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Substantial stochasticity has been measured in the biochemistry 
of many organisms:

Humans

Slime moulds

Yeast

Bacteria



Some questions

1. How should I expect fluctuations in an other system, 
or in several different systems, to affect fluctuations in 
my system of interest? 

2. How can I measure the effects of such fluctuations?

3. How can I distinguish fluctuations generated by 
information transfer from those generated by `noise’? 

4. How do I relate such measurements to models?



A
B

Z

Consider a gene Z 
controlled by two 
transcription factors 
and a collection of 
single cell
measurements.

Variation is generated by fluctuations in levels of cellular components.

Each cell can have one of two levels of A and one of three levels of B.
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We can consider different components of the distribution of Z. 

P(A=low)

P(A=high)

P(B=high)P(B=low) P(B=intermediate)

P(Z|A)P(Z|A,B)

P(Z)P(Z|B)

We can consider 
moments of these 
distributions, such 
as the expectation 
E[Z|A] and variance
V[Z|A,B].



A mathematical aside: conditional expectations

Consider an output Z that is itself stochastic and depends on two stochastic variables A 
and B

P (B = b)

then one conditional expectation of Z is

which is a itself a random variable with probabilities given by               .

The conditional variance of Z is defined as 
expectations are 
always taken over all 
variables except 
those for which 
there is explicit 
conditioning

E[Z|B = b] =

Z
dzda z P (Z = z,A = a|B = b)

= eZ(B)

V [Z|B] = E[Z2|B]� E[Z|B]2

Z
A

B



during gene expression can be substantial in both bacteria [3,5] and eukaryotes [6,7], but did not
identify the biochemical processes that principally generate this variation, regardless of whether
the variation is intrinsic or extrinsic.

A general decomposition of variation in biochemical systems

Consider a fluctuating molecular species in a biochemical system and let the random variable Z
be the number of molecules of that species, for example a transcription factor in a gene regulatory
network or the number of active molecules of a protein in a signalling network. Suppose we are
interested in how variation in Z is determined by three stochastic variables, labelled Y1, Y2, and Y3

(Fig. 1). Each Y could be, for example, the number of molecules of another biochemical species,
a property of the intra- or extracellular environment, a characteristic of cell morphology [8], a
reaction rate that depends on the concentration of a cellular component such as ATP, or even
the number of times a particular type of reaction has occurred [?]. We emphasize that the Y
variables are the stochastic variables whose e�ects are of interest: they are not all possible sources
of stochasticity.
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Figure 1. Decomposing fluctuations in the output of a biochemical system using three ex-
planatory variables. In this example, we consider how fluctuations in three variables a�ect fluctuations
in Z, the system’s output. The variables of interest are denoted by Y . Y1 is a biochemical species within
the system being studied; Y2 and Y3 are variables in other stochastic systems that interact with the system
of interest but whose dynamics are principally generated independently of the system. We show Y2 and
Y3 in the same system, but they need not be.

We wish to determine how fluctuations in Y1, Y2, and Y3 a�ect fluctuations in Z, the output
of the network. Intuitively, we can measure the contribution of, say, Y1 to Z by comparing the
size of fluctuations in Z when Y1 is free to fluctuate with the size of these fluctuations when Y1 is
‘fixed’ in some way. Mathematically, we can fix Y1 by conditioning probabilities on the history of
Y1, the value of Y1 at the present time and at all previous times. By using histories, we capture
the influence of the past behaviour of the system on its current behaviour [9, 10]. For example,
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In our decomposition, the stochastic variables of interest can be in 
the system under study or in other interacting systems.

We can consider the stochasticity generated in the output Z(t) by fluctuations in the 
stochastic variables: Y1(t), Y2(t), and Y3(t).



Using conditioning of probabilities, we can mathematically “fix” Y 
and examine the fluctuations in Z when Y is fixed.

For example, let Z(t) be the number 
of proteins expressed from a gene 
and let Y be the number of active 
transcription factors, which can be 
either low, medium, or high.
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The stochasticity contributed by Y to Z is the mean difference between the 
variance of Z and the variance of Z conditioned on Y :

where we condition on the entire history of Y, 
have memory. 

, because all biochemical networks 

the trajectory of Y: the 
value of Y at the 
present time and at 
all previous times
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To characterize the variation generated by fluctuations of Y, we 
compare fluctuations in the output when Y is fixed and when Y 
fluctuates.

E

{

V [Z] − V [Z|Y H]
}

= V

{

E[Z|Y H]
}



We can prove that the variance of Z partitions into one term for 
each of the Y variables and a term for any other stochastic sources.

...

V [Z(t)] =

from sources other than the Y s
︷ ︸︸ ︷

E
{

V [Z(t)|(Y1, Y2, Y3)
H]

}

+

from Y3

︷ ︸︸ ︷

E
{

V
[

E[Z(t)|(Y1, Y2, Y3)
H]

∣
∣
∣(Y1, Y2)

H

]}

+

from Y2

︷ ︸︸ ︷

E
{

V
[

E[Z(t)|(Y1, Y2)
H]

∣
∣
∣Y H

1

]}

+

from Y1

︷ ︸︸ ︷

V
{

E[Z(t)|Y H
1 ]

}

denotes historywhere H
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the variation is intrinsic or extrinsic.

A general decomposition of variation in biochemical systems

Consider a fluctuating molecular species in a biochemical system and let the random variable Z
be the number of molecules of that species, for example a transcription factor in a gene regulatory
network or the number of active molecules of a protein in a signalling network. Suppose we are
interested in how variation in Z is determined by three stochastic variables, labelled Y1, Y2, and Y3

(Fig. 1). Each Y could be, for example, the number of molecules of another biochemical species,
a property of the intra- or extracellular environment, a characteristic of cell morphology [8], a
reaction rate that depends on the concentration of a cellular component such as ATP, or even
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Figure 1. Decomposing fluctuations in the output of a biochemical system using three ex-
planatory variables. In this example, we consider how fluctuations in three variables a�ect fluctuations
in Z, the system’s output. The variables of interest are denoted by Y . Y1 is a biochemical species within
the system being studied; Y2 and Y3 are variables in other stochastic systems that interact with the system
of interest but whose dynamics are principally generated independently of the system. We show Y2 and
Y3 in the same system, but they need not be.

We wish to determine how fluctuations in Y1, Y2, and Y3 a�ect fluctuations in Z, the output
of the network. Intuitively, we can measure the contribution of, say, Y1 to Z by comparing the
size of fluctuations in Z when Y1 is free to fluctuate with the size of these fluctuations when Y1 is
‘fixed’ in some way. Mathematically, we can fix Y1 by conditioning probabilities on the history of
Y1, the value of Y1 at the present time and at all previous times. By using histories, we capture
the influence of the past behaviour of the system on its current behaviour [9, 10]. For example,
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E
{

V [Z(t)|Y H
1 ] − V [Z(t)|(Y1, Y2)H]

}



Unpacking terms in the decomposition

The term E[V[E[Z|Y1,Y2]|Y1]] is the additional variance in Z generated by Y2 when Y1 is given.

E
{

V
[

E[Z|Y1, Y2]
∣

∣

∣
Y1

]}

E
{

V
[

eZ(Y1, Y2)
∣

∣

∣
Y1

]}

E

{

variance of eZ for fluctuating Y2 (given Y1)
}

variance 
calculated 

over Y2

last 
expectation 
calculated 

over Y1

first expectation 
calculated over all 

stochastic variables 
except Y1 and Y2



More generally, we have a decomposition that determines the 
effects of n different sources of stochasticity on the output Z:

V [Z(t)] =

from sources other than Yn⌥ ⌦ �
E
⇤
V [Z(t)|YHn ]

⌅
+

n⌃

i=2

from Yi given Yi�1⌥ ⌦ �
E
⇤
V
�
E[Z(t)|YHi ]

⇧⇧YHi�1

⇥⌅
+

from Y1⌥ ⌦ �
V
⇤
E[Z(t)|YH1 ]

⌅

being the history of the collection of stochastic variables Y1, ..., Yiwith YHi

E
�
V [Z(t)|YHi�1]� V [Z(t)|YHi ]

⇥

The decomposition is only unique given a choice of the conditioning.



Example: Decomposing variation of protein expression into two 
components gives intrinsic and extrinsic variation.

V [Z(t)] =

intrinsic variation
︷ ︸︸ ︷

E

{

V [Z(t)|Y H
e

]
}

+

extrinsic variation
︷ ︸︸ ︷

V

{

E[Z(t)|Y H
e

]
}

Swain et al., 2002
Elowitz et al., 2002
Hilfinger & Paulsson, 2011
Bowsher & Swain, 2012
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Figure 1. Reactions for models of gene expression. A Dual reporters that are indepen-
dently and identically distributed conditional on any fluctuating extrinsic processes. Here v0 is the
probability of transcription per unit time (denoted u for input in the main text); v1 is the probabil-
ity of translation per unit time; d0 is the degradation rate of mRNA per unit time (denoted dM in
the main text); and d1 is the degradation rate of protein per unit time. B The local environment is
modelled as a Markov chain. It transitions between three states generating extrinsic fluctuations
in a parameter that correspondingly transitions between three values. C A bicistronic reporter for
measuring the translational component of the intrinsic fluctuations.

and m2 and the number of proteins from each copy as n1 and n2. The probability of having m1

mRNAs and n1 proteins from the first copy and m2 mRNAs and n2 proteins from the second is
P (m1, n1, m2, n2, v

(i)
0 , t), with i denoting the state of the extrinsic variable. For brevity, we will

write P (i) for P (m1, n1, m2, n2, v
(i)
0 , t) and only explicitly write (with subscripts) the number of

molecules when these di�er from either m1, n1, m2, or n2. The corresponding master equations
for the dual reporter systems are then (see Fig. 1A for definitions of the parameters)

⇤P (i)

⇤t
= v(i)

0

⇧
P (i)

m1�1 � P (i)
⌃

+ d0

⇧
(m1 + 1)P (i)

m1+1 � m1P
(i)

⌃
+ d1

⇧
(n1 + 1)P (i)

n1+1 � n1P
(i)

⌃

+v1m1

⇧
P (i)

n1�1 � P (i)
⌃

+ v(i)
0

⇧
P (i)

m2�1 � P (i)
⌃

+ d0

⇧
(m2 + 1)P (i)

m2+1 � m2P
(i)

⌃

+d1

⇧
(n2 + 1)P (i)

n2+1 � n2P
(i)

⌃
+ v1m2

⇧
P (i)

n2�1 � P (i)
⌃

+

�
⇤

⇥

�10P (1) � �01P (0) if i = 0
�01P (0) � (�10 + �12)P (1) + �21P (2) if i = 1
�12P (1) � �21P (2) if i = 2

(14)

where there is one equation for each state of the extrinsic variable (here, v(i)
0 ). Note that we use

the notation d0 in place dM so that are results can be compared easily with earlier work.
We can solve Eq. 14 exactly for the moments of the probability distribution P (i). We will use

s to represent the vector of numbers of species, s = [m1, n1, m2, n2], and, for brevity, we will use
angled brackets to denote expectations:

⇥f(s)⇤i =
⌅

s

P (s, v(i)
0 )f(s) =

⌅

s

P (i)f(s) (15)

We condition on Ye
H , all processes extrinsic to gene 

expression. Examples include the number of free RNA 
polymerases, the number of free ribosomes, the number of 
free exosomes, and the number of free proteasomes.

Extrinsic variation is therefore the extra variation created by 
the interaction of our system of interest with other 
stochastic systems in the cell and its environment.

Z



Example: Decomposing intrinsic variation into transcriptional and 
translational components to see which is more “noisy”.

V [Z(t)] =

translational
︷ ︸︸ ︷

E
{

V [Z(t)|(M,Ye)
H]

}

+

transcriptional
︷ ︸︸ ︷

E
{

V
[

E[Z(t)|(M,Ye)
H]

∣
∣Y H

e

]}

+

from extrinsic effects
︷ ︸︸ ︷

V
{

E[Z(t)|Y H
e

]
}

We condition on the history of the levels of mRNA, M, and on 
all stochastic variables extrinsic to gene expression.
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0
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+ d0
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⇧
(n1 + 1)P (i)

n1+1 � n1P
(i)

⌃

+v1m1

⇧
P (i)
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0

⇧
P (i)
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⇧
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s to represent the vector of numbers of species, s = [m1, n1, m2, n2], and, for brevity, we will use
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⌅

s
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0 )f(s) =

⌅

s

P (i)f(s) (15)
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Unpacking translational variation

Translational variation is the additional variation in Z generated on average once the history 
of levels of mRNA and of extrinsic variables is given:

E
{

V [Z|(M, Ye)
H]

}

E

{

variance of Z given the history of M and Ye

}

first expectations 
calculated over all 

stochastic variables 
except MH and Ye

H

last expectation 
calculated over 

MH and Ye
H



Unpacking transcriptional variation

Transcriptional variation is the additional variation in Z generated by fluctuating levels of 
mRNA once the history of fluctuations in the extrinsic variables is given:

variance 
calculated 
over MH

last 
expectation 
calculated 
over Ye

H

first expectation 
calculated over all 

stochastic variables 
except MH and Ye

H

E
{

V
[

eZ(MH, Y H
e )

∣

∣

∣
Y H

e

]}

E

{

variance of eZ for fluctuating MH (given Y H
e )

}

E
{

V
[

E[Z|(M,Ye)
H]

∣

∣

∣
Y H

e

]}



We can experimentally estimate all terms in the decomposition by 
measuring the covariance between a reporter for Z and a reporter 
conjugate to Z for each of the Y variables.

A reporter conjugate to Z given the 
history of Y must:

(i) be conditionally independent of Z 
given the history of Y

(ii) have the same conditional mean 
as Z given the history of Y

Y

Z Z’

conjugate
reporter

original
reporter

We thus design the conjugate reporter so that it is only fluctuations in Y that cause 
correlations between Z and the conjugate reporter Z’. 



conditionally 
independent
given the 
history of Y1

reporters conditionally independent
given the history of  Y1 and Y2

reporters conditionally independent
given the history of  Y1 ,Y2 and Y3

For four terms in the decomposition, we need four reporters.

V [Z(t)] =

from sources other than the Y s
︷ ︸︸ ︷

E
{

V [Z(t)|(Y1, Y2, Y3)
H]

}

+

from Y3

︷ ︸︸ ︷

E
{

V
[

E[Z(t)|(Y1, Y2, Y3)
H]

∣
∣
∣(Y1, Y2)

H

]}

+

from Y2

︷ ︸︸ ︷

E
{

V
[

E[Z(t)|(Y1, Y2)
H]

∣
∣
∣Y H

1

]}

+

from Y1

︷ ︸︸ ︷

V
{

E[Z(t)|Y H
1 ]

}

These reporters can either all be in the same cell or in three different cells, each containing 
the original reporter for Z and one conjugate reporter.  



Extrinsic

Intrinsic

Extrinsic variables affect each reporter equally, and only fluctuations in extrinsic

variables can cause covariance between the reporters Z and Z’. 

Example: The reporter Z’ must be conjugate given the history of 
all extrinsic variables to determine intrinsic and extrinsic variation.

reporter for Z reporter for Z’

V [Z(t)] =

intrinsic variation
︷ ︸︸ ︷

E

{

V [Z(t)|Y H
e

]
}

+

extrinsic variation
︷ ︸︸ ︷

V

{

E[Z(t)|Y H
e

]
}

The variance of Z is 



WT (RPR37) + IPTG

decrease 
expression

32-fold

Intensity = 1
ηint  = 0.063 (0.058-0.069)
ηext = 0.098 (0.09-1.1)

Extrinsic and intrinsic variation have been measured in bacteria 
and yeast. Extrinsic variation is often greater than intrinsic 
variation.

WT (RPR37)

Intensity = 0.03
ηint  = 0.25 (0.22-0.27)
ηext = 0.32 (0.3-0.35)

Elowitz et al., 2002

with η being the coefficient of variation (standard deviation divided by the 
mean).



Example: Two conjugate reporters are needed to determine 
transcriptional and translational variation. 

V [Z(t)] =

translational
︷ ︸︸ ︷

E
{

V [Z(t)|(M,Ye)
H]

}

+

transcriptional
︷ ︸︸ ︷

E
{

V
[

E[Z(t)|(M,Ye)
H]

∣
∣Y H

e

]}

+

from extrinsic effects
︷ ︸︸ ︷

V
{

E[Z(t)|Y H
e

]
}

We need two conjugate reporters: one 
conjugate to Z given the history of the extrinsic 
variables (Z’); the other conjugate to Z given 
the joint history of the extrinsic variables and 
mRNA levels (Z’’)

Proteins expressed from a bicistronic 
reporter with two ribosome binding sites (Z 
and Z’’) are conditionally independent given 
the joint history of the extrinsic variables and 
mRNA levels.

covariance with Z gives the sum of the last two terms of Eq. 2;
and a reporter conjugate to Z given the history of Y 1, Y 2, and Y 3

whose covariance with Z gives the sum of the last three terms
(Appendix). These reporters can in principle be constructed in
the same cell or, if simultaneously distinguishing four reporters
is technically challenging, in pairs in different cells (with the re-
porter forZ and one of its conjugate reporters comprising a pair).

Measuring Transcriptional and Translational Variation. Returning to
the example of measuring transcriptional and translational con-
tributions to variation in gene expression (Eq. 3), we can con-
struct the appropriate conjugate reporters by having a reporter
for the level of the protein and a bicistronic mRNA coding for
two other reporters of the protein—each with a distinct fluores-
cent tag—in the same cell (Fig. 2A). Only fluctuations in mRNA
levels and extrinsic variables generate correlations between the
two bicistronic reporters Z and Z 0 0 (12), and their covariance
therefore equals the sum of the last two terms in Eq. 3 provided
the conditions for conjugate reporters are met. Their mean
squared difference (halved) then measures translational varia-
tion, the first term in Eq. 3. We should therefore construct the
mRNA for all reporters to have identical rates of transcription,
translation, and turnover. The reporters Z and Z 0 are condition-

ally independent given the history of the extrinsic fluctuations,
and their covariance measures the last term in Eq. 3 (Fig. 2B).

Such bicistronic mRNAs have been constructed in Escherichia
coli, but for distinguishable fluorescent proteins tagged to two dif-
ferent rather than identical proteins (13). We can show that these
measurements give an upper bound on the translational variance:
for CheY and CheZ from E. coli’s chemotaxis network, we show
that the average translational variance for the two proteins, nor-
malized by the product of the means of their fluorescence, is less
than 0.22 (SI Text). As we will show later (Eq. 9 and SI Text), tran-
scriptional variation usually dominates translational variation for
typical parameters appropriate for E. coli.

Identifying Sources of Variation in Cell Signaling
Much gene expression is initiated by signaling networks (14), and
we will study examples of such expression to illustrate how to
apply our decomposition (Fig. 2C). The variation observed may
be determined predominantly by stochasticity in upstream signal
transduction rather than by gene expression itself (15) and will
not only be a consequence of biochemical noise but also a signa-
ture of information flowing through the network (16, 17). Fluc-
tuations in gene expression can carry information on environmen-
tal changes because new rates of transcription are often caused
by such changes (18). By having a general decomposition of

Fig. 2. Designs of conjugate reporters to measure the effects of different cellular subsystems on variation in output. (A) To distinguish transcriptional from
translational effects, three reporters are needed including a bicistronic mRNA with two independent ribosome binding sites. (B) Simulated results for the
reporters in A assuming that extrinsic fluctuations affect only the rate of transcription, which fluctuates between three different levels (reactions and para-
meter values are given in SI Text). Blue dots show Z plotted against Z 0: The average spread along the Z ¼ Z 0 diagonal equals the sum of V ½Z# and the extrinsic
variance; the average spread perpendicular to the diagonal equals the sum of the transcriptional and translational variation (SI Text). Red dots show Z plotted
against Z 0 0: the average spread along the diagonal equals the sum of V ½Z#, extrinsic, and transcriptional variation; the average spread perpendicular to the
diagonal equals translational variation. For the parameters chosen (SI Text), the translational noise (coefficient of variation) is 0.12; the transcriptional noise is
0.39; and the extrinsic noise is 0.41. These numbers agree with Eqs. 9 through 11 to two decimal places. (C) Four reporters are needed to distinguish transduc-
tional variation from variation generated by gene expression. Here, a signaling network activates a transcription factor, T , in response to extracellular inputs.
To measure variation in the output Z arising from gene expression, we require two conjugate reporters, Z and Z 0, whose expression is controlled by this
transcription factor. To find a bound on transductional variation, we use two further conjugate and constitutively expressed reporters, Zc and Z 0

c .

E1322 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1119407109 Bowsher and Swain



For models of biochemical networks, we can use conjugate 
reporters in simulations and calculations to make predictions of the 
magnitude of different variance components. 

For example, consider the decomposition of variance generated during gene 
expression into transcriptional and translational components: 

V [Z(t)] =

translational
︷ ︸︸ ︷

E
{

V [Z(t)|(M,Ye)
H]

}

+

transcriptional
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E
{

V
[

E[Z(t)|(M,Ye)
H]

∣
∣Y H

e

]}

+

from extrinsic effects
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V
{

E[Z(t)|Y H
e

]
}

Three reporters are needed 
experimentally, and we can either 
simulate the reporters or include 
the  reporters in a description of 
the system by a master equation. 

covariance with Z gives the sum of the last two terms of Eq. 2;
and a reporter conjugate to Z given the history of Y 1, Y 2, and Y 3

whose covariance with Z gives the sum of the last three terms
(Appendix). These reporters can in principle be constructed in
the same cell or, if simultaneously distinguishing four reporters
is technically challenging, in pairs in different cells (with the re-
porter forZ and one of its conjugate reporters comprising a pair).

Measuring Transcriptional and Translational Variation. Returning to
the example of measuring transcriptional and translational con-
tributions to variation in gene expression (Eq. 3), we can con-
struct the appropriate conjugate reporters by having a reporter
for the level of the protein and a bicistronic mRNA coding for
two other reporters of the protein—each with a distinct fluores-
cent tag—in the same cell (Fig. 2A). Only fluctuations in mRNA
levels and extrinsic variables generate correlations between the
two bicistronic reporters Z and Z 0 0 (12), and their covariance
therefore equals the sum of the last two terms in Eq. 3 provided
the conditions for conjugate reporters are met. Their mean
squared difference (halved) then measures translational varia-
tion, the first term in Eq. 3. We should therefore construct the
mRNA for all reporters to have identical rates of transcription,
translation, and turnover. The reporters Z and Z 0 are condition-

ally independent given the history of the extrinsic fluctuations,
and their covariance measures the last term in Eq. 3 (Fig. 2B).

Such bicistronic mRNAs have been constructed in Escherichia
coli, but for distinguishable fluorescent proteins tagged to two dif-
ferent rather than identical proteins (13). We can show that these
measurements give an upper bound on the translational variance:
for CheY and CheZ from E. coli’s chemotaxis network, we show
that the average translational variance for the two proteins, nor-
malized by the product of the means of their fluorescence, is less
than 0.22 (SI Text). As we will show later (Eq. 9 and SI Text), tran-
scriptional variation usually dominates translational variation for
typical parameters appropriate for E. coli.

Identifying Sources of Variation in Cell Signaling
Much gene expression is initiated by signaling networks (14), and
we will study examples of such expression to illustrate how to
apply our decomposition (Fig. 2C). The variation observed may
be determined predominantly by stochasticity in upstream signal
transduction rather than by gene expression itself (15) and will
not only be a consequence of biochemical noise but also a signa-
ture of information flowing through the network (16, 17). Fluc-
tuations in gene expression can carry information on environmen-
tal changes because new rates of transcription are often caused
by such changes (18). By having a general decomposition of

Fig. 2. Designs of conjugate reporters to measure the effects of different cellular subsystems on variation in output. (A) To distinguish transcriptional from
translational effects, three reporters are needed including a bicistronic mRNA with two independent ribosome binding sites. (B) Simulated results for the
reporters in A assuming that extrinsic fluctuations affect only the rate of transcription, which fluctuates between three different levels (reactions and para-
meter values are given in SI Text). Blue dots show Z plotted against Z 0: The average spread along the Z ¼ Z 0 diagonal equals the sum of V ½Z# and the extrinsic
variance; the average spread perpendicular to the diagonal equals the sum of the transcriptional and translational variation (SI Text). Red dots show Z plotted
against Z 0 0: the average spread along the diagonal equals the sum of V ½Z#, extrinsic, and transcriptional variation; the average spread perpendicular to the
diagonal equals translational variation. For the parameters chosen (SI Text), the translational noise (coefficient of variation) is 0.12; the transcriptional noise is
0.39; and the extrinsic noise is 0.41. These numbers agree with Eqs. 9 through 11 to two decimal places. (C) Four reporters are needed to distinguish transduc-
tional variation from variation generated by gene expression. Here, a signaling network activates a transcription factor, T , in response to extracellular inputs.
To measure variation in the output Z arising from gene expression, we require two conjugate reporters, Z and Z 0, whose expression is controlled by this
transcription factor. To find a bound on transductional variation, we use two further conjugate and constitutively expressed reporters, Zc and Z 0

c .
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For example, suppose fluctuations in the rate of transcription 
generate extrinsic fluctuations, then we can augment the master 
equation with a conjugate reporter to measure extrinsic variation:
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Our calculations imply that transcriptional variation is usually greater 
than translational variation in E. coli.
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Assuming an mRNA lifetime of 3 minutes and a cell-cycle time of 50 minutes, then 

if transcriptional variation is to be bigger than translational variation in E. coli. 

The average number of proteins per mRNA is approximately 540: transcriptional 
variation dominates translational variation.

E[Z] > 18E[M ]



Example: For a signalling network, we can identify variation from 
gene expression, from signal transduction, and informational variation.

The environmental input, X, determines the level of 
activation of the signalling pathway and so nuclear 
localization of a transcription factor, T, that activates 
expression of the output Z.

A four-way decomposition of the variance in Z gives:

We assume that the environment can be described by the probability of its different states and that the system responds 
sufficiently quickly that it reaches steady-state before the environment changes again. 

A B
Z

Z

T T

Z’ Zc Z’c

Figure 2. Designs of conjugate reporters to measure the e�ects of di�erent cellular sub-
systems on variation in output. A To determine transcriptional from translational e�ects, we need
a reporter for expression from the gene of interest and a bicistronic reporter with the same rates of tran-
scription, translation, and degradation. The reporters should therefore either all be in the same cell or
in two separate cells (one having a fluorescent reporters for Z and for one of the bicistronic proteins,
and the other having the bicistronic mRNA with both its proteins tagged). B Four reporters are need to
distinguish transductional variation from variation generated by gene expression. A signalling network
activated by extracellular inputs leads to activation of a transcription factor, T . To measure variation in
the output Z arising from gene expression, we require two identical reporters whose expression is con-
trolled by this transcription factor. To find a bound on transductional variation, we need two further,
constitutively expressed reporters.

Such bicistronic reporters have been constructed in Escherichia coli, but for distinguishable
fluorescent proteins tagged to two di�erent rather than identical proteins [13]. We can show that
these measurements give an upper bound on the translational variance component: for CheY and
CheZ from E. coli’s chemotaxis network, we can show that the translational variance normalized by
the square of the mean fluorescence averaged over the two proteins is therefore less than 0.22 [14].

Identifying sources of variation in cell signalling

Much gene expression is initiated by signalling networks [15], and we will study examples of such
expression to illustrate how our theory can be applied. The variation observed may be determined
predominantly by stochasticity in upstream signal transduction rather than by gene expression
itself [16] and will not only be a consequence of biochemical ‘noise’ but also a signature of informa-
tion flowing through the network [17]. Fluctuations in gene expression can carry information on
environmental changes because new rates of transcription are often caused by such changes [18].
By having a general decomposition of variance, we can distinguish both signalling from expression
e�ects and information flow from noise.

Distinguishing variation due to gene expression from variation due to upstream sig-
nalling

We begin by distinguishing the e�ects of transductional stochasticity from stochasticity in gene
expression by decomposing the variation in expression of a reporter gene controlled by an up-
stream signalling network. We condition on the transcription factors, T , activated by upstream
signalling, on the extracellular input signals detected by the signalling network, X, and on all
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For a given environment, X, only a three-way decomposition is 
necessary.

This decomposition describes laboratory experiments 
that are performed in just one of the possible states of 
the environment.
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Figure 2. Designs of conjugate reporters to measure the e�ects of di�erent cellular sub-
systems on variation in output. A To determine transcriptional from translational e�ects, we need
a reporter for expression from the gene of interest and a bicistronic reporter with the same rates of tran-
scription, translation, and degradation. The reporters should therefore either all be in the same cell or
in two separate cells (one having a fluorescent reporters for Z and for one of the bicistronic proteins,
and the other having the bicistronic mRNA with both its proteins tagged). B Four reporters are need to
distinguish transductional variation from variation generated by gene expression. A signalling network
activated by extracellular inputs leads to activation of a transcription factor, T . To measure variation in
the output Z arising from gene expression, we require two identical reporters whose expression is con-
trolled by this transcription factor. To find a bound on transductional variation, we need two further,
constitutively expressed reporters.

Such bicistronic reporters have been constructed in Escherichia coli, but for distinguishable
fluorescent proteins tagged to two di�erent rather than identical proteins [13]. We can show that
these measurements give an upper bound on the translational variance component: for CheY and
CheZ from E. coli’s chemotaxis network, we can show that the translational variance normalized by
the square of the mean fluorescence averaged over the two proteins is therefore less than 0.22 [14].

Identifying sources of variation in cell signalling

Much gene expression is initiated by signalling networks [15], and we will study examples of such
expression to illustrate how our theory can be applied. The variation observed may be determined
predominantly by stochasticity in upstream signal transduction rather than by gene expression
itself [16] and will not only be a consequence of biochemical ‘noise’ but also a signature of informa-
tion flowing through the network [17]. Fluctuations in gene expression can carry information on
environmental changes because new rates of transcription are often caused by such changes [18].
By having a general decomposition of variance, we can distinguish both signalling from expression
e�ects and information flow from noise.

Distinguishing variation due to gene expression from variation due to upstream sig-
nalling

We begin by distinguishing the e�ects of transductional stochasticity from stochasticity in gene
expression by decomposing the variation in expression of a reporter gene controlled by an up-
stream signalling network. We condition on the transcription factors, T , activated by upstream
signalling, on the extracellular input signals detected by the signalling network, X, and on all
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Unpacking transductional variation

Transcriptional variation is the additional variation in Z generated by fluctuating levels of 
mRNA once the history of fluctuations in the extrinsic variables is given:
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To determine variation arising from gene expression, we need a 
reporter conjugate to Z given the history of levels of the transcription 
factor and all other variables extrinsic to gene expression.
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Figure 2. Designs of conjugate reporters to measure the e�ects of di�erent cellular sub-
systems on variation in output. A To determine transcriptional from translational e�ects, we need
a reporter for expression from the gene of interest and a bicistronic reporter with the same rates of tran-
scription, translation, and degradation. The reporters should therefore either all be in the same cell or
in two separate cells (one having a fluorescent reporters for Z and for one of the bicistronic proteins,
and the other having the bicistronic mRNA with both its proteins tagged). B Four reporters are need to
distinguish transductional variation from variation generated by gene expression. A signalling network
activated by extracellular inputs leads to activation of a transcription factor, T . To measure variation in
the output Z arising from gene expression, we require two identical reporters whose expression is con-
trolled by this transcription factor. To find a bound on transductional variation, we need two further,
constitutively expressed reporters.

Such bicistronic reporters have been constructed in Escherichia coli, but for distinguishable
fluorescent proteins tagged to two di�erent rather than identical proteins [13]. We can show that
these measurements give an upper bound on the translational variance component: for CheY and
CheZ from E. coli’s chemotaxis network, we can show that the translational variance normalized by
the square of the mean fluorescence averaged over the two proteins is therefore less than 0.22 [14].

Identifying sources of variation in cell signalling

Much gene expression is initiated by signalling networks [15], and we will study examples of such
expression to illustrate how our theory can be applied. The variation observed may be determined
predominantly by stochasticity in upstream signal transduction rather than by gene expression
itself [16] and will not only be a consequence of biochemical ‘noise’ but also a signature of informa-
tion flowing through the network [17]. Fluctuations in gene expression can carry information on
environmental changes because new rates of transcription are often caused by such changes [18].
By having a general decomposition of variance, we can distinguish both signalling from expression
e�ects and information flow from noise.

Distinguishing variation due to gene expression from variation due to upstream sig-
nalling

We begin by distinguishing the e�ects of transductional stochasticity from stochasticity in gene
expression by decomposing the variation in expression of a reporter gene controlled by an up-
stream signalling network. We condition on the transcription factors, T , activated by upstream
signalling, on the extracellular input signals detected by the signalling network, X, and on all
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We cannot directly measure variation from extrinsic fluctuations, but 
can find a lower bound.

We would need a reporter conjugate given only the 
history of variables extrinsic to gene expression (other 
than T).

Instead, consider a 
constitutively expressed 
reporter, Zc.
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Figure 2. Designs of conjugate reporters to measure the e�ects of di�erent cellular sub-
systems on variation in output. A To determine transcriptional from translational e�ects, we need
a reporter for expression from the gene of interest and a bicistronic reporter with the same rates of tran-
scription, translation, and degradation. The reporters should therefore either all be in the same cell or
in two separate cells (one having a fluorescent reporters for Z and for one of the bicistronic proteins,
and the other having the bicistronic mRNA with both its proteins tagged). B Four reporters are need to
distinguish transductional variation from variation generated by gene expression. A signalling network
activated by extracellular inputs leads to activation of a transcription factor, T . To measure variation in
the output Z arising from gene expression, we require two identical reporters whose expression is con-
trolled by this transcription factor. To find a bound on transductional variation, we need two further,
constitutively expressed reporters.

Such bicistronic reporters have been constructed in Escherichia coli, but for distinguishable
fluorescent proteins tagged to two di�erent rather than identical proteins [13]. We can show that
these measurements give an upper bound on the translational variance component: for CheY and
CheZ from E. coli’s chemotaxis network, we can show that the translational variance normalized by
the square of the mean fluorescence averaged over the two proteins is therefore less than 0.22 [14].

Identifying sources of variation in cell signalling

Much gene expression is initiated by signalling networks [15], and we will study examples of such
expression to illustrate how our theory can be applied. The variation observed may be determined
predominantly by stochasticity in upstream signal transduction rather than by gene expression
itself [16] and will not only be a consequence of biochemical ‘noise’ but also a signature of informa-
tion flowing through the network [17]. Fluctuations in gene expression can carry information on
environmental changes because new rates of transcription are often caused by such changes [18].
By having a general decomposition of variance, we can distinguish both signalling from expression
e�ects and information flow from noise.

Distinguishing variation due to gene expression from variation due to upstream sig-
nalling

We begin by distinguishing the e�ects of transductional stochasticity from stochasticity in gene
expression by decomposing the variation in expression of a reporter gene controlled by an up-
stream signalling network. We condition on the transcription factors, T , activated by upstream
signalling, on the extracellular input signals detected by the signalling network, X, and on all
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We then have an upper bound on the component generated by signal 
transduction.
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Figure 2. Designs of conjugate reporters to measure the e�ects of di�erent cellular sub-
systems on variation in output. A To determine transcriptional from translational e�ects, we need
a reporter for expression from the gene of interest and a bicistronic reporter with the same rates of tran-
scription, translation, and degradation. The reporters should therefore either all be in the same cell or
in two separate cells (one having a fluorescent reporters for Z and for one of the bicistronic proteins,
and the other having the bicistronic mRNA with both its proteins tagged). B Four reporters are need to
distinguish transductional variation from variation generated by gene expression. A signalling network
activated by extracellular inputs leads to activation of a transcription factor, T . To measure variation in
the output Z arising from gene expression, we require two identical reporters whose expression is con-
trolled by this transcription factor. To find a bound on transductional variation, we need two further,
constitutively expressed reporters.

Such bicistronic reporters have been constructed in Escherichia coli, but for distinguishable
fluorescent proteins tagged to two di�erent rather than identical proteins [13]. We can show that
these measurements give an upper bound on the translational variance component: for CheY and
CheZ from E. coli’s chemotaxis network, we can show that the translational variance normalized by
the square of the mean fluorescence averaged over the two proteins is therefore less than 0.22 [14].

Identifying sources of variation in cell signalling

Much gene expression is initiated by signalling networks [15], and we will study examples of such
expression to illustrate how our theory can be applied. The variation observed may be determined
predominantly by stochasticity in upstream signal transduction rather than by gene expression
itself [16] and will not only be a consequence of biochemical ‘noise’ but also a signature of informa-
tion flowing through the network [17]. Fluctuations in gene expression can carry information on
environmental changes because new rates of transcription are often caused by such changes [18].
By having a general decomposition of variance, we can distinguish both signalling from expression
e�ects and information flow from noise.

Distinguishing variation due to gene expression from variation due to upstream sig-
nalling

We begin by distinguishing the e�ects of transductional stochasticity from stochasticity in gene
expression by decomposing the variation in expression of a reporter gene controlled by an up-
stream signalling network. We condition on the transcription factors, T , activated by upstream
signalling, on the extracellular input signals detected by the signalling network, X, and on all
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Regulated cell-to-cell variation in a
cell-fate decision system
Alejandro Colman-Lerner1*, Andrew Gordon1*, Eduard Serra1, Tina Chin1, Orna Resnekov1, Drew Endy2,
C. Gustavo Pesce1 & Roger Brent1

Here we studied the quantitative behaviour and cell-to-cell variability of a prototypical eukaryotic cell-fate decision
system, the mating pheromone response pathway in yeast. We dissected and measured sources of variation in system
output, analysing thousands of individual, genetically identical cells. Only a small proportion of total cell-to-cell variation
is caused by random fluctuations in gene transcription and translation during the response (‘expression noise’). Instead,
variation is dominated by differences in the capacity of individual cells to transmit signals through the pathway
(‘pathway capacity’) and to express proteins from genes (‘expression capacity’). Cells with high expression capacity
express proteins at a higher rate and increase in volume more rapidly. Our results identify two mechanisms that regulate
cell-to-cell variation in pathway capacity. First, the MAP kinase Fus3 suppresses variation at high pheromone levels,
while the MAP kinase Kss1 enhances variation at low pheromone levels. Second, pathway capacity and expression
capacity are negatively correlated, suggesting a compensatory mechanism that allows cells to respond more precisely to
pheromone in the presence of a large variation in expression capacity.

Biological systems are composed of physical constituents that con-
strain their performance. However, some aspects of system perform-
ance, including cell-to-cell variation, are often regulated by active
mechanisms1–8. The study of variation in the behaviour of genetically
identical cells goes back as far as Delbrück9, who measured differ-
ences in the numbers of phage T1 produced by individual, singly
infected E. coli.
Recently, a number of studies have used fluorescent protein

reporters to study cell-to-cell variation in gene expression10–16. For
example, variation in gene expression among genetically identical
bacteria has been studied by measuring the correlation in expression
of two different fluorescent protein reporter genes under control of
the same promoters11. Cell-to-cell variation resulted from both
stochastic fluctuations in the expression of each reporter protein
(termed ‘intrinsic noise’) and differences in the levels of cellular
components needed for expression of both reporters (termed ‘extrin-
sic noise’), and the results suggested that some components of
extrinsic noise affect gene expression in general11. The component
of extrinsic noise that affects overall gene expression has recently
been quantified in Escherichia coli12,13. This type of gene expression
analysis has also been performed in yeast14, and revealed that intrinsic
noise contributes little to cell-to-cell variation in gene expression.
Cell-to-cell variation in the expression of two non-identical promo-
ters was correlated, consistent again with the idea that some extrinsic
noise is a result of global differences in gene expression. Others have
shown that changes in the amount of transcription and translation
affect the amount of overall cell-to-cell variation in the expression of
a single reporter15,16.
Here we studied cell-to-cell variation, not in gene expression, but

in the quantitative output of a cell-fate decision system: the phero-
mone response pathway in the yeast Saccharomyces cerevisiae. In
haploid cells of the amating type, a-factor (a pheromone secreted by
cells of the a mating type) triggers a fate decision to switch from

normal, vegetative growth to the initiation of mating events, includ-
ing induction of gene transcription, cell cycle arrest and changes in
morphology. The pathway is a prototypical eukaryotic signal trans-
duction system that includes a G-protein-coupled receptor and a
MAP kinase cascade17 (Fig. 1a).
To study cell-to-cell variation in the workings of this decision

system, we used pheromone-induced expression of fluorescent
protein reporter genes as a readout. We realized that cell-to-cell
differences in the levels of fluorescent proteins would convolve
differences in the operation of the signal transduction pathway
with cell-to-cell differences in gene expression from the reporters.
To distinguish between and quantify these two contributions, we
generated a series of yeast strains containing genes for yellow and
cyan fluorescent protein (YFP and CFP). We compared the results
from experiments in which YFP and CFPwere controlled by identical
a-factor-responsive promoters with results from experiments in
which YFP was driven by an a-factor-responsive promoter and
CFP by an a-factor-independent promoter (Fig. 1b, c).
We constructed an analytical framework to guide the design and

interpretation of these experiments. We considered the a-factor
response pathway and the means used to measure its activity
(reporter gene expression) as a single system composed of two
connected subsystems: ‘pathway’ and ‘expression’ (Fig. 1a). In each
subsystem, we distinguished two sources of variation: stochastic
fluctuations and cell-to-cell differences in ‘capacity’. Capacity
depends on the number, localization and activity of proteins that
transmit the signal (pathway capacity) or express genes into proteins
(expression capacity), and is determined by the state of the cells at the
start of the experiment. We limited the term ‘noise’ to refer to the
variation due to stochastic fluctuations in subsystem function that
occur during the experiment (for example, spontaneous differences
in the occurrence and timing of discrete probabilistic chemical
reactions). By distinguishing these two sources, we modify the
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Figure 2. Designs of conjugate reporters to measure the e�ects of di�erent cellular sub-
systems on variation in output. A To determine transcriptional from translational e�ects, we need
a reporter for expression from the gene of interest and a bicistronic reporter with the same rates of tran-
scription, translation, and degradation. The reporters should therefore either all be in the same cell or
in two separate cells (one having a fluorescent reporters for Z and for one of the bicistronic proteins,
and the other having the bicistronic mRNA with both its proteins tagged). B Four reporters are need to
distinguish transductional variation from variation generated by gene expression. A signalling network
activated by extracellular inputs leads to activation of a transcription factor, T . To measure variation in
the output Z arising from gene expression, we require two identical reporters whose expression is con-
trolled by this transcription factor. To find a bound on transductional variation, we need two further,
constitutively expressed reporters.

Such bicistronic reporters have been constructed in Escherichia coli, but for distinguishable
fluorescent proteins tagged to two di�erent rather than identical proteins [13]. We can show that
these measurements give an upper bound on the translational variance component: for CheY and
CheZ from E. coli’s chemotaxis network, we can show that the translational variance normalized by
the square of the mean fluorescence averaged over the two proteins is therefore less than 0.22 [14].

Identifying sources of variation in cell signalling

Much gene expression is initiated by signalling networks [15], and we will study examples of such
expression to illustrate how our theory can be applied. The variation observed may be determined
predominantly by stochasticity in upstream signal transduction rather than by gene expression
itself [16] and will not only be a consequence of biochemical ‘noise’ but also a signature of informa-
tion flowing through the network [17]. Fluctuations in gene expression can carry information on
environmental changes because new rates of transcription are often caused by such changes [18].
By having a general decomposition of variance, we can distinguish both signalling from expression
e�ects and information flow from noise.

Distinguishing variation due to gene expression from variation due to upstream sig-
nalling

We begin by distinguishing the e�ects of transductional stochasticity from stochasticity in gene
expression by decomposing the variation in expression of a reporter gene controlled by an up-
stream signalling network. We condition on the transcription factors, T , activated by upstream
signalling, on the extracellular input signals detected by the signalling network, X, and on all
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Z driven by pheromone-responsive promoter PRM1
Z’ driven by pheromone-responsive promoter PRM1
Zc driven by the (constitutive) promoter for actin
Zc’ driven by the (constitutive) promoter for actin

Re-analyzing their data, we find that gene expression generates around 10% of 
variation in Z, that processes extrinsic to gene expression generate at least 50%, and 
that signal transduction generates less than 40% of the variation for cells exposed to 
1.25 nM pheromone.
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expression to illustrate how our theory can be applied. The variation observed may be determined
predominantly by stochasticity in upstream signal transduction rather than by gene expression
itself [16] and will not only be a consequence of biochemical ‘noise’ but also a signature of informa-
tion flowing through the network [17]. Fluctuations in gene expression can carry information on
environmental changes because new rates of transcription are often caused by such changes [18].
By having a general decomposition of variance, we can distinguish both signalling from expression
e�ects and information flow from noise.

Distinguishing variation due to gene expression from variation due to upstream sig-
nalling

We begin by distinguishing the e�ects of transductional stochasticity from stochasticity in gene
expression by decomposing the variation in expression of a reporter gene controlled by an up-
stream signalling network. We condition on the transcription factors, T , activated by upstream
signalling, on the extracellular input signals detected by the signalling network, X, and on all
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We can identify the part of the variation of Z that informs on the 
environment: the informational variation.
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Mathematically, information is a measure of the ambiguity of a signal.

With higher information between the input and the output, it easier to distinguish if the 
output comes from the red or blue state of the input.

Output

Probability

An example with two states of 
the input and a continuous 

value of the output.

As the transduction mechanism becomes more noisy, the conditional output 
distributions broaden and information between the input and output decreases.

Output

Probability

decreasing information



The expectation of the output conditional on the input tracks changes 
in the input: its variation is the informational variation.
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Figure 2. The informational fraction of the variance of the output (dark blue) predicts
information transfer between the input and output of biochemical networks. A A generic model
of signal transduction. Ligand binding to a transmembrane receptor activates a signalling protein (shown
with a red-to-green change of colour). Active protein is denoted by Z. B Information transfer becomes
more e⇥cient the greater the informational fraction of the variance in Z(t). The conditional distributions
of Z for the three di�erent states of the extracellular environment (Xenv) are shown. Each environmental
state gives a di�erent average extracellular concentration of ligand. The dashed line is the steady-state,
unconditional distribution of Z. The conditional distributions overlap less as the informational fraction of
variance grows (insets: informational fraction shown in blue; transductional fraction in red). The mutual
information between Z(t) and the environment is given in nats (1 nat � 1.4 bits). The entropy of the
input distribution is 1.03 nats. C Only increasing the informational fraction of the variance, not the entire
extrinsic fraction, increases the mutual information. During gene expression, extrinsic fluctuations in the
mRNA degradation rate, dM , reduce information transfer (left panel). The environment has three states,
each of which has a di�erent transcriptional rate, u. The informational fraction of the variance in Z(t),
the number of molecules of expressed protein, is shown in dark blue; the confounding extrinsic fraction is
shown in light blue; and the intrinsic (transductional) fraction in red. The right-hand axis corresponds to
the values of the mutual information in nats (green line). Parameter values for the simulations are given
in the Supporting Online Material.

We can think of the ratio of the informational component of the variance to the sum of the

other components as a signal-to-noise ratio. We can prove that the mutual information between

the inputs and the output becomes as close as desired to its maximum value as this ratio increases

Changes in the informational fraction of variance predict changes in 
the mutual information between a network’s input and output.

P(Z|X= low)

P(Z|X= medium)

P(Z|X= high)

Consider an environment with three states and a signalling pathway. 

decomposition of 
the variation in 
output into 
informational and 
transductional 
components

I[Z;X] = 0.14 nats

As the ratio of the informational to the transductional components of the variance increases 
so too does the mutual information I[Z;X].  
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A signalling 
protein is 
activated.
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Figure 2. The informational fraction of the variance of the output (dark blue) predicts
information transfer between the input and output of biochemical networks. A A generic model
of signal transduction. Ligand binding to a transmembrane receptor activates a signalling protein (shown
with a red-to-green change of colour). Active protein is denoted by Z. B Information transfer becomes
more e⇥cient the greater the informational fraction of the variance in Z(t). The conditional distributions
of Z for the three di�erent states of the extracellular environment (Xenv) are shown. Each environmental
state gives a di�erent average extracellular concentration of ligand. The dashed line is the steady-state,
unconditional distribution of Z. The conditional distributions overlap less as the informational fraction of
variance grows (insets: informational fraction shown in blue; transductional fraction in red). The mutual
information between Z(t) and the environment is given in nats (1 nat � 1.4 bits). The entropy of the
input distribution is 1.03 nats. C Only increasing the informational fraction of the variance, not the entire
extrinsic fraction, increases the mutual information. During gene expression, extrinsic fluctuations in the
mRNA degradation rate, dM , reduce information transfer (left panel). The environment has three states,
each of which has a di�erent transcriptional rate, u. The informational fraction of the variance in Z(t),
the number of molecules of expressed protein, is shown in dark blue; the confounding extrinsic fraction is
shown in light blue; and the intrinsic (transductional) fraction in red. The right-hand axis corresponds to
the values of the mutual information in nats (green line). Parameter values for the simulations are given
in the Supporting Online Material.
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Increasing the information fraction typically causes the conditional 
output distributions to “separate” and so increases a network’s 
information flow.

informational fraction =
V

{

E[Z|uH]
}

V [Z]
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extrinsic fraction, increases the mutual information. During gene expression, extrinsic fluctuations in the
mRNA degradation rate, dM , reduce information transfer (left panel). The environment has three states,
each of which has a di�erent transcriptional rate, u. The informational fraction of the variance in Z(t),
the number of molecules of expressed protein, is shown in dark blue; the confounding extrinsic fraction is
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Figure 3. Determining informational variation for osmosensing in budding yeast allows
us to predict the probability of the osmotic environment expected by yeast in the wild.
A Hyperosmotic stress is sensed by two pathways in budding yeast which activate the MAP kinase
kinase kinases Ste11 and Ssk2/22 [21]. Both these kinases activate the MAP kinase kinase Pbs2 which in
turn activates the MAP kinase Hog1. Activated Hog1 translocates from the cytosol to the nucleus and
initiates new gene expression. B Histograms of fluorescence data from a YFP reporter expressed from the
promoter for STL1 and measured by Pelet et al. [19]. Fluorescence levels typically increase with increasing
extracellular salt: blue corresponds to zero extracellular salt; dark green to 0.05 M salt; red to 0.1 M; cyan
to 0.15 M; magenta to 0.2 M; and brown to 0.4 M. Approximately 1000 data points were measured for each
concentration [19] and are shown using 20 bins for the fluorescence level (calculated in log-space). The left
inset shows the same histograms but weighted by the probability of the di�erent salt concentrations for
an input distribution that has a low informational fraction; the right inset is analogous but for an input
distribution that has a high informational fraction. C The five probability distributions for extracellular
salt that give the five highest informational fractions (each approximately equal to 0.8). Each distribution
is read horizontally. We calculated the informational fraction for all possible probability distributions of
the six concentrations of extracellular salt chosen experimentally. The informational fraction decreases
continuously from around 0.8 to zero. A uniform probability distribution of salt gives an informational
fraction of approximately 0.6.

Unambiguous identification of the environmental state usually becomes easier as the fraction
of the output variance that is informational increases because then the distributions of output
for each environmental state typically overlap less. From information theory [22], identifying the
environmental state is undermined by such overlap because di�erent environmental states can
then generate the same output (although some states are more likely to generate that output than
others). Increased transductional variation, for example, usually leads to broader and overlapping
output distributions. If the mean output when X is in state i is µi and the variance of the output
is then ⇥2

i , we define the informational fraction of output variance as

V {E[Z|X]}
V [Z]

=

�
1 +

E[⇥2
i ]

V [µi]

⇥�1

(7)

where the expectation and variance are over the probability distribution for the states of X. As
the informational fraction tends to its maximum value of one, then E[⇥2

i ] � V [µi]: the average
width of a conditional output distribution typically becomes much less than the average distance
between the means of two of these output distributions [14]. Therefore each output distribution is
less likely to overlap with another, and the system should become more e⇤cient at transmitting
information.

8

We can use the informational fraction for “inverse” ecology – to 
determine the probability distribution of input most favoured by 
a sensing network.

Hyperosmotic stress is sensed by 
two pathways in budding yeast. 
Pelet et al. used the promoter of 
STL1 to drive a fluorescent protein 
reporter of the network’s response 
in different concentrations of 
extracellular salt.

apoptotic receptor CED-1. Furthermore, the con-
served p38 MAPK pathway is under the control
of OCTR-1–expressing neurons. Recent studies
indicate that the murine nervous system, through
the vomeronasal organ, has the potential to “smell”
molecules related to disease or inflammation in
the outside world (18). Even though the mam-
malian nervous system plays a key role in the
regulation of inflammation (19), the specific role
of neurons in contact with the outside world in
the control of immune responses remains unclear.
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Transient Activation of the
HOG MAPK Pathway Regulates
Bimodal Gene Expression
Serge Pelet,1* Fabian Rudolf,1† Mariona Nadal-Ribelles,2 Eulàlia de Nadal,2

Francesc Posas,2 Matthias Peter1*

Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules that control
many cellular processes by integrating intra- and extracellular cues. The p38/Hog1 MAPK is
transiently activated in response to osmotic stress, leading to rapid translocation into the nucleus
and induction of a specific transcriptional program. When investigating the dynamic interplay
between Hog1 activation and Hog1-driven gene expression, we found that Hog1 activation
increases linearly with stimulus, whereas the transcriptional output is bimodal. Modeling
predictions, corroborated by single-cell experiments, established that a slow stochastic transition
from a repressed to an activated transcriptional state in conjunction with transient Hog1
activation generates this behavior. Together, these findings provide a molecular mechanism by
which a cell can impose a transcriptional threshold in response to a linear signaling behavior.

Mitogen-activated protein kinase (MAPK)
cascades orchestrate many cellular pro-
cesses including cell growth, division,

and differentiation (1). In Saccharomyces cerevisiae,
the high osmolarity glycerol (HOG) pathway is
needed to reestablish the balance between in-
ternal and external pressures upon osmotic shock
(2). Osmosensors at the cell membrane activate
either the MAPK kinase kinases (MAPKKKs)
Ste11 or Ssk2,22, which converge on the MAPKK
Pbs2. In turn, Pbs2 doubly phosphorylates the
MAPK Hog1, leading to rapid translocation into
the nucleus to launch a transcriptional program.
Although increased transcription is essential to
survive very high osmotic stress (0.8 M NaCl), it

is not required for milder stress conditions (0.4 M
NaCl) (3), under which Hog1 kinase activity
alone is sufficient to drive cellular adaptation.
By contrast, in the yeast mating MAPK path-
way, transcription and new protein expression
are required for cell cycle arrest and mating (4).

Transcriptional activation of mating genes
occurs with linear kinetics and high fidelity (5, 6),
and the observed cell-to-cell variation in protein
expression is governed by the ability of cells to
express proteins (expression capacity) (5). Where-
as the mating pathway can be compared to a
cell-fate decision system with sustained MAPK
activity, the HOG pathway is an adaptation re-
sponse, which is only transiently induced like
other stress-activated pathways (7). We therefore
investigated whether this transient response would
trigger different expression behavior.

To quantify the transcriptional output induced
by osmotic stress, we engineered a reporter sys-
tem based on a quadruple Venus (qV) fluorescent
protein expressed under the control of specific
osmostress-inducible promoters dependent on the
three main transcription factors orchestrating the

transcriptional response to osmotic stress (Hot1
and Sko1: pSTL1; Msn2,4: pALD3; or Msn2,4
and Hot1: pHSP12) (8). Flow cytometry revealed
a Pbs2-dependent 20-fold increase in pSTL1-qV
reporter expression when 0.4 M NaCl was added
to the growth medium (Fig. 1, A and B). No ex-
pression was detected at low salt concentrations
(below 0.05 M), while above 0.15 M, all cells
expressed the reporter and the amount of flu-
orescence increased linearly with stress. How-
ever, at intermediate concentrations, we observed
histograms with two distinct subpopulations rep-
resenting nonexpressing cells with basal autoflu-
orescence levels and expressing cells with higher
intensities. These distributions are termed bimod-
al. The pALD3-qVand pHSP12-qV reporters dis-
played a similar bimodal expression behavior
(Fig. 1B and fig. S1A). Induction of the mating
pathway for 45 min with a-factor also generated
a bimodal expression output of the Ste12-spe-
cific reporter pFIG1-qV. However, signaling in
the mating pathway is prevented from “start”
through S phase (9), and expression output be-
came unimodal after relieving this cell cycle–
dependent restriction (Fig. 1B and fig. S1B).

To investigate the source of the HOG path-
way bimodal expression behavior, we inte-
grated two reporters driving the expression of a
quadruple cyan fluorescent protein (qCFP) and
a qV construct in the same cell. Correlation of
the cyan and yellow intensities measures the
contribution of cell-to-cell (extrinsic) and in-
tracellular (intrinsic) variability to the overall ex-
pression noise (5, 10). The two pFIG1 reporters
induced by a-factor demonstrated that the mat-
ing pathway is governed by extrinsic noise. By
contrast, we observed a lack of correlation be-
tween the two pSTL1 reporters (Fig. 1, C to E,
and fig. S2), demonstrating that the bimodal
expression behavior of the HOG pathway is in-
dependent of cell-to-cell variability caused by
extrinsic factors such as expression capacity or
cell-cycle stage.

To assess the observed bimodality and Hog1
signaling simultaneously, we combined a Hog1-
relocation assay (11, 12) with the pSTL1-qV ex-
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From the data of Pelet et al., we can calculate the informational fraction.

Pelet et al., Science 
2011;332: 732

Given a probability distribution for X, the informational fraction is 
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By considering all possible probability distributions of extracellular 
salt, we can find those that maximize the informational fraction. 
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Figure 3. Determining informational variation for osmosensing in budding yeast allows
us to predict the probability of the osmotic environment expected by yeast in the wild.
A Hyperosmotic stress is sensed by two pathways in budding yeast which activate the MAP kinase
kinase kinases Ste11 and Ssk2/22 [21]. Both these kinases activate the MAP kinase kinase Pbs2 which
in turn activates the MAP kinase Hog1. Activated Hog1 translocates from the cytosol to the nucleus
and initiates new gene expression. B Histograms of fluorescence data from a YFP reporter expressed
from the promoter for STL1 and measured by Pelet et al. [19]. Fluorescence levels typically increase with
increasing extracellular salt: blue corresponds to zero extracellular salt; dark green to 0.05 M salt; red
to 0.1 M; cyan to 0.15 M; magenta to 0.2 M; and brown to 0.4 M. Approximately 1000 data points were
measured for each concentration [19] and are shown here using 20 bins for the fluorescence level. The left
inset shows the same histograms but weighted by the probability of the di�erent salt concentrations for
an input distribution that has a low informational fraction; the right inset is analogous but for an input
distribution that has a high informational fraction. C The five probability distributions for extracellular
salt that give the five highest informational fractions (each approximately equal to 0.8). Each distribution
is read horizontally. We calculated the informational fraction for all possible probability distributions of
the six concentrations of extracellular salt chosen experimentally. The informational fraction decreases
continuously from around 0.8 to zero. A uniform probability distribution of salt gives an informational
fraction of approximately 0.6.

where the expectation and variance are over the probability distribution for the states of X. As
the informational fraction tends to its maximum value of one, then E[⇥2

i ] � V [µi]: the average
width of a conditional output distribution typically becomes much less than the average distance
between the means of two of these output distributions [14]. Therefore each output distribution is
less likely to overlap with another, and the system should become more e⇤cient at transmitting
information.

We can apply these ideas to measurements of the transcriptional response of budding yeast to
hyperosmotic stress (Fig. 3A), a system appropriate for the general framework we consider in Eq.
4. Pelet et al. made single-cell measurements of a Yellow Fluorescent Protein (YFP) expressed
from the promoter of STL1 at di�erent conditions of osmotic stress (corresponding to di�erent
values of X) by using di�erent concentrations of extracellular salt (Fig. 3B) [19]. STL1 is a
typical reporter for the response to a hyperosmotic change [21]. Using this data and Eq. 7, we can
determine the informational fraction for any particular probability distribution of extracellular salt
(the input X). The distribution of osmotic stress encountered by yeast in the wild is unknown.
We can, however, find distributions of salt concentrations that give high informational fractions,
an example of ‘inverse ecology’ [23].

Inverse ecology: yeast “expect” frequent low levels of osmotic stress interspersed with rare 
high levels. 

The informational 
fraction varies 
continuously from 
0.8 to 0.



Increasing the informational fraction decreases the overlap between 
the output distributions for each salt concentration.
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Conclusions

1. We have a general decomposition of variation that holds 
for all dynamic systems at all times.

2. We can specify conditions that conjugate reporters should 
satisfy to measure each component of the decomposition.

3. We can distinguish information flow from noise. 

4. We can use conjugate reporters in models to calculate the 
magnitude of the components of the decomposition.
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