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Social partners can add or 

subtract fitness from one-

another

Effects determined by payoff 

matrix

Fitness Model

Dynamical Model

Toolbox

Classical population genetics

Inclusive fitness theory

Partial differentiation methods

Covariance methods (Price)

Branching processes

Replicator equation

etc.

Partition 
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among-groups



Hamilton’s Rule

B C  0



B C  0

Genetic relatedness (population structure)
Kin discrimination
Greenbeards
Repeated encounters
Conformity
Enforcement

Degree of assortment:  How much 

more likely are you to cooperate with 

an individual of your type than 

expected by chance?

? Where’s the 

Ecology?Hamilton’s Rule
When should I build a 

nest and when should I 

provision resources?
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Fitness Model

with “Ecology”

Ecology is an external constraint:  Density regulation makes cooperation a

Zero-Sum Game

Wij  C



p = 0.31

Van Dyken 2010 Evolution



p = 0.31

SELECTION

p = 0.34

Van Dyken 2010 Evolution



LOCAL DENSITY 
REGULATION

p = 0.29

p = 0.31

SELECTION

p = 0.34

Van Dyken 2010 Evolution



(1 a)br  (1 ar)c  0

Intensity of Local 

Competition

Local Competition 

inhibits cooperation

Hamilton’s Rule with Density Regulation



But . . .  
What does “local density regulation” mean?

 Can we even measure it?

 Can we predict when it will occur?
Density regulation is a consequence of competition 

not its cause
What about cooperative traits that modify 

competition?

Solution:  Start over from first principles
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Individuals catalyze 

the conversion of 

resources into 

offspring

Type II

Type I

Type III
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Fitness Function

W  vf
S

  S

Survival Reproduction

Crowding Resource 
Concentration

Assymptotic Fitness

Resource Competition

Van Dyken and Wade 2012 Evolution
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Per capita resources 
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Fitness Function

W  vf
S

  S

Crowding and 
asymptotic fitness are 
correlated!

Greater Reproductive Output = Greater Crowding 

Van Dyken and Wade 2012 Evolution



W  vf
S

  S

Sue Thomas Theodore Garland, Jr.

Survival Altruism
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Allocation of Viability 
gains to Reproduction

Fecundity Altruism
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Provisioning Agriculture

A.J. Salter

Alain Filloux

Resource-Supply Altruism
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NKSPack Hunting 

Resource-Efficiency 
Altruism
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Communication
S 

STotal

NKS

Resource-Efficiency 
Altruism

http://lifeinwireframe.blogspot.com/2010/08/ant-algoithms.html



 Survival Altruism
 Fecundity Altruism
 Resource-Supply Altruism
 Resource-Efficiency Altruism

Instead of 2 ways to cooperate, we identify 
at least 4

Survival/Fecundity 
Altruism

Resource Altruism

Van Dyken and Wade 2012 Evolution

Each has its own “Hamilton’s Rule” and responds 
to resource competition in unique ways



(1 a)br  c(1 ar)  0

abr  c(1 ar)  0

Survival/Fecundity Altruism

Resource Altruism

a 


  S

Intensity of Local 
Competition

Resource Altruism requires
local competition!

Van Dyken and Wade 2012 Evolution



(1 a)br  c(1 ar)  0

abr  c(1 ar)  0

Survival/Fecundity Altruism

Resource Altruism

a 


  S

Intensity of Local 
Competition

Resource Altruism and 
Survival/Fecundity Altruism have 
complementary responses to resource 
pressure Van Dyken and Wade 2012 Evolution



Numerical Simulations with Recurrent 
Beneficial Mutations
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 Evolution of both Survival/Fecundity and 
Resource Altruism is self-limiting

Why?



 Evolution of both Survival/Fecundity and 
Resource Altruism is self-limiting

 Because each alters the environment in a way 
that weakens its own selection

 Survival/Fecundity Altruism increases local 
competition

 Resource Altruism reduces local competition

Why?

Could these traits complement one another?
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Eusocial Hymenoptera, termites and humans 
each posses all 4 altruism types

 Survival Altruism (e.g., group defense)

 Fecundity Altruism (e.g., nurse workers, nurses)

 Resource Enhancement Altruism (e.g., 
provisioning, agriculture)

 Resource Efficiency Altruism (e.g., communal 
foraging, pack hunting) 



SavingtheEarth.net



 Eusocial Hymenoptera, termites and humans 
each posses all 4 altruism types
 Survival Altruism (e.g., group defense, defensive 

sting)

 Fecundity Altruism (e.g., nurse workers)

 Resource Enhancement Altruism (e.g., provisioning, 
agriculture)

 Resource Efficiency Altruism (e.g., communal 
foraging, pack hunting) 

 Why don’t more species experience runaway 
altruism evolution?



Availability of beneficial mutations
Limits on Resource Enhancement

 Provisioning is limited by availability of nearby 
resources

Alain Filloux



Availability of beneficial mutations
Limits on Resource Enhancement

 Provisioning is limited by availability of nearby 
resources

 Agriculture is limited by water, nutrients, space, 
and increased pressure from other resource types

Agriculture Depleted Game SupplyCrowding
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W  vf
S

  S

  f [v  (1 v)TD ]

Timing of deathWasted resources do not 
contribute to group 
productivity

“Sunk Costs”



(1 a  e)br  c(1 ar  er)  0

Survival Altruism

e  TD stuff 

Time of Death (TD)



(1 a  e)br  c(1 ar  er)  0

Survival Altruism

e  TD stuff 

br  c  0 !

Time of Death (TD)



Altruistic suicide (e.g., Apoptosis)

Can increased death rate evolve?

Selection for dying earlier

TD

v

NO.



Resource Sharing:  Donating resources 
(acquired independently) to others

Apicella et al 

(2012)



 In order for cooperation to evolve, the benefit 
to the recipient must be greater than the cost 
to the donor:                 B > C  

 But resource sharing is a zero-sum game:  B = 
C (right?)
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Type II FR

W  
f

kS   
 var

f

kS   
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Variance in 

Resources

Expected 

Fitness



 Sharing increases an individual’s expected 

fitness by reducing her resource variance.

 Provides a basis for understanding the 

forces leading to EGALITARIAN hunter-
gatherer societies. 



 Ecology is not simply an external constraint on 
cooperation, it is fundamental

 We must pay attention to the currency of 
cooperation

 Eco-evolutionary feedback can lead to extreme 
altruism

 Eco-evolutionary feedback may be important in the 
evolution of apoptosis 

 Selection to reduce resource variance promotes 
resource sharing and egalitarianism
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