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Introduction to Game Theory



Game Theory

John Nash:
“An equilibrium is reached as soon as no party can increase its profit by
unilaterally deciding differently.”

John Maynard-Smith and George R. Price:

“A strategy is called evolutionary stable if a population of individuals
homogenously playing this strategy is able to outperform and eliminate
a small amount of any mutant strategy introduced into the population.”
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Classical Formulation of Prisoner's Dilemma

“Two suspects of a crime are arrested by the police. The police
have insufficient evidence for a conviction, and, having separated
both prisoners, visit each of them to offer the same deal. If one
testifies (defects from the other) for the prosecution against the
other and the other remains silent (cooperates with the other), the
betrayer goes free and the silent accomplice receives the full 10-
year sentence. If both remain silent, both prisoners are
sentenced to only 1 year in jail for a minor charge. If each betrays
the other, each receives a five-year sentence. Each prisoner
must choose to betray the other or to remain silent. Each one is
assured that the other would not know about the betrayal before
the end of the investigation. How should the prisoners act?"



Strategic Games

Mathematical description of strategic situations, Iin
which an individual's success in making choices
depends on the choices of others.

Prisoner’s Dilemma:

Cooperator (C')|| Defector (D)

1 year 10 years
0 years

(D,D) is a Nash equilibrium where unilateral
deviation does not pay off.



Social Dilemmas

The fundamental problem of cooperation:

P | Cooperator (C') Defector (D)
C|b—c —c
Db 0

General two-player games
P | Cooperator (C') Defector (D)
C | Reward S uckers payoff
D | T emptation P unishment




Social Dilemmas

The fundamental problem of cooperation:

P | Cooperator (C') Defector (D)

Clb—c —c

D|b 0]

The snowdrift game:

P | Cooperator (C') Defector (D)

C b /2 b—c]
D |[b] 0




Evolutionary Game Theory

Consider a population of size N
N. individuals play strategy A;: a; = N/N (frequency)

Composition of the population is updated by some
(evolutionary) rules: N; (t) — N, (t+dt)

Moran process:
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- pick two at random
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Rate Equations

“Chemical” reactions:
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Rate equations:
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a,(kAb — kcc)
b(kpc — kaa)
C(k,‘ca, — k‘Bb)



Fitness and replicator equations

Payoff matrix: P

A B

A
B

pi1:=R pi2:=8§
po1:=T pop:=P

Frequencies: a = Na/N, b= Np/N =(1-—a)

Fithess = expected payoff:
fala) =Ra+8(1—a), fsla)=Ta+P(1l—a)
f(a) = afa(a) + (1 — a)f5(a)
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Microbial Laboratory Communities:

model systems for competition,
cooperation, ...



Colicinogenic Bacteria

Toxin producing (colicinogenic) E.coli (C) carry a ‘col’
plasmid: genes for colicin, colicin specific immunity
proteins, lysis protein

Colicin-sensitive bacteria (S)

Colicin-resistant bacteria (R) are mutations of S with
altered cell membrane proteins that bind and translocate
cocilin

C

R outgrows C.: C kills S
no cost for ‘col’

1L

R S

S outgrows R: better
nutrient uptake



B. Kerr et al., Nature 418, 171 (2002)
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Elementary notes on extinction times



Linear Death Process

Mean extinction time:

T = 7N +TNg-1t+ -+ T




Linear Birth-Death Process

Deterministic description: 0;N(t) = —(A — p)N(t)
Stochastic description (Master equation):
0;P(N,t) = A(N+1)P(N+1,t) + A\(N—1)P(N—1,t) — 2AP(N, 1)
~ A0% [NP(N,1)]

Frequency: z =+ 0, P(z,t) = DO? [z P(z,1)]
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Activated Dynamics

F(a)




Stochastic Dynamics: Extinction Times

= Neutral game: T ~N

= Stable reactive fixed point: T~ eV

= Unstable reactive fixed point: T ~In NN



The cyclic rock-scissors-paper game

In well-mixed populations



The Rock-Scissors-Paper Game

o ‘*. O ®q0
Consider a fixed population of
O ® O O ® () N individuals in a well mixed

environment (“urn model”)
~o V@ oo

A+B % At A /'A\'

B+C > B+B con
C+ASCHC |

Cyclic competition between three species A, B, C

T. Reichenbach, M. Mobilia and E. Frey, PRE (2006)



Deterministic Evolution

Rate equations: @ absorbing fixed point

&Y— a(k,b—k.c) @ reactive (center) fixed point
B(: b(kgc—k,a) 0@
0=c(k.a—kzb)

& X | coexistence

a+b+c=1

Constant of motion:
K = a(t)*® b(t)* c(t)*

cyclic trajectories around a
neutrally stable fixed point

.
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Stochastic Evolution

processes are probabilistic
K not a constant of motion

neutrally stable cycles!

“random walk” on phase portrait

& D
T~ N

Stochastic description in

stochasticity
causes loss of
coexistence

/g
terms of a probability density: /7 / 2.2

P(a,b,c;t) = P(x,t)




~The Law of the Weakest"“

M. Berr, T. Reichenbach, M. Schottenloher and E. Frey, PRL (2009)



0.6

Fix time scale: ky+kg+k-=1
Fix k-=0.35

As kg passes through 0.325 species A becomes
the weakest species.



E.coll

kc > ks > kg

The resistant strain has the smallest growth rate
and in this sense is the weakest.

Hence the resistant strain always survives!



In finite populations stochasticity causes loss of
coexistence.

The typical extinction time T Is proportional to
the population size, T ~ N (neutrality).

The weakest always wins the game for large N



May-Leonard Model (well mixed)

Species A,B,C and empty sites 0

Cyclic dominance (o)

AB — AO :
BC — BO

CA—CO

Without spatial structure
coexistence fixed point is
unstable

£ |oss of biodiversity
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Nonlinear dynamics

c 8,@ = F(a)
Jordan normal form: 8,5 = J§ + H (%)
Reactive manifold: yc = M(ya,yB)

Oya = c1ya +wys + (W2, y°) + o(y®)
Orys = ca1ys — wya + 9(¥*, ¥°) + o(y°)

z=NL(g)l
b




Normal form:

V3 o

2 3u+o
1 puo
2 3u+o
o(3u + 0)(48u + 110)
56(3p + 20)
V3(18u + 50)
48 + 110
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Polar coordinates

A=TCOS¢ 2zp=rsing

Limit cycle: r = y/c1/co



Mapping of the nonlinear rate equations to the
reactive manifold and reducing it to normal
form Is essential for understanding its well-
mixed dynamics...

... and also the spatial dynamics!



Spatial Games:

May-Leonard Model



Local Interaction Rules

selection iroductlon
l c ﬁll Bl - Il

birth

7N
= HlE HEE
dominance <..= ==.

>
exchange




May-Leonard Model on a Lattice (N=L?)

Add migration (g) ) -

macroscopic J) — :
diffusion 217




Stablility of Biodiversity?

» For well mixed populations biodiversity Is lost!

» |s there a critical value for the diffusivity D below
which biodiversity is maintained?

» If yes, what Is the nature of the transition?

Extensivity: let T be the typical extinction time and N
the size of the population (system)

BN =y super-extensive / stable
T/N — O(1) extensive/neutral/ marginal

T/IN — 0 sub-extensive / unstable




Diversity Is lost above critical Diffusivity

{-}—4

D

Pext.

Extinction

Extinction probability,

D, 0.001

Diffusivity, D
T. Reichenbach, M. Mobilia and E. Frey, Nature (2007)



Loss of Biodiversity

» For large systems there is a well defined
threshold value D, (u,c) for the mobility.

» Loss of biodiversity seems to be related to the
size of the spatial structures (spirals) in the
population.



THEORETICAL ANALYSIS:

ROLE OF NONLINEARITY & NOISE



Reaction-Diffusion equation

l

[ O:z = DV?z+4 (c1 —iw)z — ca(l +ic3)|z|*2 J

Complex Ginzburg-Landau equation
—— Spiral waves



Front propagation into unstable states

W. Van Saarloos, Phys. Rep. 386, 29 (2003)



What about noise?



PDE
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T. Reichenbach, M. Mobilia and E. Frey, PRL (2007)



How good Is such a description?

D=3x%x10"1 D=3x10"% D=1x%x10""%

Stochastic reaction- dlffus,lon'equatlons



Spatial Correlations

g;(r,0)=(a(r,t)a, (0.t)) - (a(r.t))(a,(O,1))

0.2
0.15 | 0.1 F
S 5
< 2, o
S o1 B = VD
= DAY corr ™
© 0.01 | 3
E .»:‘ | g gl i sl
g 0.05 T 1e-06  1e-05  0.0001
R (diffusion) D
g M. =" e, 1ALLICE SIMUlatioN
s stochastic PDE

0 0.1 0.2 0.3

(distance) r

£ raising the diffusion constant D
Increases the size of the spirals



Temporal Correlations

g;(0,t) =(a(r,t)a; (r,0))—(a(r,t))(a(r,0))

(L2

AR N
YV,

0 100 200
(time) t

(autocorrelation) gu, (t)

lattice simulation
stochastic PDE

g the rotation frequency is a function of
the reaction rates n and ¢ only



omplex Ginzburg Landau equation
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Project onto reactive manifold

Neglect the noise

o T. Reichenbach, M. Mobilia and E. Frey, J. Theor. Biol. 254, 368 (2008)



(velocity) v*/vD

(wavelength) \/vD

Compare CGLE and stochastic PDE’s

1

spreading velocity
0.5
— /1 o
0.25 | ’U* — 2 D ¢_ M
23u+o
0.125 |
sttt
(reproduction rate) p
128 wavelength of spirals
64 | 27TC3 V D
A= -
.| 1/01(1—\/1—|—c3)

0.008 004 0.2 1 5 25
(reproduction rate) p



State Diagram

The CGLE allows to calculate the state diagram

C

D 0.001 F

critical diffusion | uniformity
constant '

0.0001 [

smaller 3 strongly

biodiversity

o=1

§| D, saturates as B >y

reduces D,

1
U (growth rate)

100




Direct vs. Indirect Dominance

Selection (o) Growth (u) Direct dominance (1)
AB — A0 AO) — AA AB — AA
BC — B0 B0 — BB BC — BB
CA— C0 C0— CC CA— CC

C =22 -0 |
Eckhaus instability bifurcation point

T. Reichenbach, and E. Frey, PRL 101, 058102 (2008)



Stability Scenarios for Direct Dominance
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Spatial structures are predominantly determined by noise

Patterns have an ambiguos impact on biodiversity (3 regimes)



Conclusions

= Well-mixed populations: law of the
weakest.

= Local interaction: pattern formation
and biodiversity.

= There Is a mobility-threshold above
which biodiversity Is lost; need to
characterize the transition in terms of
extinction time scales.
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