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The Size-Complexity Relation
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Green Algae and Plants
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The Recent Literature

IV. Part of a Letter from Mr Antony Van Lecu-
wenhock, concerning the Worms in Sheeps
Livers, Gnats, and Animalcula in the Ex-

Phil. Trans. 22,
509-518 (1700)

crements of Frogs.

When I brought thefe particles before the Magnify-
ing-glafs, 1 did not only fee that they were round, but
that the outward skin of thenr was quite {et over with
many protuberant parts, which did feem to" me to b
triangular; and pointed towards the end 5 f{o that if
feemed to mie, that in the great circle of the round-
nefs, ftood fuch particles; all orderly and equally from
each other 5 fo that on 2 fimall body did ftand about
two thoufand of the befofesmentioned ¢onvex of pto-
tuberaut particles. |

This was to me a very pleafant fight, becaule the
faid particles, as often as I did 160k on them, did ae-
ver Iye ftill, and that their motion did proceed from
their turning round 5 and that che more, becanfe F did
fancy at firlt that they were frmhll -animals, add the
{maller thefe particles were, : the’ greener . was their co-
lour 3 and on the contrary, in the greateft, that were
as big as a great corn of fand, theére was no
green colour at-ail to-be difcerned on theoutfide.

Thefe particles had each of ; them within included
3, 6, 7, nay, fome to 2 {mall round-globules, of the
{ame {hape as tiie body was wherein they wére in-
laded.

CAROLI LINNAI

Equiris De STELLA Porari,

Arcniatrr Reerr, Mep. & Boran. Proress, Upsat.
Acap, Ursar. Hoimens. PETroroL. BEror, IMPER,
Loxp, Monsper. ToLos, FLORENT. Soc,

SYSTEMA
NATURE

312, VOLVOX., Corpns liberum, gelatinofum, ro-
tundatum, artubus deftitu-
tum. '

Proles {fubrotundi, nidulantes,
{parfi. '

Pelvends feque rotando celeriter movens absque artms
bus!  viviparas matis, mepotibus. promepotibus, abmes
potibas conmfpecats antra amimalcnlum minutiffimum,



Green Algae as Model Organisms
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Advection & Diffusion

If a fluid has a typical velocity U, varying on |
a length scale L, with a molecular species of tadvection = —
diffusion constant D. Then there are two times: U
We define the Péclet number as the ratio: |_2
{0 = —
diffusion
P . tdiffusion . UI— D
€= = This is like the Reynolds
tadvection D | number comparing UL
inertia to viscous dissipation: R = —

| 4

If U=100 pm/s, L=10 pm,

Re ~103, Pe~1

At the scale of an individual cell,
diffusion dominates advection.

The opposite holds for
multicellularity...

Solari, Ganguly, Michod, Kessler, Goldstein, PNAS (2006)
Short, Solari, Ganguly, Powers, Kessler & Goldstein, PNAS (2006)



Vaglvox In:Its Own Frame . .
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Microscopy & Micromanipulation




Volvox on a Micropipette

f
i




Life Cycles of the Green and Famous
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Systematics of Volvox
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Phototaxis
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Planar Cell Polarity in Volvox carteri

Hugo Wioland




The Mathematics of Turning

angular direction  axis surface  surface
velocity of grawty direction  nor n<al fluid velocity
/

\ AV ]
Q(t) =——gxK 87zR3 jnxu(e $,1)dS

/Tbh
Based on Reciprocal Theorem

bottom-heaviness (Stone & Samuel)
relaxation time

In the Volvox frame of d i ~
reference, light direction — =0 x|
evolves according to: dt




Adaptive Flagellar Dynamics and the Fidelity
of Multicellular Phototaxis
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Drescher, Goldstein, Tuval, PNAS 107, 11171 (2010)
See also Ueki, Matsunaga, Inouye, and Hallmann (2010)



Step Response of Flagellar Beating




Dynamic PIV Measurements — Step Response
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Adaptive dynamics also play
a role in sperm chemotaxis:
Friedrich and Julicher (2007,09)

U= Uo(l—ﬂp)

Simple modulation of flow




Angular Dependence of the Transient Response
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Frequency-Dependent Response

_ Two-variable model

0.8 | \

normalized photoresponse

06 F
i Data
04 F
i DT
_ [(1+a) T, X1+a) Ta)]
(2 (]
0 N P | N ° P | o P | N L 2 s s s
10~ 10~ 10° 10"

Wg(rad/s)



B

Peak of frequency-response
coincides accurately with the
range of rotational frequencies
within which accurate phototaxis
occurs: TUNING




Multicellular Phototaxis as Dynamic Phototropism

t=0.013s

Light direction
Reduced model



A Test of the Theory
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Interacting Volvox




Dual-View Apparatus Free of Thermal Convection

White LED
& shutter

White LED
& shutter

Capable of imaging protists from 10 um
to 1 mm, with tracking precision of
~1 micron, @ 20 fps.

Drescher, Leptos, Goldstein,
Review of Scientific Instruments 80, 014301 (2009)



Walzing Volvox: Orbiting “Bound State”

#
-, ':I - P . L > ,

Drescher, et al. PRL (2009)



Dual Views with PIV
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Model for Mutually-Advected Stokeslets

X, =u(x,)+V, Fi r i fh

p =P, x(xp, )+ (Vxu)xp,
T

>

Blake (1971): Flow field of a Stokeslet near a no-slip wall
Squires (2001): Attractive interaction for spheres falling away from a wall

dx__3_ X x=" = FoemRU V)
dr - (X2 +4)5/2 h nh




Formation of the Bound State
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Numerical Studies (Bottom-Heavy
Squirmers with Swirl)

Drescher, et al. PRL (2009)




Side view

The Minuet Bound State

Chamber bottom




Simplest Model of Minuet Bound State

€
E?2l & g
3 | T
= D >
© X1 = X5 o)
s =
5 s
i) fixed periodic : 3
3 point motion
0 12 16 20
. . 'l' S
Assumptions of a simple model: n(S)

1. Volvox hover

. 1 1
k=—kx (e, xk)+-wxk
2. Each Volvox produces a Stokeslet Tbh 2

3. When the Volvox axis k is tilted from vertical,
stokeslets move in horizontal direction

4. Direction of Volvox axis changes as given by
Pedley & Kessler (1992)



The Diffusional Bottleneck

(% Metabolic requirements
GC) scale with surface Diffusion to an
— somatic cells: ~R? absorbing sphere
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PO,% and O, estimates yield
bottleneck radius ~50-200 um

(~Pleodorina, start of germ-soma
differentiation)

>
~ DC, Organism radius R

p




Flagellar-Driven Flows and Scaling Laws

Specified shear stress f at surface
Ve
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Short, Solari, Ganguly, Powers, Kessler & Goldstein, PNAS (2006)
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Metabolite Exchange

0-Vc =DV

P

Acrivos & Taylor (1962)
heat transport from a solid sphere:

| current ~ RPe'”?|
Magar, Goto & Pedley (2003)

¥ prescribed tangential velocity in a
| z model of “squirmers”

' % | cyrrent ~ RPeY?|
Pe=100

oC Dazc Boundary layer scale:

u 2
8y 8y UR ~1/2
£eC . C %~ (—j ~ pe /2

U R - ~D— D
The Peclet number scales as: ¢ ¢
1/2
Pe=2Ru9 ~ R . R, 41D ~10 um<R
D R, rf




Bottleneck Bypassed (!)
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Advantage of Size
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