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Substantial stochasticity has been measured in the biochemistry
of many organisms:

Humans

Variability and memory of protein levels
in human cells

Alex Sigal'*, Ron Milo'*f, Ariel Cohen'*, Naama Geva-Zatorsky', Yael Klein', Yuvalal Liron!, Nitzan Rosenfeld’,
Tamar Danon’, Natalie Perzov' & Uri Alon'

Yeast

Control of Stochasticity in
Eukaryotic Gene Expression

Slime moulds Jonathan M. Raser and Erin K. O'Shea*

Transcriptional Pulsing
of a Developmental Gene

Jonathan R. Chubb,"?* Tatjana Trcek,"
Shailesh M. Shenoy, and Robert H. Singer’

Bacteria

Stochastic Gene Expression in a
Single Cell

Michael B. Elowitz,"** Arnold ). Levine, Eric D. Siggia,*
Peter S. Swain?



Some questions

1. How should | expect fluctuations in an other system,
or in several different systems, to affect fluctuations in
my system of interest?

2. How can | measure the effects of such fluctuations?

3. How can | distinguish fluctuations generated by
information transfer from those generated by "noise’?

4. How do | relate such measurements to models?



Variation is generated by fluctuations in levels of cellular components.

Consider a gene Z
controlled by two a 'l PE@
transcription factors °
and a collection of |

. Z |
single cell I . | [
measurements. k

J

Each cell can have one of two levels of A and one of three levels of B.
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We can consider different components of the distribution of Z.
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A mathematical aside: conditional expectations

Consider an output Z that is itself stochastic and depends on two stochastic variables A
and B
O — e

0—

then one conditional expectation of Z is
E|Z|B =b] = /dzdazP(Z =2,A=a|B=0b)
= ez(B)
which is a itself a random variable with probabilities given by P(B =1).

expectations are
always taken over all
variables except
those for which
there is explicit

V[Z‘B] — E[Z2’B] o E[Z|B]2 conditioning

The conditional variance of Z is defined as



In our decomposition, the stochastic variables of interest can be in
the system under study or in other interacting systems.

We can consider the stochasticity generated in the output Z(t) by fluctuations in the
stochastic variables: Y;(t), Ya(t), and Ys(t).
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Using conditioning of probabilities, we can mathematically “fix” Y
and examine the fluctuations in Z when Y is fixed.
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For example, let Z(t) be the number
of proteins expressed from a gene
and let Y be the number of active
transcription factors, which can be
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To characterize the variation generated by fluctuations of Y we
compare fluctuations in the output when Y is fixed and when Y

fluctuates.
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The stochasticity contributed by Y to Z is the mean difference between the
variance of Z and the variance of Z conditioned on Y':

B{v(z] - vizIv")} = v{ElZ|Y"]

where we condition on the entire history of Y. Y, because all biochemical networks
have memory. \

the trajectory of Y: the
value of Y at the
present time and at
all previous times



We can prove that the variance of Z partitions into one term for
each of the Y variables and a term for any other stochastic sources.

from sources other than the Y's from Y3
\ N\

vize) = B{ViZoien i)+ B{ [EZo1m. v 0]}

from Y5 from Y3

+35{V B2 (%3, Y2)"[1 F*Q/{E[Z“)‘Ym}\
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Unpacking terms in the decomposition

The term E[V[E[ZIY4,Y2]IY1]] is the additional variance in Z generated by Y, when Y1 is given.

first expectation

calculated over all

E{V [E[Z‘Ylj Y2] ‘Yl} } stochastic variables
except Yiand Y»

variance

E{V [eZ(Yl, Ys) ’Yl} } calculated

overY;

last
expectation
calculated

E {Variance of ez for fluctuating Y5 (given Yl)}

over Y4



More generally, we have a decomposition that determines the
effects of n different sources of stochasticity on the output Z:

from sources other than Y, from Y; given Y, _1 from Y3
A n A A

N\

ViZ0) = B{VIZ@H)[YH) +Z7E{v[E[Z(t)\Y?HY Y+ VIEZmYH)

/

B VIZ@)Y] - vz
with YZjﬂ being the history of the collection of stochastic variables Yq, ..., Y;

The decomposition is only unique given a choice of the conditioning.



Example: Decomposing variation of protein expression into two
components gives intrinsic and extrinsic variation.

intrinsic variation extrinsic variation
AN\ A\

vizw) = B{viz ) +v{Ezmnm)}

We condition on Y., all processes extrinsic to gene

v

expression. Examples include the number of free RNA o
. 20—

polymerases, the number of free ribosomes, the number of +

free exosomes, and the number of free proteasomes. ?

Extrinsic variation is therefore the extra variation created by
the interaction of our system of interest with other
stochastic systems in the cell and its environment.

Swain et al., 2002

Elowitz et al., 2002
Hilfinger & Paulsson, 2011
Bowsher & Swain, 2012



Example: Decomposing intrinsic variation into transcriptional and
translational components to see which is more “noisy”.

translational transcriptional from extrinsic effects

- o\ o\
7 N\

-~

viz) = B{vizolon vy + B{v[Eizoon vy + v{Ezm )

We condition on the history of the levels of mMRNA, M, and on
all stochastic variables extrinsic to gene expression.



Unpacking translational variation

Translational variation is the additional variation in Z generated on average once the history
of levels of MRNA and of extrinsic variables is given:

first expectations

E{V[Z\(M, Ye)H]} caleulated over all

stochastic variables
except MHand YH

last expectation

E {Variance of 7Z given the history of M and Ye} calculated over
MH and Y



Unpacking transcriptional variation

Transcriptional variation is the additional variation in Z generated by fluctuating levels of
mMRNA once the history of fluctuations in the extrinsic variables is given:

first expectation

E{V |:E[Z‘ (M, YG)H] ‘YeHi| } calculated over all

stochastic variables
except MHand Y"

variance

H vHN|VH lculated
B{V [ex (M ¥]9|v]] | P
last
E {varianee of e, for fluctuating M7t (given YGH)} e;(j(ej::;n

over Y



We can experimentally estimate all terms in the decomposition by
measuring the covariance between a reporter for Z and a reporter
conjugate to Z for each of the Y variables.

A reporter conjugate to Z given the C
history of Y must: .K/ \.
\ N\
(i) be conditionally independent of Z ‘ ‘

given the history of Y < <
*e RNe
@

|

(i) have the same conditional mean
as Z given the history of Y .

l original conjugate

@ reporter @ reporter

We thus design the conjugate reporter so that it is only fluctuations in Y that cause
correlations between Z and the conjugate reporter Z'.



For four terms in the decomposition, we need four reporters.

reporters conditionally independent
given the history of Y, ,Y2 andY3

reporters conditionally independent
given the history of Y| andY>

I |
conditionally
independent
given the
history of Y|

from sources other than the Y's from Y3 from Y5 from Y7

~

Viz@) = B{VIZIt. Y. v} + BV 12004, o, 1)) |01 } 4+ BV [Blz) 077 ) )+ vz

These reporters can either all be in the same cell or in three different cells, each containing
the original reporter for Zand one conjugate reporter.



Example: The reporter Z' must be conjugate given the history of
all extrinsic variables to determine intrinsic and extrinsic variation.

O

0 e =] u/ O
Extrinsic o o °© o ¥ _C % O
*o ° ® o 3% u| § _< Oo
/
reporter for Z reporter for Z'
Intrinsic <

The variance of Z is

intrinsic variation extrinsic variation
A A

7 N\

vize) = B{vizo )} +v{Eizmy)

~

Extrinsic variables affect each reporter equally, and only fluctuations in extrinsic

variables can cause covariance between the reporters Z and Z'.



Extrinsic and intrinsic variation have been measured in bacteria
and yeast. Extrinsic variation is often greater than intrinsic
variation.

WT gprany + IPTG WT rprsr)

decrease
expression
32-fold
Intensity =1 Intensity = 0.03
Nint = 0.063 (0.058-0.069) Nint = 0.25 (0.22-0.27)
Next =0.098 (0.09-1.1) Noxt = 0.32 (0.3-0.35)

with n being the coefficient of variation (standard deviation divided by the

mean).
Elowitz et al., 2002



Example: Two conjugate reporters are needed to determine
transcriptional and translational variation.

translational transcriptional from extrinsic effects
_A _A _A

7 ) 7 )

vize) = E{vIZ®l(M, v} + B{V | BlZ@)|(, YO v } + v{EZ0)y |
We need two conjugate reporters: one @ @
conjugate to Z given the history of the extrinsic
variables (Z'); the other conjugate to Z given T ]A

the joint history of the extrinsic variables and
MmRNA levels (Z")

Proteins expressed from a bicistronic

reporter with two ribosome binding sites (Z T T
and Z") are conditionally independent given
the joint history of the extrinsic variables and I—) |—)

MRNA levels.



For models of biochemical networks, we can use conjugate
reporters in simulations and calculations to make predictions of the
magnitude of different variance components.

For example, consider the decomposition of variance generated during gene
expression into transcriptional and translational components:

translational transcriptional from extrinsic effects
A _A _ /A"

7 7

vizw) = E{vizolon v} + B{v [Bizo)0n v v+ v{Ezoym)

@ @ O

Three reporters are needed T T ‘l‘

experimentally, and we can either

simulate the reporters or include z

the reporters in a description of ’

the system by a master equation. T T
— —



For example, suppose fluctuations in the rate of transcription
generate extrinsic fluctuations, then we can augment the master
equation with a conjugate reporter to measure extrinsic variation:

Kol Ki2

Let the transcription rate > >
fluctuate between 3 states: Kio K,
The augmented master equation
P O [ pli ; i i i i
5 = U(())[P&EA—P( )} +d0[(m1+1)P7§zz+1—m1P( )} +dy [(n1+1)P£1)+1—”1P( )] g 3 " ;
. . A 0 0
Fuymy [pé’ﬂl)_l _ p(i)] first reporter “‘_§ ﬁ_’ g
IO [pqgg_l _ p(i)} +dy [(m2 + 1P, — mgp@} +dy [(ng + 1P, - nzP“)] . v [v 0
. _ 0% «—— — Qo
+v1ma [be;)_l — P(Z)] conjugate reporter ° ? ? °

H()lp(o) — (Iilo + ng)P(l) —+ I£21P(2) ifi=1 ] o
k1o P — ko P(2) if i =2 In transcription

(1) _ (0) if 5 =
+{ r1o b ror P iti=0 extrinsic fluctuations i i

where i denotes the state of the transcription rate.



Our calculations imply that transcriptional variation is usually greater
than translational variation in E. coli.

translational extrinsic

i, AL
7 N\

B{vizmi(m v} = Blz] v{Ezy) =

-~

Te (TzTe + TmTe + TmTz)
(Tm + 72) (Te + T ) (Te + 72)

VAR

transcriptional
7\

P{v[mzon ]} - o

Assuming an mRNA lifetime of 3 minutes and a cell-cycle time of 50 minutes, then
E[Z] > 18E[M]

if transcriptional variation is to be bigger than translational variation in E. col..

The average number of proteins per mRNA is approximately 540: transcriptional
variation dominates translational variation.



Example: For a signalling network, we can identify variation from
gene expression, from signal transduction, and informational variation.

The environmental input, X, determines the level of environment X
activation of the signalling pathway and so nuclear i
localization of a transcription factor, T, that activates —.~

expression of the output Z.

@
f

&

A four-way decomposition of the variance in Z gives:

~0-0-0-

from gene expression from signal transduction
viz) = B{VIZIar. D™ X} + B{V | BlZ|(Yor, T), X)[Y2, X | | /'
from other extrinsic effects from input signals

7\ 7\

1

+rE{V[E[Z|Ye7Q‘T,X]’X]}\+ ;{E[Z|X]}

We assume that the environment can be described by the probability of its different states and that the system responds
sufficiently quickly that it reaches steady-state before the environment changes again.



For a given environment, X, only a three-way decomposition is
necessary.

from gene expression from signal transduction from other extrinsic effects
N\ N\ N\

-~

V[Z|X] = E{V[Z|(Y6\T,T)”,X]|XP+;E{V[E[Z|(n\T,T)”,X] Vi, X| ’XP+ ;{E[Z|Y6§T,X]|X?

environment X

|
O

This decomposition describes laboratory experiments
that are performed in just one of the possible states of
the environment.

i
Z
/

~0-0-0-

!



Unpacking transductional variation

Transcriptional variation is the additional variation in Z generated by fluctuating levels of
mMRNA once the history of fluctuations in the extrinsic variables is given:

first expectation
calculated over all
E{V{E 7Y T H X |Y7‘l X} |X} stochastic variables
[ |< AT ) 7 ] e\T” except THand Yer"
and the input X=x

variance
B{V |e2(Y}4, T, X) ‘Yj{‘T, X |X} calculated
over TH

E {variance of ez for fluctuating T7* (given Ye/’QLT and X)) ’X }

last expectation
calculated over
Yart given X=x



To determine variation arising from gene expression, we need a
reporter conjugate to Z given the history of levels of the transcription
factor and all other variables extrinsic to gene expression.

from gene ex pression from signal transduction from other extrinsic effects

V[Z|X] = E{V[Z|(Y€\T., )", X]|X} +E{V[E[Z\(Ye\T,T)H,X]‘YE’{T,X} ‘X} n V{E[Z|YE’\*T,X]\X}

The reporter, Z’, can be constructed by copying ; —D—
the gene for Z, and measuring expression for a
given X, then

7\

~

%E[(Z - Z/)Q‘X] = EE{V[Z!(YG\T,T)%,X]‘X}

6 © ©
o 1
from gene expression given X J‘ z z

and

from signal transduction given X from other extrinsic effects given X

7\ 7\
r N\ r N\

Cov|Z, Z'|X] = E{V[E[Z\(YB\T, )", X]|Yor. X} ‘X} I [E[Z\Ye”\fT,X] ‘X}




We cannot directly measure variation from extrinsic fluctuations, but
can find a lower bound.

We would need a reporter conjugate given only the

from other extrinsic effects

g ; ™ history of variables extrinsic to gene expression (other
V[EZviXX] than

Instead, consider a

reporter, Ze.

v

@

constitutively expressed ‘
v

@
/

We can then give a lower bound

from other extrinsic effects given X

g ~ ) Cov|Z, Ze|X]
E[Z|v X)X > ’
V[ ZYeir: X] ] ~ Cov|Ze, Z'|X]

. Cov|Z, Z.|X]

Colman-Lerner et al., 2005
Pedraza & Van Oudenaarden, 2005



We then have an upper bound on the component generated by signal
transduction.

from gene expression from signal transduction from other extrinsic effects
7\ 7\ 7\

Y2, X} )XF+ ;/{E[Z|YZ\*T, X]|X}\

Ve

VIZIX] = B{VIZ|(Yor T, X)X} + B{V[E(Z|(Yor. 7)™, X]

- @—

© @06 ©8
N

2z
A4

We find that

from signal transduction given X
A\

’ \ Cov|Z, Zo|X]?
H H < / o ’
E{V | BlZ|(Your, T)", X]|Y2, X | |X } < Cov]Z, 2/|X] ol B




Example: pheromone response in budding yeast

Regulated cell-to-cell variation in a
cell-fate decision system

Alejandro Colman-Lerner'*, Andrew Gordon'*, Eduard Serra', Tina Chin', Orna Resnekov', Drew Endy?,
C. Gustavo Pesce' & Roger Brent'

@
v
? C?> ? C? ? Z driven by pheromone-responsive promoter PRM1
@ Z' driven by pheromone-responsive promoter PRM1
‘ C 6 Z. driven by the (constitutive) promoter for actin
J / / T Z.' driven by the (constitutive) promoter for actin

!
@~ @ —

Re-analyzing their data, we find that gene expression generates around 10% of
variation in Z, that processes extrinsic to gene expression generate at least 50%, and
that signal transduction generates less than 40% of the variation for cells exposed to

1.25 nM pheromone.



We can identity the part of the variation of Z that informs on the
environment: the informational variation.

environment X

from gene expression from signal transduction

Ve X[}

viz) = B{ViZI(var. D" X]} + B 7). x]

from other extrinsic effects from input signals
7\

A\

)

+;E{V[E[Z]Y6§T,X]‘X”\ ;/{E[Z|X]}




Mathematically, information is a measure of the ambiguity of a signal.

With higher information between the input and the output, it easier to distinguish if the
output comes from the red or blue state of the input.

An example with two states of
the input and a continuous Probability
value of the output.

Output
As the transduction mechanism becomes more noisy, the conditional output
distributions broaden and information between the input and output decreases.

decreasing information

>

Probability

Output



The expectation of the output conditional on the input tracks changes
in the input: its variation is the informational variation.

Let the input, u, the number of active transcription factors, transition between low,
or values.
200

number of proteins
o
(@)

5 10 15 20 25
time (hours)

E[Z(t)|u"] unambiguously tracks changes in the input and consequently conveys information
on those changes and so

informational variation = V{E Z \uH]}



Changes in the informational fraction of variance predict changes in
the mutual information between a network'’s input and output.

Consider an environment with three states and a signalling pathway.

environment

A signalling
Ho —{f— = —-ﬁ-— + @ protein is
\"4 . — —&_ 7 i activated.
A . «— o
' ] decomposition of
\ h . tc .
I[Z;X] = 0.14 nats \ the varl.a ion in
> 1 output into
u . .
= informational and
Q .
K transductional
0 P(Z|X= hlgh
E. P(Z|X= low) components
80 100 120 140 160

number of activated proteins

As the ratio of the informational to the transductional components of the variance increases
so too does the mutual information I[Z;X].



Changes in the informational fraction of variance predict changes in
the mutual information between a network’s input and output.

Consider an environment with three states and a signalling pathway.

environment

A signalling
"o + e = _-ﬁ- + @ protein is
+ .
N - s — ﬁ / ./ activated.

! ] decomposition of
K . . .
|[Z'X] = 0.98 nats \ the variation in
' i ] output into
informational and
transductional

components
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. - .
3400 3600 3800 4000
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As the ratio of the informational to the transductional components of the variance increases
so too does the mutual information I[Z;X].



Increasing the information fraction typically causes the conditional
output distributions to “separate” and so increases a network’s
information flow.

v{E(Zu}
ViZ]

informational fraction =

increasing informational fraction

>
I[Z; Xeny] = 0.14 I[Z; Xeny] = 0.98
Fo ' [ '
=
<
0
o)
[ .
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We can use the informational fraction for “inverse” ecology — to
determine the probability distribution of input most favoured by
a sensing network.

Transient Activation of the
HOG MAPK Pathway Regulates
Bimodal Gene Expression

Serge Pelet,™ Fabian Rudolf,>t Mariona Nadal-Ribelles,? Eulalia de Nadal,?
Francesc Posas,? Matthias Peter'*

Hyperosmotic stress is sensed by
two pathways in budding yeast.
Pelet et al. used the promoter of
STL1 to drive a fluorescent protein
reporter of the network’s response
in different concentrations of

extracellular salt.
Shol Sinl
plasma Tpd|
membrane Sskl

nuclear @

membranm
I-—) STLI



From the data of Pelet et al., we can calculate the informational fraction.

500
400}

>N

" 300¢

g Pelet et al., Science

o 2011:332:732

& 200}
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Given a probability distribution for X, the informational fraction is

extracellular salt
V{E[Z|)+(]} ) V{E[Z|X]}
/V,[Z] p{Ezx)} - (B{EZ1x)})

fluorescence from STLI



By considering all possible probability distributions of extracellular
salt, we can find those that maximize the informational fraction.

- 10.9

- 10.8

The informational 10.7
fraction varies 0.6 'g,
' o
continuously from 05 &
0.8 to 0. 5

© © O O
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0 005 0.1 0.15 0.2 0.4
concentration of salt (M)

Inverse ecology: yeast “expect” frequent low levels of osmotic stress interspersed with rare
high levels.



Increasing the informational fraction decreases the overlap between
the output distributions for each salt concentration.

informational fraction ~ 0.6 informational fraction ~ 0.8 informational fraction ~ 0
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Conclusions

. We have a general decomposition of variation that holds
for all dynamic systems at all times.

. We can specify conditions that conjugate reporters should
satisty to measure each component of the decomposition.

. We can distinguish information flow from noise.

. We can use conjugate reporters in models to calculate the
magnitude of the components of the decomposition.
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