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Cells incorporate fragments of foreign DNA and use them
later to identify and destroy invading phages or plasmids



Why isn’t CRISPR ubiquitous among prokaryotes?

A. D. Weinberger et al, mBio (2012)
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CRISPR

Temperature
I=0.070⇐====⇒
C=0.32

CRISPR
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C : contingency coefficient

CRISPR has a fitness cost:

I Blocks beneficial HGT (horizontal gene transfer)

I Auto-immunity

I Genomic burden

How does CRISPR survive?

Study a stochastic virus-host co-evolution model with explicit
CRISPR dynamics
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Stochastic model of CRISPR/virus co-evolution
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I M = 10
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I d = 0.5

Vary:

I Encounter rate b

I Spacer addition
probability a

I Viral mutation rate µ



Without the CRISPR adaptive immunity: Lotka-Volterra
Ṅb = Nb − bNbNv (1− s)

Ṅv = −dNv +bNbNv (M−Ms−1)

Marginally stable fixed point:

Nb =
d

b(M −Ms − 1)

Nv =
1

b(1− s)

Critical immunity: scrit = 1−M−1

Family of orbits around the fixed

points with period
2π√
d

Constant of the motion:

V = −b(M −Ms − 1)Nb +
d logNb − b(1− s)Nv + logNv

Finite population → stochastic extinction



(De)stabilization of LV by CRISPR

I Dynamics of the system are not canonical LV

I Critical spacer addition probability acrit(µ) above which virus
is cleared in large populations
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Slow oscillations on top of the LV oscillations
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Excitable medium-like behavior
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Excitable medium-like behavior
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Spacers are distributed at random among viruses and hosts
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CRISPR only slightly suppresses viral diversity
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Virus evolution is unconstrained in large populations at
high mutation rates

b = 0.0008, µ = 0.02
b = 0.0004, µ = 0.02
b = 0.0002, µ = 0.02
b = 0.0008, µ = 0.005
b = 0.0004, µ = 0.005
b = 0.0002, µ = 0.005

Total immunity

C
R
IS
P
R

le
n
g
th

0.80.60.4

150

100

50

0

p: total immunity

L̇ = −1
2L`+ bNvpaNs

In steady state

Nv =
1

b(1− p)

Hence

L`

a
=

2Nsp

1− p

Solid red line

Assumption: CRISPR length and immunity are uncorrelated amoung
individuals in a population



Three species dynamics

I CRISPR− hosts grow with rate 1 + c

I CRISPR+ hosts have immunity p > s

I In an infinite system there is coexistence for

p − s

p
< c <

p − s

s
I Stochastic extinction in a finite system

I Introduce a singe CRISPR− host into a steady state system
with N+ CRISPR+ hosts and measure the invasion probability
ρ−

I CRISPR− host is said to be favored by selection if ρ−N+ > 1
I Repeat for CRISPR+ introductions (initially without spacers)
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Spacer-less CRISPR+ hosts can be favored by selection
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Discussion

I CRISPR/virus co-evolution system shows complexity beyond
standard LV: slow oscillations and excitable medium

I Nevertheless, steady state time averaged immunity depends
only on the number of distinct viral proto-spacers per spacer

I Viral diversity is slightly below its free evolution limit

I CRISPR length can be estimated by assuming that it is
uncorrelated with immunity amoung individuals in a
population

I CRISPR+ hosts can resist invasion by more fit CRISPR−
hosts by maintaining a “healthy” viral population

I Cooperation: CRISPR survives via group selection

I Dependence of CRIPSR± invasion probabilities on the viral
mutation rate may explain the prevalence of CRIPSR amoung
thermophiles
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