in toto dynamic imaging and modeling of chordate morphogenesis

morphogenesis drivenby changes in cell shape,adhesion, contractility...

our goal: a comprehensive understanding of processes driving morphogenesis

Development of ascidian from 64 cells to swimming larvae. Elapsed time ≈ 17 hours (embryo is not "growing" during morphogenesis)

dynamic in toto embryogenesis modeling: the challenges

identify model organism

optimize for 4D image capture and cell labeling

deconstruct 4D images into constituent parts (cells)

reconstruct morphogenesis of whole organs and tissues- and then the *whole* embryo

create models of embryogenesis that incorporate dynamic cellular process and molecular mechanisms of cell fate, determination, and motility

dynamic in toto embryogenesis modeling: the challenges

why morphogenesis of ascidians?

- 1) conserved embryology and physiology with vertebrates
- 2) embryos and larvae very simple
- 3) invariant cell lineage
- 4) small and sequenced genome
- 5) lower genetic redundancy
- 6) produces lots of progeny
- 7) stable transgenesis
- 8) self-fertilizing hermaphrodites
- 9) forward genetics

ascidians are our closest invertebrate relatives!

amphibian and ascidian embryos at equivalent stages of development (tailbud) - shown to scale

the challenge of capturing live embryos at high resolution

Comparable microscopic images of ascidian, amphibian and fish (~130x130microns).

Complete coverage of embryo requires tiling such images

what is the ideal ascidian for this project?

Ascidiella versus Ciona

- Ascidiella much better optics + harder to work with
- •Ciona much more widely studied + easy to work with

...where to start?????

notochord:

- first fully-formed organ to develop
- essential for morphogenesis of all chordates
- good molecular models of morphogenesis
- in ascidian, morphogenesis takes place with no cell division.
- •in ascidian, small number (40) of fairly regularly-shaped cells

ascidian notochord morphogenesis

recessive mutations disrupting convergent extension

- •chongmague has a null mutation disrupting notochord boundary
- •aimless has probable null mutation in PCP pathway gene
- double mutant has complete failure of convergent extension

chm maps to a laminin (α -3,4,5 like)

chm

laminins are components of **basement membranes**, which serve to adhere cells and separate tissues

chm phenotype get progressively worse:

aimless line has deletion in the PCP-gene prickle (pk)

- in wt embryos *dishevelled* is membrane bound and polarized away from muscle boundary
- •in *aim/aim* embryos both polarization and membrane localization of dishevelled is lost

loss of notochord cell polarity in aim/aim embryos has multiple consequences

wild type aimless

loss of mediolateral-biased motility

- loss of *pk* function also leads to a progressive disruption of the boundary
- probably prevents complete intercalation of notochord cells (rather than loss of polarized motility)

Ciona wnt5

the muscle-derived *wnt5* is a strong candidate for the directional cue

what are the morphogenic mechanisms that generates the lumen?

the notochord cells are polarized in the anterior/posterior axis

- 1. nuclei are invariably found at posterior edge of each cell, except for the most posterior cell
- 2. this polarity is only seen in notochord cells
- 3. polarity is not evident until after cells have intercalated into in single-celled column
- 3. mutation of the gene *prickle* (pk) disrupts this polarity

PCP proteins polarized in anterior/posterior axis

neurula

medio-lateral

notochord

wnt 5

what is mechanism for generating AP polarity?

- •genetic studies have provided insights into mechanisms driving notochord morphogenesis
- •models based on our genetic studies predict certain types of cellular behavior. For example, cells should be quiescent at lateral edges after intercalation.

Final result, iter = 50

automated 2D + t segmenation of notochord cells from DIC images

Segmentation of notochord cells in fixed, stained embryos mip slice 45 67.5 90 112.5 136 160 minutes 20

- •images were segmented in 3D by watershed transformation
- •segmentation works well for fixed, stained, cleared embryos.
- •long term goal is segmentation of all stages of notochord development in live embryos

•with the goal is image capture and segmentation in live embryos:

•two approaches we are exploring

Ascidian Central Nervous System

free swimming larva

< 130 neural cells

≈ 230 glial cells

Hudson and Yasou (2005)

8-cell stage

32-cell stage

64-cell stage

110-cell stage

stage

transgenic ascidian line gives us cellular resolution of neurogenesis in live embryos

neurulation

exencephaly in the mouse

exencephaly mutant in Ciona (bugeye)

Ascidian Project:

Matt Kourakis
Shota Chiba
Michael Veeman
Erin Mulholland
Erin Newman-Smith
Danny El-Nachef

collaborators:

B. Manjunath Boguslaw Obara

Funding:

Thanks NIH

Santa Barbara Ascidian Stock Center http://www.ascidiancenter.ucsb.edu/

phenotype:

frimousse

- anterior brain (sensory vesicle) is absent
- palps (adhesive gland) absent
- •mouth (stomodeum) absent

Expression of markers of the palps, RTEN, stomodeum and anterior sensory vesicle is abolished

frm has cell fate transformation

Vagabond

wt

Synaptotagamin

- ENU induced mutation
- Defects apparent in:
 - adhesive appendages (palps)
 - pigmented sensory organs
 - palp sensory neurons
 - larval metamorphosis
- Homozygous lethal

Ciona Dmrt-1

