed neural mechanism
- Predictions about neural variability inherent to that mechanism
- Neural variability in the data
-Predictions about temporal correlations inherent to that mechanism Temporal correlations in the data

VarCE during decision formation

VarCE during decision formation

VarCE during decision formation

Variance can distinguish neural mechanisms

Bounded
 accumulation

Variance can distinguish neural mechanisms

Time-dependent scaling

Variance can distinguish neural mechanisms

Time-dependent scaling

Variable rate-ofrise

Correlation of the conditional expectation (corCE)

Bounded
accumulation

Time (ms)

Correlation of the conditional expectation (corCE)

觡 210 揑 450

 $$
\begin{array}{llll} 210 & 450 & 210 & 450 \\ \text { Time (ms) } & & \end{array}
$$

Correlation of the conditional expectation (corCE)

合 210
:
E 450

Time (ms)

$210 \quad 450$
210
450

Roadmap

- Background: behavior on a random dot motion decision task and a proposed neural mechanism
- Predictions about neural variability inherent to that mechanism
- Neural variabilitv in the data
- Predictions about temporal
correlations inherent to that mechanism
-Temporal correlations in the data

Computing the CorCE in neural data

Bound for "right" choice

Time \longrightarrow

Computing the CorCE in neural data

Bound for "right" choice
Time \longrightarrow

Computing the CorCE in neural data

Covariance

Computing the CorCE in neural data

Correlation

Computing the CorCE in neural data

Computing the CorCE in neural data

Computing the CorCE in neural data

Covariance
Corrected Cov VateE only

Computing the CorCE in neural data

Data:

Other models of decision-making

Probabilistic
Population Code Attractor
Variance of 0.4 the conditional expectation 0.2

Corr. of the conditional

$210450 \quad 210 \quad 450$

Conclusions

Conclusions

- VarCE and CorCE are useful tools

Conclusions

- VarCE and CorCE are useful tools
- Capture "variation in what is computed"

Conclusions

- VarCE and CorCE are useful tools
- Capture "variation in what is computed"
-Expose features of neural computations in decision making
e.g., integration, mixtures, termination bound, refutes change point and several plausible alternative models

Conclusions

- VarCE and CorCE are useful tools
- Capture "variation in what is computed"
-Expose features of neural computations in decision making
e.g., integration, mixtures, termination bound, refutes change point and several plausible alternative models
- The main limitation is in estimating $\boldsymbol{\phi}$

Thanks

thanks to...
${ }^{-}$Mike Shadlen
-Xiao-Jing Wang
Alex Pouget
Rishi Chaudhuri
-Roozbeh Kiani

Experiments were done at the University of Washington regional primate research center

Funding NIH K99 EY019072

VarCE

Churchland et al. Figure 2

The same features of the VarCE are evident in a mean-matched estimate

The same features of the VarCE are evident in a subset of the data with a relatively stationary mean

Fano factor

$$
\left.\begin{array}{ccc}
s_{\left\langle N_{1}\right\rangle}^{2} & \ldots & r_{1 m} \sqrt{s_{\left\langle N_{1}\right\rangle}^{2} s_{\left\langle N_{m}\right\rangle}^{2}} \\
\vdots & \ddots & \vdots \\
r_{1 m} \sqrt{s_{\left\langle N_{1}\right\rangle}^{2} s_{\left\langle N_{m}\right\rangle}^{2}} & \cdots & s_{\left\langle N_{m}\right\rangle}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
\operatorname{VarCE} E_{1} & \ldots & \operatorname{Cov}\left[N_{1}, N_{m}\right] \\
\vdots & \ddots & \vdots \\
\operatorname{Cov}\left[N_{m}, N_{1}\right] & \cdots & \operatorname{VarCE} E_{m}
\end{array}\right)
$$

$$
\operatorname{Var}[X]=\underbrace{\operatorname{Var}[\langle X \mid Y\rangle]}_{\begin{array}{c}
\text { variance of } \\
\text { conditional expectation }
\end{array}}+\underbrace{\langle\operatorname{Var}[X \mid Y]\rangle}_{\begin{array}{c}
\text { expectation of } \\
\text { conditional variance }
\end{array}}
$$

Computing VarCE from neural data

Computing VarCE from neural data

σ_{N}^{2}
\uparrow Total spike
count
variance

Computing VarCE from neural data

$$
N=\left[\begin{array}{l}
n_{1} \\
n_{2} \\
\vdots \\
n_{n}
\end{array}\right]
$$

N-CN variance

Computing VarCE from neural data

$$
N=\left[\begin{array}{l}
n_{1} \\
n_{2} \\
\vdots \\
n_{n}
\end{array}\right]
$$

$$
\overbrace{N}^{2}
$$

$$
\operatorname{Var} C E=\sigma_{N}^{2}-\phi \bar{N}
$$ variance

Decision termination

Computing VarCE:

Computing VarCE:

$\begin{gathered}\text { Law of total } \\ \text { variance }\end{gathered} \operatorname{Var}[X]=\underbrace{\operatorname{Var}[\langle X \mid Y\rangle]}_{\begin{array}{c}\text { variance of conditional } \\ \text { expectition (VCE) }\end{array}}+\underbrace{\langle\operatorname{Var}[X \mid Y]\rangle}_{\begin{array}{c}\text { expecaraion of } \\ \text { conditional varinee }\end{array}}$

Computing VarCE:

Law of total variance

$$
\operatorname{Var}[X]=\underbrace{\operatorname{Var}[\langle X \mid Y\rangle]}_{\substack{\text { variance of oonditional } \\ \text { expectation (NCE) }}}+\underbrace{\langle\operatorname{Var}[X \mid Y]\rangle}_{\substack{\text { enpectation onf } \\ \text { conditional variance }}}
$$

Applied to DSPPs

Computing VarCE:

Law of total variance

$$
\operatorname{Var}[X]=\underbrace{\operatorname{Var}[\langle X \mid Y\rangle]}_{\substack{\text { variance of conditional } \\ \text { expectation (NCE) }}}+\underbrace{\langle\operatorname{Var}[X \mid Y]\rangle}_{\substack{\text { expectation onf } \\ \text { conditional variance }}}
$$

Applied to DSPPs

$$
\underbrace{\sigma_{N_{i}}^{2}}_{\substack{\text { Total measured } \\ \text { variance }}}=\underbrace{\sigma_{\left\langle N_{i}\right\rangle}^{2}}_{V C E}+\underbrace{\left\langle\sigma_{N \mid \lambda_{2}}^{2}\right\rangle}_{\substack{\text { Point process } \\ \text { variance (PPV) }}}
$$

Estimator of VCE

$$
s_{\left\langle N_{i}\right\rangle}^{2}=s_{N_{i}}^{2}-\phi \overline{N_{i}}
$$

[^0]: Ratcliff, 1978; Ratcliff \& Smith, 2004

