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The Size-Complexity Relation 

Amoebas, Ciliates, Brown Seaweeds 
Green Algae and Plants 
Red Seaweeds 
Fungi 
Animals 

Bell & Mooers (1997) 
Bonner (2004) ? 



The Recent Literature 

Phil. Trans. 22,  
509-518 (1700) 

(1758) 



Green Algae as Model Organisms 
Multicellularity 

Synchronisation 

Phototaxis 

Flow Fields 
Hydrodynamic  
             Bound States 

Cytoplasmic Streaming Tracer Statistics 

REG, et al., Annual Review of Fluid Mechanics (2014) 



Advection & Diffusion 

ν
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If U=100 µm/s, L=10 µm,  
Re ~ 10-3, Pe ~ 1 
At the scale of an individual cell,  
diffusion dominates advection. 
 
The opposite holds for  
multicellularity… 
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If a fluid has a typical velocity U, varying on  
a length scale L, with a molecular species of  
diffusion constant D.  Then there are two times: 

D
Lt

U
Lt

diffusion

advection

2

=

=

We define the Péclet number as the ratio: 

This is like the Reynolds  
number comparing 
inertia to viscous dissipation: 

Solari, Ganguly, Michod, Kessler, Goldstein, PNAS (2006) 
Short, Solari, Ganguly, Powers, Kessler & Goldstein, PNAS (2006) 



Volvox In Its Own Frame 

Drescher, Goldstein, Michel, Polin, and Tuval, PRL 105, 168101 (2010) 
Rushkin, Kantsler, Goldstein, PRL 105, 188101 (2010)  

Tracking microscope  
 in vertical orientation 
Laser sheet illumination  
 of microspheres 





Microscopy & Micromanipulation 

micro- 
manipulator 

micro- 
manipulator 



Volvox on a Micropipette 



Life Cycles of the Green and Famous 

maturation  
of gonidia 

hatching  
of juveniles 

division 
inversion 

cytodifferentiation 
and expansion 



Systematics of Volvox 

Upswimming speed 

Settling speed 

Spinning frequency 

Reorientation time 

HOVERING 



Phototaxis 



Volvox Eyespots 
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Hugo Wioland  

Planar Cell Polarity in Volvox carteri 



The Mathematics of Turning 
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surface 
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In the Volvox frame of 
reference, light direction 
evolves according to: 

Based on Reciprocal Theorem 
(Stone & Samuel) 



Adaptive Flagellar Dynamics and the Fidelity 
of Multicellular Phototaxis 

Drescher, Goldstein, Tuval, PNAS  107, 11171 (2010) 
See also Ueki, Matsunaga, Inouye, and Hallmann (2010) 



Step Response of Flagellar Beating 



Dynamic PIV Measurements – Step Response 

Adaptive dynamics also play  
   a role in sperm chemotaxis: 
Friedrich and Jülicher (2007,09) 
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p=“photoresponse” amplitude 
h=“hidden” biochemistry 

Adaptive, two-variable model 

Simple modulation of flow 



Angular Dependence of the Transient Response 

anterior is sensitive 
posterior is not 
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Frequency-Dependent Response 

Two-variable model 

Data 
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Peak of frequency-response 
coincides accurately with the 
range of rotational frequencies 
within which accurate phototaxis 
occurs: TUNING 



Reduced model 
Light direction 

Multicellular Phototaxis as Dynamic Phototropism 



A Test of the Theory 



Interacting Volvox 



Dual-View Apparatus Free of Thermal Convection 

Drescher, Leptos, Goldstein,  
Review of  Scientific Instruments 80, 014301 (2009) 

White LED 
& shutter 

White LED 
& shutter 

Capable of imaging protists from 10 μm 
to 1 mm, with tracking precision of  
~1 micron, @ 20 fps. 



Walzing Volvox:  Orbiting “Bound State” 

Drescher, et al. PRL (2009) 



Dual Views with PIV 



Model for Mutually-Advected Stokeslets 

( ) ( ) iiii

iii

pupzpp

vxux

××∇+××=

+=

2
1ˆ1

)(

τ




( ) 2/52 4
3

+
−=

x
x

d
dx

πτ
( )VURF

h
tF

h
rx +=== πη

η
τ 6;; 2

Blake (1971): Flow field of a Stokeslet near a no-slip wall 
Squires (2001): Attractive interaction for spheres falling away from a wall 



Formation of the Bound State 

K. Drescher, K. Leptos, T. Ishikawa, T.J. Pedley, R.E. Goldstein (preprint) 



Numerical Studies (Bottom-Heavy 
Squirmers with Swirl) 

Drescher, et al. PRL (2009) 



Side view 

Chamber bottom 

The Minuet Bound State 



Simplest Model of Minuet Bound State 

 Assumptions of a simple model: 
1. Volvox hover 

2. Each Volvox produces a Stokeslet 

3. When the Volvox axis k is tilted from vertical, 
stokeslets move in horizontal direction 

4. Direction of Volvox axis changes as given by 
Pedley & Kessler (1992) 

 



The Diffusional Bottleneck 
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Diffusion to an  
absorbing sphere 

Metabolic requirements  
scale with surface  
somatic cells: ~R2 

Organism radius R 
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PO4
2- and O2 estimates yield 

bottleneck radius ~50-200 µm 
(~Pleodorina, start of germ-soma 
differentiation) 
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Flagellar-Driven Flows and Scaling Laws 
Specified shear stress f at surface 
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Short, Solari, Ganguly, Powers, Kessler & Goldstein, PNAS (2006) 



Metabolite Exchange 
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The Peclet number scales as: 

Acrivos & Taylor (1962)  
heat transport from a solid sphere: 

Magar, Goto & Pedley (2003)  
prescribed tangential velocity in a 
model of “squirmers” 

2/1~ RPecurrent
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Bottleneck Bypassed (!) 
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Advantage of Size 
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