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 Mutualism with rough fronts
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Directed Percolation (DP)
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Avalanche Flows   Phase Nucleation     Range Expansions

H. Hinrichsen
Braz. J. Phys. 30(1) (2000)

K. A. Takeuchi et al. 
PRE 80 051116 (2009) 

Typical Initial Conditions
single seed: uniform:

time time

time
time
(different
colors)

O. Hallatschek and D. R. Nelson
Physics Today 62 (7) (2009) 



Range expansions and evolution

4experiment photos from: O Hallatshek and DR Nelson, Physics Today July 2009 p. 44
fitness landscape: I. P. McCarthy 24(2) 124 (2004)

Well mixed:

Spatially distributed: 

There is an interplay between (spatial) population dynamics and 
evolutionary dynamics:



Quasispecies theory
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Quasispecies theory: fitness functions
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distance from master sequence:



The Domany-Kinzel model
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(1) selection with parameter                (2) mutations

ti
m

e

periodic boundary 
conditions

green outcompetes red

Evolution of a population with 5 individuals:

Model described in: H Hinrichsen, Adv. in Phys. 49(7), 815 (2000); 
E Domany and W Kinzel, PRL 53, 311 (1984)

Time is 
measured in 
units of the 
generation 
time 



Radial Domany-Kinzel model
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(1) selection

(2) mutations:



Radial models exhibit lattice artifacts

9

Simulations with well-mixed initial conditions

hexagonal lattice:                     square lattice:



The Heterozygosity
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The heterozygosity is the probability two cells are different:

fraction of green cells

linear radial



Lattice artifacts (with mutations)
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The heterozygosity can capture important spatial features of the
dynamics



An amorphous lattice fixes the artifacts
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We employ a Bennett model using two cell 
sizes  to construct an isotropic lattice:

Model described in: MOL, K. Korolev, D. R. Nelson PRE 87, 012103 (2013); 
M Rubenstein and DR Nelson, PRB 26, 6254 (1982)

structure factor:



Stepping stone models and Langevin dynamics
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The stepping-stone Langevin equation for the green cell 
density          in the limit            is the same as coarse-grained 
DK model  (at small               ):

same
dynamics
as



The neutral case   (                  )
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From the Langevin equation:

Linear:

Radial:

Absorbing BC: 

We identify a conformal 
time coordinate:



Radial: Linear:

Collapsed:

Exact solution: Effective lattice 
spacing:

The neutral case   (                  )
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Survival probability without mutations
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key parameter:Treating sector boundaries as random walks, we can find
the probability           of observing a sector size   :  



(* s = 0.8 m= 0.15 *)

Directed percolation phase transition
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The deleterious mutation rate balances the selective 
advantage of the unmutated strain:

Experiment photos from: O Hallatshek and DR Nelson, Physics Today July 2009 p. 44



Critical exponents
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Absorbing phase transitions generally have four independent 
critical exponents

Two typical initial conditions:
all active (green)               single seed



Regular versus inflationary DP
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Inflation takes over after a crossover time: 

For a fixed             : 



Inflationary single seed scaling
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survival probability
of a sector:  

number of green
cells in sector:

After inflation takes over, surviving
sectors will have fixed angular sizes

so that

n
u
m

b
e
r 

o
f 
g
re

e
n
 c

e
ll
s

s
u
rv

iv
a
l 
p
ro

b
a
b
il
it
y



Range expansions with deflation

21(see MOL, K. Korolev, D. R. Nelson PRE 87, 012103 (2013))

Bacterial inoculation on Petri dish
using the rim of a test tube:



Comparison of survival probabilities
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radial

linear

deflation

radial lineardeflation



Population genetics in three dimensions
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Linear: Radial:

Bennett model
cluster

• Logarithmic coarsening of 
domains
• Domains have no line 
tension ("cluster dilution")
• Boundaries are no longer 
simple random walks



Spherical range expansions (neutral case)
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cell size 

conformal time:



Inflationary DP in 2+1 dimensions
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Single seed scaling at criticality
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Typical clusters:



Range Expansions With Mutualism
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We are interested in range expansions of two species that grow 
faster when they are next to each other:



Mutualism with Flat Fronts: Update Rules
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Each cell is updated based on its and its neighbor's states:

Update rules can be implemented in two or three dimensions:



Active sites marked with

Interfaces    at 

Flat Fronts: Phase Diagram for

29

Fluctuations locally fix red and green domains, preventing mixing even for
certain  



Mutualism with Flat Fronts: Heterozygosity
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For compact directed percolation, we expect:

We test this for various                   : 



Mutualism in three dimensions
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In three dimensions, a mutualistic
phase exists for all 



A Droplet Simulation
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Interface density decay for
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The interface density for an initially well-mixed population decays:

The voter model result:



Mutualism with Rough Fronts: Model
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A cell has a reproduction
rate:

Each cell with an empty nearest or next nearest neighbor can 
reproduce with a certain rate.  We pick one cell to reproduce at 
each time step.



Mutualism with Rough Fronts
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Rough fronts preserve the mutualistic phase. However, the 
dynamics and shape of the phase boundary are different.



Rough Fronts: Phase Diagrams
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We can track the average size of the interface fluctuations.  They
peak at the phase boundaries and are larger in the mutualistic
regime.



Thank you!

 This is work with K. S. Korolev and D. R. Nelson

 MOL, K. Korolev, D. R. Nelson PRE 87, 012103 
(2013)
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Power law range expansions (neutral case)
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Range expansions can inflate with an arbitrary power law:

Results for neutral evolution:



Multiplicative Fitness (Well-mixed)

39figure from LE Nicolaisen (LEN and M. Desai Mol Biol Evol (2012))



Mutation-Selection Balance
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Spatial Mutation-Selection Balance
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Muller's Ratchet vs Inactive Phase
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U. Alon et al PRE 57(5)   (1998)



Rapidity reversal symmetry
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• For bond percolation:  

• In general for DP:

• Three exponents characterize DP:  

all active (green)                       single seed



Rapidity reversal violation
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Inflation breaks rapidity reversal in both dimensions:



Stochastic Differential Equations
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Fokker-Planck 

Equation

Stochastic Differential

Equation
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Stationary Distributions



Active state scaling
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In the active state, linear and radial range expansions have the 

same steady state. radial:

linear:



Regular DP occurs at short times
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The collapse is

consistent with the

DP critical exponents:

The early time dynamics are the same in 

linear and radial range expansions: 



Stepping-Stone Model
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• Spatially Distributed Populations (Demes)

• Exchange of Individuals

Noise correlations:



The Critical Phase
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• Consider a lattice of "voters"  

• Flip spin     with rate

• Continuous time Master Equation

The Voter Model (no selection)
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Inflationary scaling (all green homeland)
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 We treat crossover time      as a new 
variable in all scaling functions

 We find that      scales the same way as a 
finite time variable
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Directed Percolation Phase Transition
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The control parameter:



Initial Conditions are Important
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Near critical point:

1) Isolated seed initial condition:

2) Fully occupied initial condition:
1)

2)



Interface width scaling:

Mixed phase density scaling:



Effective Potentials



Correlation Lengths
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Lattice Effects (no mutations)



Bennett Model Simulations

Corrected heterozygosity:

Compact 

Directed

Percolation:

Directed

Percolation:



Neutral with Mutations

Linear:

Radial: Approaches the same stationary distribution and 

exhibits a cross-over time:

Linear:



One-way Mutations and Selection
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Linear: Radial:



One-way Mutations and Selection
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Linear: Radial (hexagonal lattice):

It is easier to connect the linear and radial model 

on the same lattice:
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