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How could multicellularity have evolved?
In a unicellular world...



How could multicellularity have evolved?
...a mutation occurs...



How could multicellularity have evolved?
...that causes the daughters to stay attached to the mother.



How could multicellularity have evolved?
The clumps outcompete the single cells.



How could multicellularity have evolved?
Simple multicellularity evolves.
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How could multicellularity have evolved?

Simple Complex

For each transition:
 1. What is the selection pressure?
 2. What strategies can answer the pressure?
 3. What are the mutations underlying each strategy?

Use modeling, engineering, and experimental evolution.
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Yeast sucrose digestion
Yeast can directly import glucose...
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Yeast sucrose digestion
Sucrose cannot be directly imported in the lab.
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Yeast sucrose digestion
In low glucose, yeast secretes invertase, which remains in the cell wall.
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Yeast sucrose digestion
Sucrose is hydrolyzed by invertase.
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Yeast sucrose digestion
But glucose and fructose diffuse away.
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A cell can’t capture enough sugar if...

I Low density of sucrose
I Low density of cells



Why do cells grow better at high density?
Spaced cells can’t capture each other’s diffusing sugars



Why do cells grow better at high density?
Cells in a clump can feed each other



Model diffusion of sugar to a cell
Yeast cell inoculated into 150 µL of sucrose

Sucrose

Yeast cell



Model diffusion of sugar to a cell
At each time step, produce invertase,...
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Model diffusion of sugar to a cell
...hydrolyze sucrose,...
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Model diffusion of sugar to a cell
...import glucose and fructose,...
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Model diffusion of sugar to a cell
...and diffuse all nutrients.
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Model diffusion of sugar to a cell
Add a mean field of cells to account for other cells in the well.
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Model diffusion of sugar to a cell
All parameters measured or taken from published data (no free parameters.)

Diffuse
glucose & 
fructose

Diffuse
sucrose

Hydrolyze
sucrose

Produce
invertase

Import
glucose & 
fructose

Numerical diffusion solver at www.github.com/koschwanez



Model 30 cells in 8 mM sucrose for 30 hours
Monosaccharide concentration at the center cell is higher in a clump.
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Model 30 cells in 8 mM sucrose for 30 hours
Nutrient intake at the center cell is higher in a clump.
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Model 30 cells in 8 mM sucrose for 30 hours
A clump of cells will quickly exceed the minimum intake required for growth.

Nutrient intake of 
center cell 
(molecule/ s)

Time (hr)
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Prediction in low sucrose and low cell density

A clump of cells can grow, single cells cannot.



AMN1 controls clumpiness
Discovered in Kruglyak lab

50 µm

Wild AMN1 (RM11) 
Lab AMN1 (W303) 



Can clumps grow where cells cannot?
Fluorescent Activated Cell Sorter (FACS) sorts cells or clumps from an AMN1 strain.
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Can clumps grow where cells cannot?
Inv− cells are used as a control.
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Can clumps grow where cells cannot?
Growth predicted in well only with Inv+ clump

Predicted growth: None None Growth None
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Clumps can grow where cells cannot.
Growth differs in low concentrations of sucrose.

30 Inv+ cells
30 Inv- cells
1 Inv+ clump
1 Inv- clump

8 mM 
sucrose

10 mm

Koschwanez, Foster, and Murray, PLoS Biology (2011)



Clumps can grow where cells cannot.
Growth in all wells in monosachharide.

30 Inv+ cells
30 Inv- cells
1 Inv+ clump
1 Inv- clump

8 mM 
sucrose

4 mM glucose +
4 mM fructose

10 mm

Koschwanez, Foster, and Murray, PLoS Biology (2011)



Strategy 1: Form multicellular clumps



Strategy 2: Make more invertase

SUC2
Inducible

SUC2
Wild type



Strategy 3: Import sucrose

Sucrose
Maltose 
importer

Cytoplasmic 
invertase

Glucose +
Fructose
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Three strategies an engineer would take

Form multicellular
clumps

Boost invertase
expression

Import sucrose



WWED?

Form multicellular
clumps

Boost invertase
expression

Import sucrose



Experimental evolution schematic
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Experimental evolution schematic

10 parallel cultures

~230-310 generations per culture

Dilute

Inoculate wild type (lab),
haploid, mutator cells 
in low sucrose

10-14 days
Grow to
saturation

Freeze
sample

Inoculate
cells in low
sucrose

2-3 days
Grow to
saturation

Freeze
sample

Dilute



The evolved populations
All populations are clumpy.

EvoPopulation1 EvoPopulation2 EvoPopulation3 EvoPopulation4 EvoPopulation5
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The evolved populations
All populations but one are clonal.

EvoPopulation1 EvoPopulation2 EvoPopulation3 EvoPopulation4 EvoPopulation5

EvoPopulation6 EvoPopulation7 EvoPopulation8 EvoPopulation9 EvoPopulation10

Ancestor

Scale bar = 50 µm



One population had three different clones
12 total clones: 11 are clumpy

EvoClone7A EvoClone7B EvoClone7C

Scale bar = 50 µm



Clump size and variation varies between strains

EvoClone2 EvoClone3

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ● ●● ● ●●●●●● ● ● ●● ● ●●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●● ●● ● ●●● ●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ●●●● ● ● ● ● ● ● ● ●● ● ● ●0.00

0.03

0.06

0.09

0 20 40 60
Diameter (µm)

Fr
eq

ue
nc

y Ancestor

EvoClone2

EvoClone3

Scale bar = 50 µm



Clump size regulation varies between strains

EvoClone10 EvoClone9

1 mM sucrose

1 mM glucose +
1 mM fructose

Scale bar = 50 µm



Clump size regulation varies between strains

EvoClone10 EvoClone9

1 mM sucrose

1 mM glucose +
1 mM fructose

Scale bar = 50 µm



Analyzing the evolution

The big questions
1. What strategies were used to answer the selection?
2. What are the mutations behind these strategies?

Evolution: 2 months
Analysis: 2 years
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What strategies were used?
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What strategies were used?

Form multicellular
clumps

Boost invertase
expression

Import sucrose
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Two ways that yeast form clumps

Flocculation
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Two ways that yeast form clumps

Flocculation Incomplete separation

Flocculator EvoClone2

Scale bar = 50 µm
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What strategies were used?

Form multicellular
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What strategies were used?

Form multicellular
clumps

Boost invertase
expression

11/12 10/12 11/12

Boost hexose
transporter
expression
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Average of more than 100 mutations per strain
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Life cycle of yeast
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Life cycle of yeast

a/α a/αa

a

a α
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Germination Sporulation
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Bulk segregant analysis
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with selected phenotype.
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Bulk segregant analysis

GCCCAGAAAGTAATGGATAGAACCTTTTTTCCTCTAACA
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Backcross evolved clone to
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with selected phenotype.

Sequence evolved clone,
ancestor, and pooled progeny
to find putative causal mutations.
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From 1521 total mutations, 80 putative causal
Lie in or near 53 genes.
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The most commonly mutated pathways

Pathway Mutations
ACE2 8
UBR1 6
RGT1 pathway 8
Mediator 5
IRA1/2 5



Yeast can be frozen and thawed

-80 ºC



Tracking allele frequency reveals mutational sweeps.
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Recreating strains

EvoClone9 (8 mutations)Ancestor

Scale bar = 50 µm



Two strains recreated

Ancestor in yellow
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Recreate9 in magenta (8 mutations)
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Two strains recreated

Ancestor in yellow
EvoClone2 in green
Recreate2 in magenta (5 mutations)

Excellent growth in sucrose Scale bar = 50 µm



Reverting strains

EvoClone9 (8 mutations) Ancestor

Scale bar = 50 µm



Two strains reverted

Ancestor in yellow
EvoClone9 in green
Reverted9 in cyan (8 reverted mutations)

Very poor growth in sucrose Scale bar = 50 µm



Two strains reverted

Ancestor in yellow
EvoClone2 in green
Reverted2 in cyan (5 reverted mutations).

Very poor growth in sucrose Scale bar = 50 µm



Are individual mutations causal?

X

Recreated
strain
alleles
Ancestor
alleles

Backcross recreated strain to
ancestor and isolate progeny
with selected phenotype.



Are individual mutations causal?

X

Recreated
strain
alleles
Ancestor
alleles

Progeny
alleles
selected in
1 mM
sucrose

Backcross recreated strain to
ancestor and isolate progeny
with selected phenotype.



Are individual mutations causal?

X

Recreated
strain
alleles
Ancestor
alleles

Progeny
alleles
selected in
1 mM
sucrose

Backcross recreated strain to
ancestor and isolate progeny
with selected phenotype.

100%
Causal

100%
Causal

100%
Causal

50%
Non-
causal



Are individual mutations causal?
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Fitness varies in different environments

4 of 12 clones grow poorly in low
monosaccharide.

Others grow about as well as the ancestor.

11 of 12 clones grow poorly in high glucose.
Other grows about as well as the ancestor.

Alleles that are detrimental in other
environments either:
1. Have no effect in sucrose (i.e are non-causal)
2. Are selected for in sucrose
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Selection in low monosaccharide
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No selection for clumps in low monosaccharide
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Selection in high glucose
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Selection in high glucose
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ace2 is responsible for clumpiness

Ancestor EvoClone2

Scale bar = 50 µm



ace2 is responsible for clumpiness
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mth1 is responsible for increased HXT4 expression
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mth1 is responsible for increased HXT4 expression
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SUC2 is more complex

Error bar = 2 x stdev over 3 independent trials
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Continuing work with evolved strains

Find mutations responsible for:

Size and size regulation
   irc8, mck1, gin4
Hexose transporter increase
Invertase increase 

Recreated9

50 µm



Continuing work with evolved strains

Find mutations responsible for:

Size and size regulation
   irc8, mck1, gin4
Hexose transporter increase
Invertase increase 

Recreate other strains and find mutations underlying the strategies.

Recreated9

50 µm
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