Budding multicellularity in yeast

John Koschwanez

Harvard University

FAS Center for Systems Biology

February 19, 2013

Thank you to my advisors

Andrew Murray

Kevin Foster

Thank you to my advisors

Andrew Murray

Kevin Foster

NIH NIGMS K25GM85806

Engineering growth in low sucrose

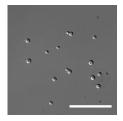
Engineering growth in low sucrose

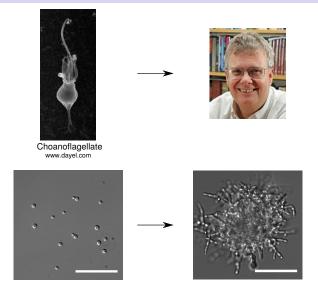
Evolving growth in low sucrose

Engineering growth in low sucrose

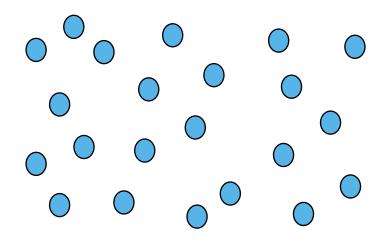
Evolving growth in low sucrose

Choanoflagellate www.dayel.com

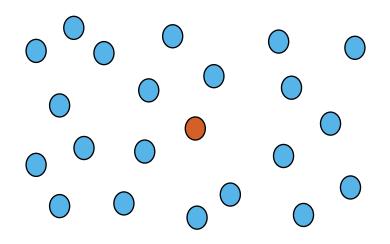

Choanoflagellate www.dayel.com



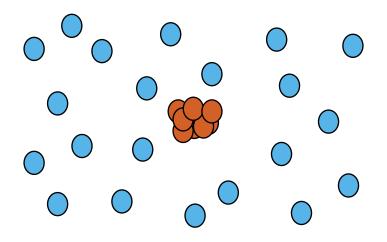
Choanoflagellate www.dayel.com

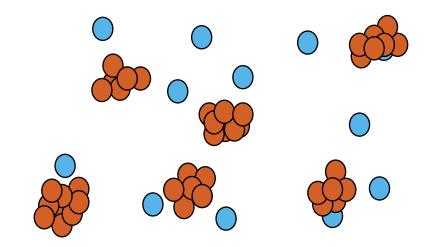


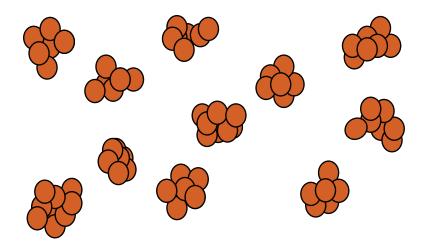
Scale bar = 50 μ m

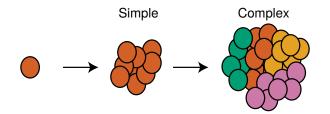


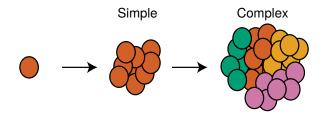
Scale bar = 50 μ m


In a unicellular world...

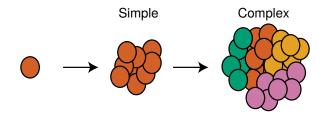

...a mutation occurs...


...that causes the daughters to stay attached to the mother.



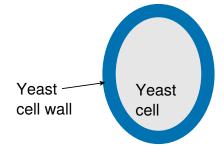

The clumps outcompete the single cells.

Simple multicellularity evolves.

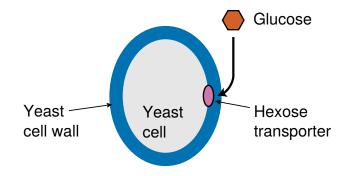


For each transition:

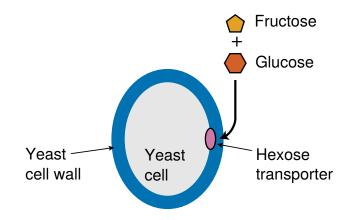
- 1. What is the selection pressure?
- 2. What strategies can answer the pressure?
- 3. What are the mutations underlying each strategy?

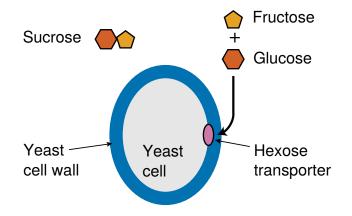

For each transition:

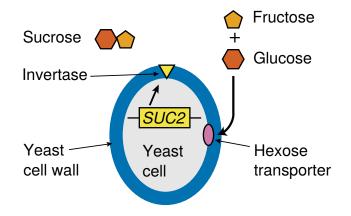
- 1. What is the selection pressure?
- 2. What strategies can answer the pressure?
- 3. What are the mutations underlying each strategy?

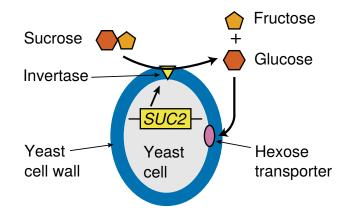

Use modeling, engineering, and experimental evolution.

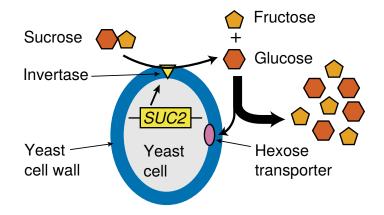
Engineering growth in low sucrose

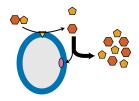

Evolving growth in low sucrose


Yeast can directly import glucose...

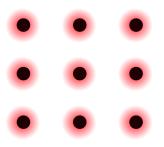

...and directly import fructose.


Sucrose cannot be directly imported in the lab.


In low glucose, yeast secretes invertase, which remains in the cell wall.


Sucrose is hydrolyzed by invertase.

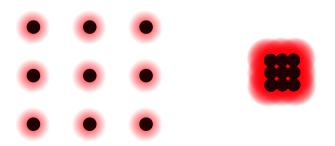
But glucose and fructose diffuse away.


A cell can't capture enough sugar if...

- Low density of sucrose
- Low density of cells

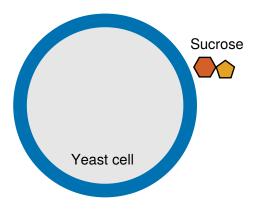
Why do cells grow better at high density?

Spaced cells can't capture each other's diffusing sugars

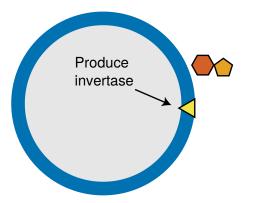

Monosaccharide concentration

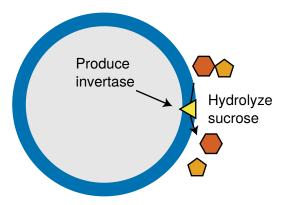
Why do cells grow better at high density?

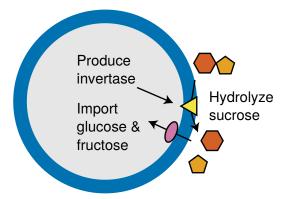
Cells in a clump can feed each other

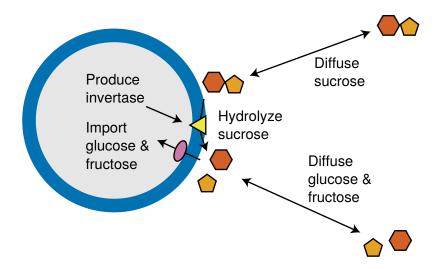


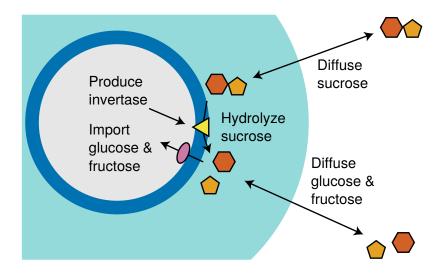
Monosaccharide concentration



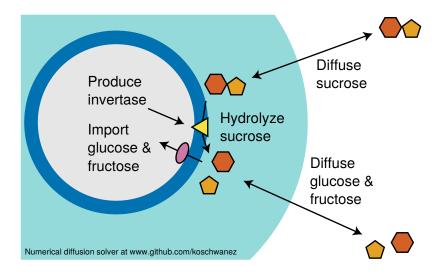

Yeast cell inoculated into 150 μ L of sucrose


At each time step, produce invertase,...

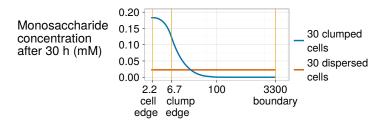

...hydrolyze sucrose,...


...import glucose and fructose,...

...and diffuse all nutrients.

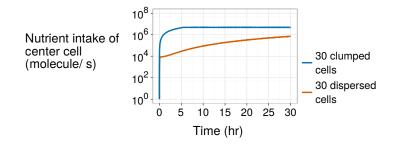


Add a mean field of cells to account for other cells in the well.

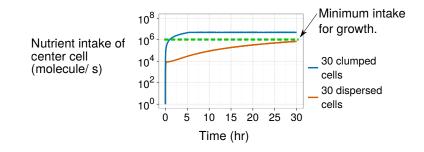

Model diffusion of sugar to a cell

All parameters measured or taken from published data (no free parameters.)

Model 30 cells in 8 mM sucrose for 30 hours


Monosaccharide concentration at the center cell is higher in a clump.

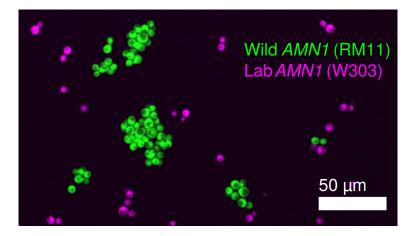
Distance from center of cell (µm)


Model 30 cells in 8 mM sucrose for 30 hours

Nutrient intake at the center cell is higher in a clump.

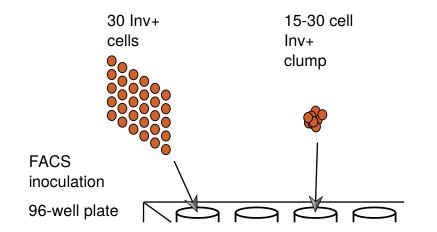
Model 30 cells in 8 mM sucrose for 30 hours

A clump of cells will quickly exceed the minimum intake required for growth.

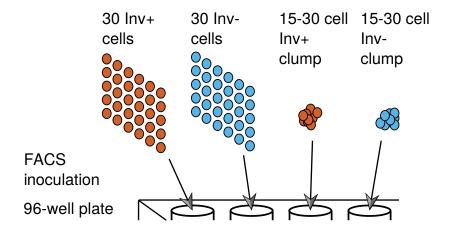


Prediction in low sucrose and low cell density

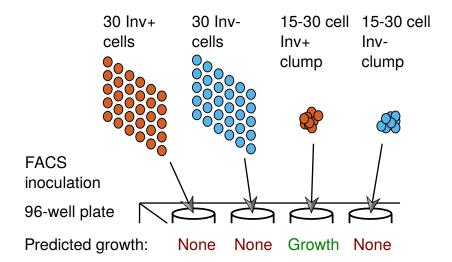
A clump of cells can grow, single cells cannot.


AMN1 controls clumpiness

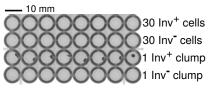
Discovered in Kruglyak lab


Can clumps grow where cells cannot?

Fluorescent Activated Cell Sorter (FACS) sorts cells or clumps from an AMN1 strain.

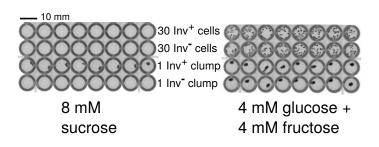

Can clumps grow where cells cannot?

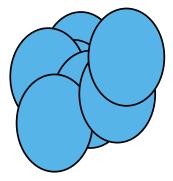
Inv⁻ cells are used as a control.


Can clumps grow where cells cannot?

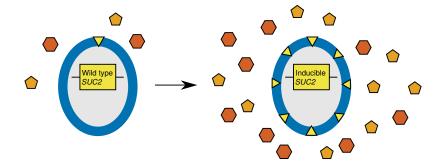
Growth predicted in well only with Inv⁺ clump

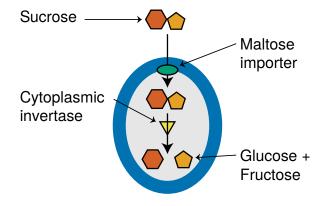
Clumps can grow where cells cannot.


Growth differs in low concentrations of sucrose.


8 mM sucrose

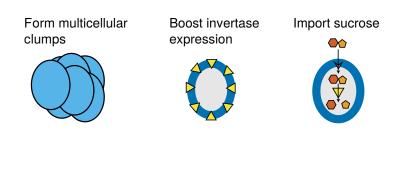
Clumps can grow where cells cannot.


Growth in all wells in monosachharide.


Strategy 1: Form multicellular clumps

Strategy 2: Make more invertase

Strategy 3: Import sucrose



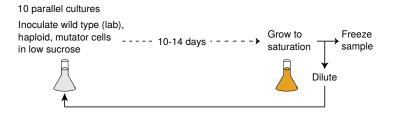
How could multicellularity have evolved?

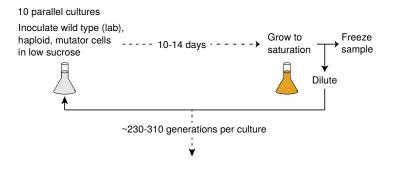
Engineering growth in low sucrose

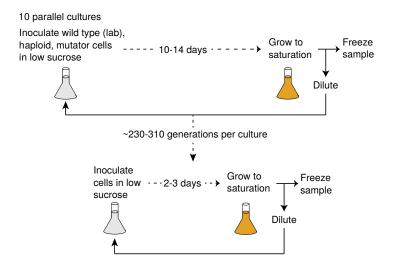
Evolving growth in low sucrose

Three strategies an engineer would take

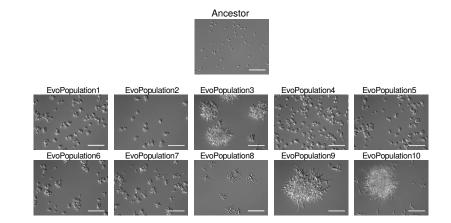
Form multicellular clumps


Boost invertase expression

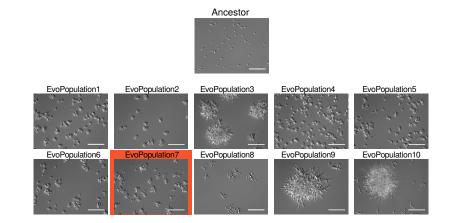

Import sucrose


Experimental evolution schematic

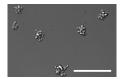
Experimental evolution schematic



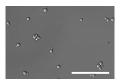
Experimental evolution schematic


The evolved populations

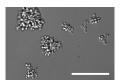
All populations are clumpy.


The evolved populations

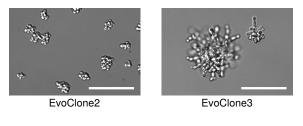
All populations but one are clonal.

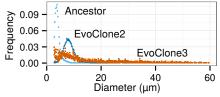


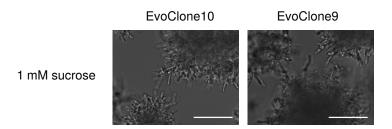
One population had three different clones


12 total clones: 11 are clumpy

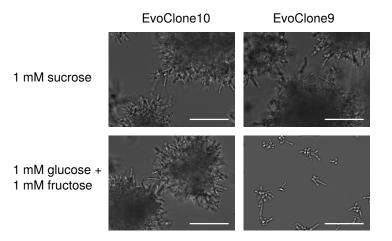
EvoClone7A




EvoClone7B


EvoClone7C

Clump size and variation varies between strains



Clump size regulation varies between strains

1 mM glucose + 1 mM fructose

Clump size regulation varies between strains

- 1. What strategies were used to answer the selection?
- 2. What are the mutations behind these strategies?

1. What strategies were used to answer the selection?

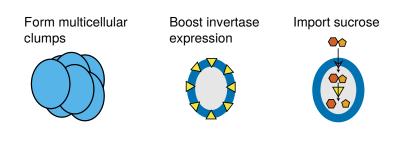
2. What are the mutations behind these strategies?

- 1. What strategies were used to answer the selection?
- 2. What are the mutations behind these strategies?

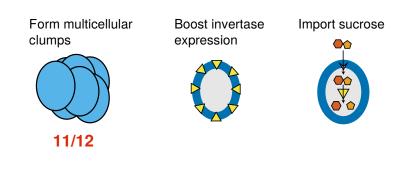
- 1. What strategies were used to answer the selection?
- 2. What are the mutations behind these strategies?

Evolution: 2 months

Analysis: 2 years

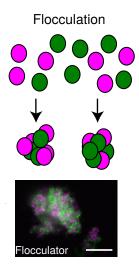

1. What strategies were used to answer the selection?

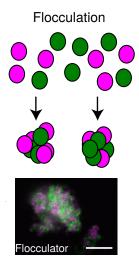
2. What are the mutations behind these strategies?


Evolution: 2 months

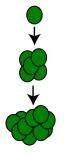
Analysis: 2 years

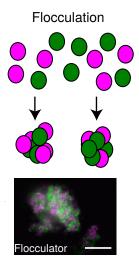
What strategies were used?

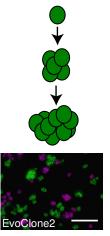

What strategies were used?

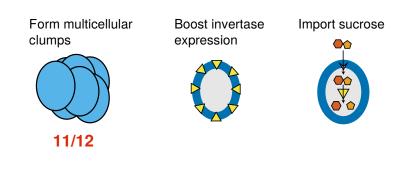

Two ways that yeast form clumps

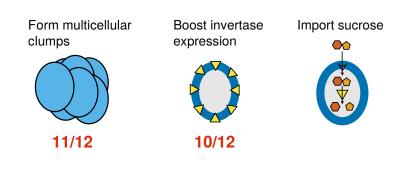
Flocculation

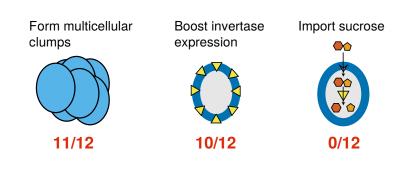

Two ways that yeast form clumps

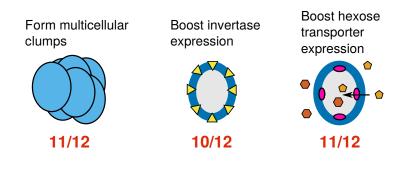

Two ways that yeast form clumps


Incomplete separation




Two ways that yeast form clumps




Incomplete separation

The big questions

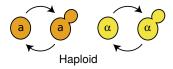
1. What strategies were used to answer the selection?

2. What are the mutations behind these strategies?

The big questions

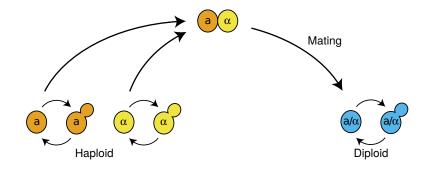
1. What strategies were used to answer the selection?

2. What are the mutations behind these strategies?

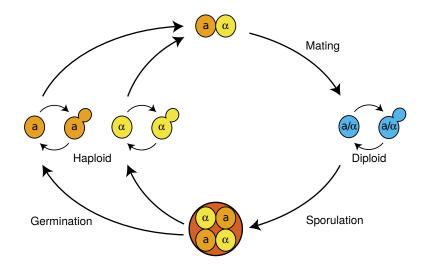

The big questions

1. What strategies were used to answer the selection?

2. What are the mutations behind these strategies?


Average of more than 100 mutations per strain

Life cycle of yeast

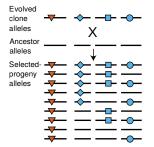


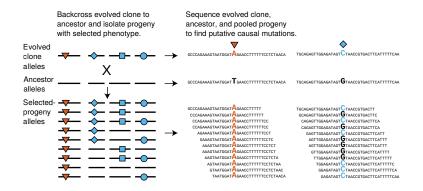
Life cycle of yeast

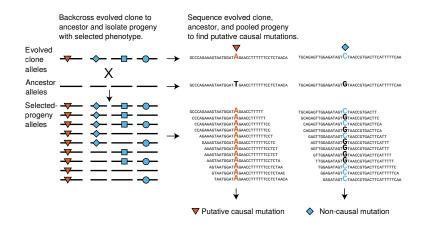
Life cycle of yeast

Backcross evolved clone to ancestor and isolate progeny with selected phenotype.

Evolved clone \checkmark \checkmark \frown \frown


Backcross evolved clone to ancestor and isolate progeny with selected phenotype.


Evolved		
clone	— —	\leftarrow
alleles		Х
Ancestor		
alleles		


Backcross evolved clone to ancestor and isolate progeny with selected phenotype.

Evolved clone alleles х Ancestor alleles Selectedprogeny alleles

Backcross evolved clone to ancestor and isolate progeny with selected phenotype.

www.github.com/koschwanez

From 1521 total mutations, 80 putative causal

Lie in or near 53 genes.

ACE2	WHI2	ECM5	PRC1	HXK	⁽¹ MI	Τ1
PUF4	MPT5 G(CN2	MTH	-	AXL2	DNF2
ENP2	2 NAT1	PDF	R1 H UBR1	HTZ1 PHO8	SKS1 ₃ SAN	1 IFM1
IRA2	ERG1		ODITI			RAD6
S. GCN3	NF2	GCR2	G	PB2	MCD1 SAC6	CSE2
GUNS	RGT1	RG1	SIN4	KEM1	SACO	RAM1
G SYP1	AC1	IRA1	GIN4	WTM2	SNF3	MED1
IRC8	NUT1		DOO	AR	E1	BPH1
	TOP3	A	RO2	U	BC5	

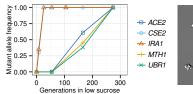
From 1521 total mutations, 80 putative causal

Lie in or near 53 genes.

ACE2	WHI2	ECM5	PRC1	HXK	(1 MI	Τ1
PUF4	MPT5	CN2	MTH	-	AXL2	DNF2
ENP2			J F	ITZ1	SKS1	
	NAT1	PDR	UBR1	PHO	3 SAN	1 IFM1
IRA2	ERG1		02/11			RAD6
	NF2	GCR2	G	PB2	MCD1	CSE2
GCN3	RGT1		SIN4	KEM1	SAC6	RAM1
G	AC1	RG1	.		SNF3	MED1
SYP1		IRA1	GIN4	WTM2		
IRC8	NUT1			ARI	Ε1	BPH1
	ТОРЗ	A	RO2	U	BC5	וויוט

AMN1 was not found.

The most commonly mutated pathways


Pathway	Mutations
ACE2	8
UBR1	6
RGT1 pathway	8
Mediator	5
IRA1/2	5

Yeast can be frozen and thawed

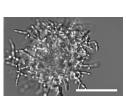
Tracking allele frequency reveals mutational sweeps.

- ARE1 - GCN2 📥 GIN4 + IRC8 - MCK1 → MED1 - UBR1

EvoClone2

EvoClone9

- 0.00 - Wintaut Mintaut Minta


n

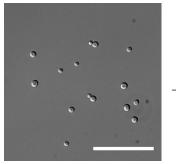
100

200

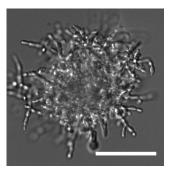
Generations in low sucrose

300

No

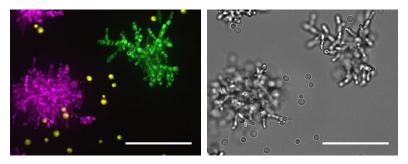

-٩_Å

-


8

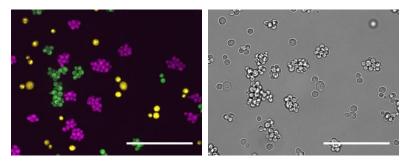
E.

Recreating strains



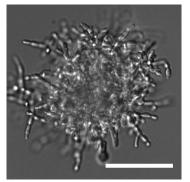
Ancestor

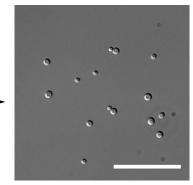
EvoClone9 (8 mutations)


Two strains recreated

Ancestor in yellow EvoClone9 in green Recreate9 in magenta (8 mutations)

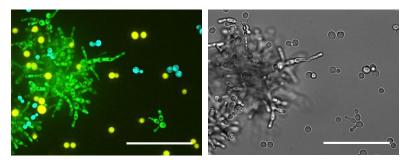
Excellent growth in sucrose


Two strains recreated


Ancestor in yellow EvoClone2 in green Recreate2 in magenta (5 mutations)

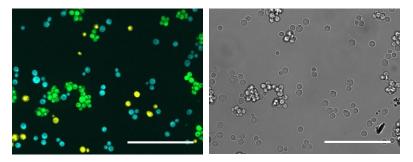
Excellent growth in sucrose

Reverting strains



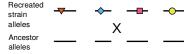
EvoClone9 (8 mutations)

Ancestor


Two strains reverted

Ancestor in yellow EvoClone9 in green Reverted9 in cyan (8 reverted mutations)

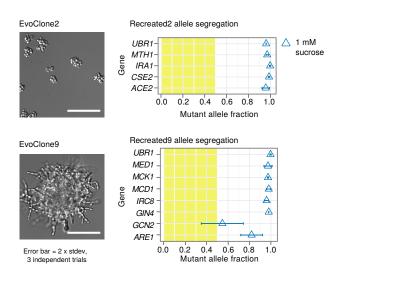
Very poor growth in sucrose

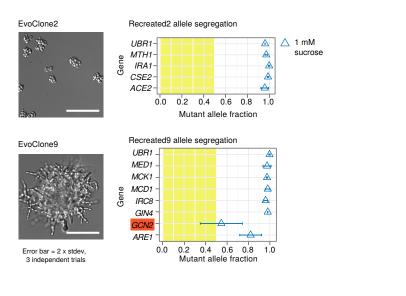

Two strains reverted

Ancestor in yellow EvoClone2 in green Reverted2 in cyan (5 reverted mutations).

Very poor growth in sucrose

Backcross recreated strain to ancestor and isolate progeny with selected phenotype.




Backcross recreated strain to ancestor and isolate progeny with selected phenotype.

Recreated strain alleles		≁ ×	, 	-0
Ancestor alleles	—	́	<u> </u>	—
Progeny		\leftarrow		
alleles		\leftarrow		
selected in 1 mM		\leftarrow		
sucrose		\leftarrow		
		\leftarrow		
				

Backcross recreated strain to ancestor and isolate progeny with selected phenotype.

Recreated strain alleles		~- ×		
Ancestor alleles	—	́		—
Progeny alleles selected in 1 mM sucrose		↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓	+ + + + + + + + +	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	100% Causal	50% Non- causal	100% Causal	100% Causal

Fitness varies in different environments

4 of 12 clones grow poorly in low monosaccharide.

Others grow about as well as the ancestor.

Fitness varies in different environments

4 of 12 clones grow poorly in low monosaccharide.

Others grow about as well as the ancestor.

11 of 12 clones grow poorly in high glucose. Other grows about as well as the ancestor.

Fitness varies in different environments

4 of 12 clones grow poorly in low monosaccharide.

Others grow about as well as the ancestor.

11 of 12 clones grow poorly in high glucose. Other grows about as well as the ancestor.

Alleles that are detrimental in other environments either:

Fitness varies in different environments

4 of 12 clones grow poorly in low monosaccharide.

Others grow about as well as the ancestor.

11 of 12 clones grow poorly in high glucose. Other grows about as well as the ancestor.

Alleles that are detrimental in other environments either:

1. Have no effect in sucrose (i.e are non-causal)

Fitness varies in different environments

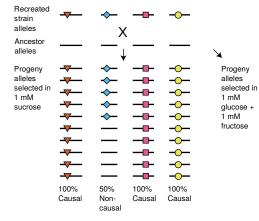
4 of 12 clones grow poorly in low monosaccharide.

Others grow about as well as the ancestor.

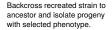
11 of 12 clones grow poorly in high glucose. Other grows about as well as the ancestor.

Alleles that are detrimental in other environments either:

- 1. Have no effect in sucrose (i.e are non-causal)
- 2. Are selected for in sucrose


Segregate alleles in other environments

Backcross recreated strain to ancestor and isolate progeny with selected phenotype.


Recreated strain alleles		≁ ×		
Ancestor alleles	—	$-\hat{\downarrow}$		—
Progeny alleles selected in 1 mM sucrose		<u>+++++++++++++++++++++++++++++++++++++</u>	****	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	100% Causal	50% Non- causal	100% Causal	100% Causal

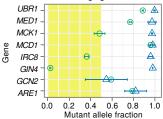
Segregate alleles in other environments

Backcross recreated strain to ancestor and isolate progeny with selected phenotype.

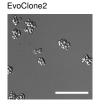
Segregate alleles in other environments

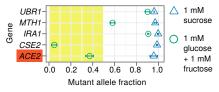
Recreated strain alleles		- ≁ X	—					
Ancestor alleles					X			
Progeny alleles selected in 1 mM sucrose	 ▼ ▼ ▼ ▼ ▼ ▼ ▼ 100% Causal 	↓↓↓↓↓ ↓↓↓↓ S0% Non- causal		Image: Constraint of the second se	Progeny alleles selected in 1 mM glucose + 1 mM fructose	Image: Weight of the second	♦ 	 ↓

Selection in low monosaccharide

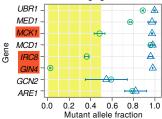

Recreated2 allele segregation UBR1- Θ 1 mM Λ sucrose MTH1e Gene IRA1-• 1 mM \mathbf{O} CSE2 alucose ACE2-÷ + 1 mM 0.0 0.2 0.4 0.6 0.8 fructose 1.0 Mutant allele fraction

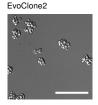
Recreated9 allele segregation


EvoClone9


Error bar = 2 x stdev, 3 independent trials

Selection in low monosaccharide


Recreated2 allele segregation


Recreated9 allele segregation

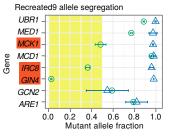
EvoClone9

Error bar = 2 x stdev, 3 independent trials

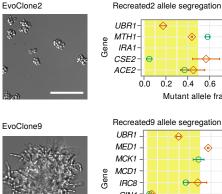
No selection for clumps in low monosaccharide

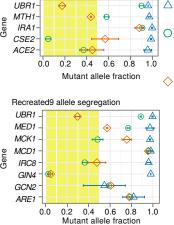
Recreated2 allele segregation UBR1- Θ 1 mM sucrose MTH1-Gene IRA1-• 1 mM \cap CSE2- Θ alucose ACE2 ÷ + 1 mM 0.0 0.2 0.4 0.6 0.8 fructose 1.0 Mutant allele fraction

gin4-W19* irc8-G57V mck1-G227Vfs249



Scale bar = 50 µm


EvoClone9


Error bar = 2 x stdev, 3 independent trials

Selection in high glucose

Error bar = 2 x stdev, 3 independent trials

ace2-L323*

1 mM

1 mM

alucose

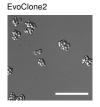
+ 1 mM

fructose

80 mM

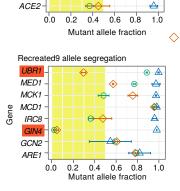
glucose

sucrose



gin4-W19* irc8-G57V mck1-G227Vfs249

Scale bar = 50 um


Selection in high glucose

EvoClone9

Error bar = 2 x stdev, 3 independent trials

Recreated2 allele segregation

 Θ \wedge 1 mM

 \odot

e

sucrose

1 mM \cap

alucose

+ 1 mM

fructose

80 mM

glucose

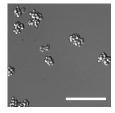
UBR

MTH1-Gene

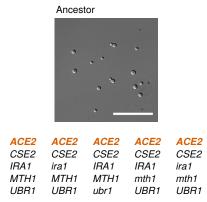
IRA1-

CSE2-A ace2-L323*

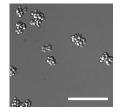
gin4-W19* irc8-G57V mck1-G227Vfs249


Scale bar = 50 um

ace2 is responsible for clumpiness

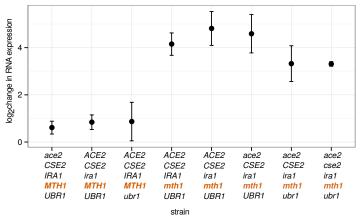

Ancestor

EvoClone2



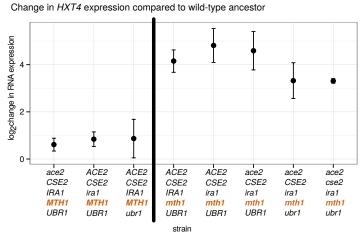
Scale bar = 50 μ m

ace2 is responsible for clumpiness

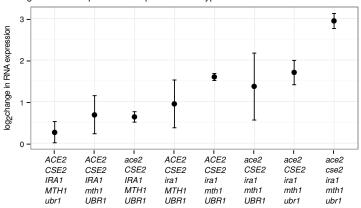

EvoClone2

ace2	ace2	ace2	ace2
CSE2	CSE2	CSE2	cse2
IRA1	ira1	ira1	ira1
MTH1	mth1	mth1	mth1
UBR1	UBR1	ubr1	ubr1

Scale bar = 50 μ m


mth1 is responsible for increased HXT4 expression

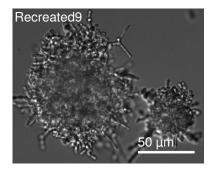
Change in HXT4 expression compared to wild-type ancestor


Error bar = 2 x stdev over 3 independent trials

mth1 is responsible for increased HXT4 expression

Error bar = 2 x stdev over 3 independent trials

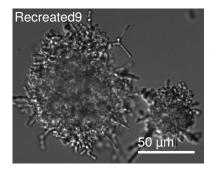
SUC2 is more complex



Change in SUC2 expression compared to wild-type ancestor

strain

Error bar = 2 x stdev over 3 independent trials


Continuing work with evolved strains

Find mutations responsible for:

Size and size regulation *irc8, mck1, gin4* Hexose transporter increase Invertase increase

Continuing work with evolved strains

Find mutations responsible for:

Size and size regulation *irc8, mck1, gin4* Hexose transporter increase Invertase increase

Recreate other strains and find mutations underlying the strategies.

Thank you