Anatomy of the Mott Transition in Nd$_{1-x}$TiO$_3$: Hole-doping of an Antiferromagnetic Mott-Hubbard Insulator

Athena S. Sefat and J.E. Greedan

Department of Chemistry
Brockhouse Institute for Materials Research
Department of Physics and Astronomy
Department of Materials Science and Engineering
Canadian Neutron Beam Centre
Ames Lab, Iowa State

M. Niewczas - PPMS instrument
G. Luke, Paul Dube - Oxford MagLab & SQUID instruments, helium supply
H. Dabkowska, A. Dabkowksi, J. D. Garrett, - floating zone & Bridgeman growth
I. Swainson, L. Cranswick - neutron diffraction
J. Yang, J. Hwang, T. Timusk - Optical measurements

NSERC
Metals vs Insulators: polar opposites

Nd$_{1-x}$TiO$_3$

Electrical transport

Optical

Graph showing the electrical transport and optical properties of Nd$_{1-x}$TiO$_3$ for different values of x. The graphs depict the temperature dependence of the electrical resistivity and optical conductivity for varying x values.
Metals vs Insulators: Electronic Structure

Zaneen, Sawatsky, Allen

$U, \ W, \ \Delta$

Correlation $d \leftrightarrow d$

Band width $p \leftrightarrow d$

Charge transfer $p \leftrightarrow d$

If U is neglected, (traditional band theory) nearly all TMO’s should be metallic. In fact most are insulating.
A metallic state obtains when:

\[M - H \ W > U \]

CT \ W > \Delta

\[\Delta > U > W \]

\[U > \Delta > W \]

\[U/W \] a correlation index. For \(U/W > 1 \) d electrons localized and an insulator results.

A metallic state obtains when:

\[M - H \ W > U \]

CT \ W > \Delta
Most I / M transitions are induced by “doping” of either M-H or CT insulators.

Two famous examples:

La$_{2-x}$Sr$_x$CuO$_4$ - “hole-doping” of an AF CTI

La$_{1-x}$Sr$_x$MnO$_3$ - “hole-doping” of an AF CTI?

Goodenough et al PRB 47 (1993)

Schiffer et al PRL 75 (1995)
Modifications to ZSA due to hole doping of a M-H insulator

(1) new states within M-H gap

(2) introduction of disorder - another localization mechanism

(3) changes in W due to structural changes
(bond angles/bond lengths)
U/W will decrease in general with hole doping
New states near top of LHB

Add one more electron:
\[\text{cost} = U \]

Add one more electron:
\[\text{cost} \ll U \]
What is the role of disorder?
(Anderson Phys. Rev. 109(1958)1492)

Random potential, V_0
$B = $ TB band width
(1) $B \gg V_0 \rightarrow$ standard band
(2) $B \ll V_0 \rightarrow$ localization
(3) $B \approx V_0 \rightarrow$ mobility edge
Choosing a M-H AF insulator to study: NdTiO$_3$

- d^1 MH AFI analog of the d^9 CT AFI cuprates
 (well characterized as M-H AF I)

- perovskite Pnma
 control of U/W via Ln$^{3+}$ radius

- convenient hole doping mechanism via Nd$^{3+}$ vacancies

- neutron friendly

- previous studies for comparison/contrast
NdTiO$_3$ electronic structure MHI

$U = 4.0 \text{ eV}$

$W \sim 3 \text{ eV}$
$E_g \sim 0.8 \text{ eV}$
Tunable U/W

Pnma LnTiO₃

Tune

ave. Ti – O – Ti angle and W

D.A. MacLean et al JSSC30(1979)
T. Katsufuji et al PRB56(1997)

U/W ↑ as Ln³⁺ radius ↓
Tunable U/W, contd.
Doping mechanism

\[\text{Nd}_{1-x}\text{TiO}_3 : \quad 0.00 < x < 0.33 \]

\[\begin{align*}
\text{Pnma: random Nd}^{3+} \text{ vacancies} \\
0.00 < x < 0.20
\end{align*} \]

\[\begin{align*}
\text{Cmmm: ordered Nd}^{3+} \text{ vacancies} \\
0.25 < x < 0.33
\end{align*} \]

\[\text{Occ. } \sim 1.0 \rightarrow \quad \text{Occ. } \sim 0.5 \rightarrow \]

\[\text{Nd}_{1-x} \square_x \text{Ti}^{3+}_{1-3x} \text{Ti}^{4+}_{1+3x} \text{O}_3 \]

\[1 \square = 3 \text{ holes (Ti}^{4+}) \]

[Amow et al JSSC 155(2000)177]
Remarkable Magnetic Properties

LnTiO$_3$ Magnetic Order:
abrupt AF → F

Among M-H AFI’s

NdTiO$_3$ has largest U/W (except SmTiO$_3$ but Sm is not neutron friendly!!)

σ_{abs} (Sm) = 5670 barns

σ_{abs} (Nd) = 50.5 barns
\[\text{Nd}_{0.966(10)} \text{TiO}_3 \]

\[\mu_{\text{Nd}^{3+}}: 0.77(3) \mu_B \]

\[\mu_{\text{Ti}^{3+}}: 0.43(8) \mu_B \]

Note the very small ordered moment on Ti\(^{3+}\). For \(S = 1/2 \) expect ~ 1 B.M.
The phase diagram of slide # 14 and the anomalously small Ti$^{3+}$ ordered moment have been known since the 1980’s but have largely eluded explanation.

For a recent attempt to explain both see:

Previous Studies have located the MIT’s, approximately.

[G. Amow et al, JSSC 155 (2000)]
[Nd$_{1-x}$Ca$_x$TiO$_3$ Katsufuji et al. PRB 56 (1997)]
Detailed study of the MIT (Mott Transition) near $x = 0.10$

Questions to answer:

- Mott Transition at discrete x or a range of x?
- Does the MH gap collapse at the MIT? (or is the mid-gap band involved?)
- What is the role of disorder?
- Do the magnetic properties (T_N, Ti$^{3+}$ ordered moment) track exactly the transport properties?

$\text{Ln}_{1-x}\text{Ca}_x\text{TiO}_3$: Katsufuji et al
• **Synthesis**

\[(1-x)/2 \text{Nd}_2\text{O}_3 + y \text{TiO}_2 + (1-y) \text{Ti}_2\text{O}_3 \rightarrow \text{Nd}_{1-x}\text{TiO}_3\]

<table>
<thead>
<tr>
<th>Single crystals</th>
<th>Polycrystalline samples</th>
<th>Bridgeman method</th>
<th>FZ method</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b) bridgeman method</td>
<td>(c) FZ method</td>
<td></td>
</tr>
</tbody>
</table>

- **Polycrystalline samples**
 - ~1400°C
 - Mo block
 - BN
 - 2-4g
 - C fill
 - ~25 samples
 - C susceptor
 - W plate
 - ZrO₂ insulation
 - induction coil
 - metal plate
 - mullite
 - x ≈ 0.10, 0.04

- **Bridgeman method**
 - ~1800°C
 - 10-12g
 - Ref. Pellet
 - 5-8 cm seed
 - 10-12 cm feed
 - x ≈ 0, 0.15, 0.20

- **FZ method**
 - ~1800°C
 - 10-12g
 - 5-8 cm seed
 - 10-12 cm feed
 - x ≈ 0, 0.15, 0.20

- Synthesis
 - Single crystals
Bridgeman crystals

\[x = 0.10 \quad \text{and} \quad x = 0.04 \]

5 mm = 5 x 10^6 nm
Floating Zone Crystal

\[x \approx 0.15 \]
Compositional Analysis

a. Find Nd/Ti ratio $\rightarrow x$

Neutron Activation Analysis ($\sim 100 \text{ mg}$)

Isotopes: ^{151}Nd, ^{51}Ti

(t$_{1/2}$ = 12.44 min, 5.76 min)

b. Find Ti$^{3+}$/ Ti$^{4+}$ ratio $\rightarrow x$

ThermoGravimetric Analysis

$\text{Nd}_{1-x}\text{TiO}_3 + (7-3x)/4\ \text{O}_2 \xrightarrow{1000^\circ C} (1-x)/2\ \text{Nd}_2\text{Ti}_2\text{O}_7 + x\ \text{TiO}_2$

$\sim 50 \text{ mg}$

Results from a and b consistent to $\sim 0.5\%$
c. Unit cell volume (Guinier x-ray data) scales with x

![Graph showing the relationship between cell volume and Nd value obtained from NAA. The x-axis represents the cell volume (Å³) from Guinier x-ray data, and the y-axis represents the Nd value obtained from NAA. The data points are shown with error bars, and a linear trend line is fitted to the data.]
Sample characterization critical for LnTiO$_3$ phases !!!

LnTiO$_3$ easily oxidized to Ln$_{1-x}$TiO$_3$

ex. “LaTiO$_3$” - $T_N = 125$K, poor metal

Currently accepted: $T_N = 150$K, insulator

“NdTiO$_3$” - $T_N = 0$!!!!

(Greedan, JMMM 44 (1984) 299)

Currently accepted: $T_N = 100(5)$ K

(Amow and Greedan, JSSC 121 (1996) 443.)
Electrical Transport

Resistivity

\[\rho = \frac{RA}{l} \]

\(x = 0.33 \)

Ag paste

Ag wire 0.05-0.1mm
Nd$_{1-x}$TiO$_3$ → Metallic → Insulating → M/I vs T → Metallic

ρ (mohm.cm).

T (K)

$x = 0.33$

$x = 0$
Arrhenius

\[\rho = \rho_0 \exp(\frac{E_{\text{act}}}{k_B T}) \]

Note: \(E_{\text{act}} \ll \text{M-H gap} \sim 0.8 \text{ eV}. \) Mid-gap states involved
Fermi Liquid

\[\rho(T) = \rho_0 + AT^2 \]

A is a measure of correlation/ carrier mass.
Kadowaki/Woods: \(A^2/\gamma \sim \text{const.}, \ \gamma \sim (m^*)^{3/2} \)
A (and m*) greatly enhanced at MIT1 boundary!!
Finite MH gap at MIT1

Conclusion: MIT1 results when mid-gap band overlaps the UHB
$\text{Nd}_{2/3}\text{TiO}_3$

$Cmmm$

$3d^0$

O^{2-}

Δ

\triangledown

$x \sim 0.33$

MIT2

$\text{MH gap} = 0$

Δ_{act}

E_f

I

NdTiO_3

Pnma

$3d^1$

O^{2-}

$\uparrow E_g$

$x \sim 0$

MIT1

$x \sim 0.10$

$x \sim 0.20$

$x \sim 0.33$
\[\rho(T) = \rho_0 \exp\left(-\frac{E_a}{kT}\right) \]

Variable-range hopping
\(~25 - 63\ K\)
\(\log \sigma \text{ vs } T^{-0.5}\)

\[0.057(11) \leq x \leq 0.079(2) \]

\[\rho(T) = \rho_o + AT^2 \]
Weak magneto-resistance. Due to scattering by Nd$^{3+}$ moments which order @ 1K?

$\text{Nd}_{0.918(13)}\text{TiO}_3$

$x = 0.082$
How is disorder manifested?

• Suppression of metallic state
• VRH, (variable range hopping) at low T

\[\sigma = A \exp\left(-\frac{T_0}{T}\right)^n \]

\[n = \frac{1}{4} \text{ (Mott-Davis)} \]

\[n = \frac{1}{2} \text{ (with correlation) \ E-S} \]

Use Hill/Zabrodskii method to distinguish exponents

• define \(E = -(1/T)[d(\log\sigma)/d(1/T)] \)
• \(\log E = A + n\log T \)

Disorder plays major role in the localization of carriers in Nd$_{1-x}$TiO$_3$ for $0.057 < x < 0.089$.

E-S

Mott
Magnetic Properties

• Determine T_N (T_c) vs x

 For which x does T_N vanish?

• Determine Ti^{3+} ordered moment vs x

 For which x does the moment vanish?

• Correlation with transport properties?
Five ways to measure T_N

- Neutron diffraction vs T ⇒ reliable but slow

- ZFC/FC divergence in M/H vs T
 (NdTiO$_3$ is a canted moment AF ⇒ unreliable, sensitivity to
 – develops a weak F moment magnetic micro structure
 below T_N)

- M_{sat} vs T in ZF ⇒ slightly better but still unreliable

- C_p vs T ⇒ best (but time consuming)

- “Fisher’s” heat capacity: $d(\chi T)/dT$ ⇒ fast and reliable

[M.E. Fisher Philos. Mag. 7 (1962) 1789]
Neutron Diffraction

\[x = 0.019(6) \]

\(T_c = 88 \text{K} \)
$T_N = 88.2K$

$x = 0.019(6)$
$x = 0.064(10)$

$x = 0.11 \quad PM!$

$x = 0.33$

$x = 0$
Compare “real” heat capacity with Fisher’s heat capacity
\(d(\chi T)/dT \) vs \(T \)

\[\chi = 0.019(6) \]

\[\chi = 0.064(10) \]
Neutron diffraction

- $\lambda \approx \text{Å’s}$
- Neutrons are scattered by nuclei
- Neutrons ($S = 1/2$) interact with unpaired spin density

Magnetic scattering
Nuclear scattering
$x = 0.034(10)$

$\lambda = 2.36964 \text{Å}$

- $R_B: 2.22\%$
- $R_{mag}: 14.4\%$

G\textsubscript{x}C\textsubscript{y}

Nuclear

Magnetic
\[
\begin{align*}
\text{LRO: } & x \leq 0.071(10) \\
\text{SRO: } & 0.074(9) \leq x \leq 0.089(1) \\
\text{PM: } & x = 0.095(8)
\end{align*}
\]
$x = 0.079(2)$

spin-glass-like

$x = 0.089(10)$

paramagnetic

$x = 0.098(10)$
Magnetic phase diagram

\(\text{Nd}_{1-x}\text{TiO}_3 \)

- \(\chi(T) \)
- \(M(T) \)
- \(C(T) \)

\(x \)

\(T_{\text{order}} \) (K)
The phase diagram for Nd$_{1-x}$TiO$_3$

$x \leq 0.071(10)$ LR AFI/PMI

$0.074(9) \leq x < 0.089(1)$ → SR AFI/PI/PMM Anderson Localization

PM metal at $x = 0.098(10)$: [Ti$^{3+}$] = 71(4)\% or 29\% hole doping

$x = 0.243(10)$ → MIT2
Ln$_{1-x}$Ca$_x$TiO$_3$: Katsufuji et al

Summary and Conclusions

Compare Nd$_{1-x}$TiO$_3$ and Ln$_{1-x}$Ca$_x$TiO$_3$

- Mott transition occurs over a small range of x
- unambiguous role for disorder-induced localization ‡

hole conc.
Summary and Conclusions contd.

- determined magnetic structure of NdTiO$_3$, unequivocally (high resolution powder data): G$_x$C$_y$
- traced T$_c$ vs x accurately - first time for a hole-doped MH AFI
- shown abrupt collapse of ordered moment on Ti$^{3+}$ @ x = 0.074
- found SRO AF regime bridging collapse of ordered moment and onset of metallic behaviour, x = 0.095 (first observation)
- AF metallic state does not exist for Nd$_{1-x}$TiO$_3$!!
Athena S. Sefat

PHYSICAL REVIEW B 73, 195125 (2006)

Temperature-dependent optical spectroscopy studies of Nd$_{1-x}$TiO$_3$

J. Yang,1,* J. Hwang,1 T. Timusk,1,2 A. S. Sefat,3 and J. E. Greedan3

1Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1
2The Canadian Institute of Advanced Research, Toronto, Ontario, Canada M5G 1Z8
3Department of Chemistry and Brookhaven Institute for Material Research, McMaster University, Hamilton, Ontario, Canada L8S 4M1

PHYSICAL REVIEW B 74, 104419 (2006)

Anderson-Mott transition induced by hole doping in Nd$_{1-x}$TiO$_3$

Athena S. Sefat and John E. Greedan

Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

Graeme M. Luke

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1

Marc Niévezas

Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4M1

James D. Garrett, Hanna Dobkowska, and Antoni Dobkowska

Brookhaven Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada L8S 4M1

PHYSICAL REVIEW B 74, 104418 (2006)

Effect of hole doping on the magnetic properties of the Mott-Hubbard antiferromagnetic insulator Nd$_{1-x}$TiO$_3$

Athena S. Sefat and John E. Greedan

Brookhaven Institute for Materials Research and Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

Lachlan Cranstock

Canadian Neutron Beam Centre, Chalk River, Ontario, Canada K0J 1J0

High-resolution EELS study of the vacancy-doped metal/insulator system, Nd$_{1-x}$TiO$_3$, $x = 0$ to 0.33.

Athena S. Sefata,b,*,, Gisele Amora,*,, Meng-Yue Wua, Gianluigi A. Bottonea,b,*,, J. E. Greedana,b,*,

aBrookhouse Institute for Materials Research, McMaster University, Hamilton, Canada
bDepartment of Chemistry, McMaster University, 1280 Main Street West (A86-401), Hamilton, Ont., Canada L8S 4M1
*,*ICET, SRC, Montreal Road, Ottawa, Canada
cDepartment of Technical Science, National Centre for HREM, Delft University of Technology, Delft, The Netherlands
dDepartment of Materials Science and Engineering, McMaster University, Hamilton, Canada

Available online at www.sciencedirect.com

JOURNAL OF SOLID STATE CHEMISTRY

www.elsevier.com/locate/jssc

50
FIG. 11. The $\rho(T)$ for two $\text{Nd}_{1-x}\text{TiO}_3$ polycrystalline samp
Note the presence of upturns at low temperatures.

FIG. 12. The electronic resistivity vs temperature for single-crystal pieces with $x \sim 0.15$ and 0.20 compositions in $\text{Nd}_{1-x}\text{TiO}_3$. Note the absence of upturns at low temperatures.