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Cells incorporate fragments of foreign DNA and use them
later to identify and destroy invading phages or plasmids
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Why isn't CRISPR ubiquitous among prokaryotes?
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CRISPR has a fitness cost:
» Blocks beneficial HGT (horizontal gene transfer)
> Auto-immunity

» Genomic burden
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CRISPR has a fitness cost:
» Blocks beneficial HGT (horizontal gene transfer)
> Auto-immunity

» Genomic burden

How does CRISPR survive?

Study a stochastic virus-host co-evolution model with explicit
CRISPR dynamics



Stochastic model of CRISPR/virus co-evolution
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Without the CRISPR adaptive immunity: Lotka-Volterra
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(De)stabilization of LV by CRISPR

» Dynamics of the system are not canonical LV
» Critical spacer addition probability acit(x) above which virus
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Slow oscillations on top of the LV oscillations
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Excitable medium-like behavior
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Excitable medium-like behavior

Host population
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Spacers are distributed at random among viruses and hosts
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Spacers are distributed at random among viruses and hosts
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Spacers are distributed at random among viruses and hosts
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CRISPR only slightly suppresses viral diversity

Distinct proto-spacers per virus
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CRISPR only slightly suppresses viral diversity
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Virus evolution is unconstrained in large populations at
high mutation rates
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Three species dynamics

» CRISPR— hosts grow with rate 1 + ¢
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Three species dynamics
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CRISPR— hosts grow with rate 1 + ¢
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Stochastic extinction in a finite system
» Introduce a singe CRISPR— host into a steady state system
with N, CRISPR+ hosts and measure the invasion probability
p—
» CRISPR— host is said to be favored by selection if p_ N, >1
» Repeat for CRISPR+ introductions (initially without spacers)



Spacer-less CRISPR+ hosts can be favored by selection
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standard LV: slow oscillations and excitable medium



Discussion

» CRISPR/virus co-evolution system shows complexity beyond
standard LV: slow oscillations and excitable medium

> Nevertheless, steady state time averaged immunity depends
only on the number of distinct viral proto-spacers per spacer



Discussion

» CRISPR/virus co-evolution system shows complexity beyond
standard LV: slow oscillations and excitable medium

> Nevertheless, steady state time averaged immunity depends
only on the number of distinct viral proto-spacers per spacer

» Viral diversity is slightly below its free evolution limit



Discussion

» CRISPR/virus co-evolution system shows complexity beyond
standard LV: slow oscillations and excitable medium

> Nevertheless, steady state time averaged immunity depends
only on the number of distinct viral proto-spacers per spacer

» Viral diversity is slightly below its free evolution limit

» CRISPR length can be estimated by assuming that it is
uncorrelated with immunity amoung individuals in a
population



Discussion

» CRISPR/virus co-evolution system shows complexity beyond
standard LV: slow oscillations and excitable medium

> Nevertheless, steady state time averaged immunity depends
only on the number of distinct viral proto-spacers per spacer

» Viral diversity is slightly below its free evolution limit

» CRISPR length can be estimated by assuming that it is
uncorrelated with immunity amoung individuals in a
population

» CRISPR+ hosts can resist invasion by more fit CRISPR—
hosts by maintaining a “healthy” viral population



Discussion

» CRISPR/virus co-evolution system shows complexity beyond
standard LV: slow oscillations and excitable medium

> Nevertheless, steady state time averaged immunity depends
only on the number of distinct viral proto-spacers per spacer
» Viral diversity is slightly below its free evolution limit

» CRISPR length can be estimated by assuming that it is
uncorrelated with immunity amoung individuals in a
population

» CRISPR+ hosts can resist invasion by more fit CRISPR—
hosts by maintaining a “healthy” viral population

» Cooperation: CRISPR survives via group selection



Discussion

» CRISPR/virus co-evolution system shows complexity beyond
standard LV: slow oscillations and excitable medium

> Nevertheless, steady state time averaged immunity depends
only on the number of distinct viral proto-spacers per spacer
» Viral diversity is slightly below its free evolution limit

» CRISPR length can be estimated by assuming that it is
uncorrelated with immunity amoung individuals in a
population

» CRISPR+ hosts can resist invasion by more fit CRISPR—
hosts by maintaining a “healthy” viral population

» Cooperation: CRISPR survives via group selection

» Dependence of CRIPSR+ invasion probabilities on the viral
mutation rate may explain the prevalence of CRIPSR amoung
thermophiles



