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Morphodynamics and Imaging
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Electron Cryo-Microscopy (cryoEM)
The Big and Bold: The electron
cryo-microscope in Osaka, Japan.

cryoEM is noisy

Images generated in cryoEM are typically
low contrast, extremelly noisy (SNR
below 1), large in size (already at 8K x
8K) with cryo-tomograms having from
million to billion voxels.
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Typical cryoEM Image
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cryoEM - peptoglycan chain in C. crescentus

Fast Nonlocal Means Denoising of cryoEM Images, A.
Cunha, J. Darbon. G.J. Jensen, Asia-Pacific Congress
on Electron Tomography, Brisbane, Australia, 2009.
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cryoEM - Single Particle Analysis
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MRI

Denoising of a high resolution MRI image (acquired at 7.0 Tesla):

Efficient and Robust Restoration of High Resolution MRI, A. Cunha, J. Darbon, 5th European
Congress on Computational Methods in Applied Sciences and Engineering, Venice, Italy,
2008.
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Nonlocal Means

Nonlocal Means
The nonlocal means approach is a neighborhood filtering scheme where similarity
between patches around pixels is used to restore pixel values.
A review of image denoising algorithms, with a new one, A. Buades, B. Coll, J.M. Morel, SIAM
Multiscale Model. Simul. 4(2), 2005.

nonlocal means as a weighted average

When restoring the value ui of pixel i nonlocal
means considers the contribution of pixels j
belonging to its neighborhood Ni where
similarities wij between patches centered at i and
j are taking into account:

ui =
X

j∈Ni

wijP
k wik

vj , ∀i ∈ Ω

The method restores images including textures
while keeping the image geometry intact.
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Nonlocal Means

ui =
X

j∈Ni

wijP
k wik

vj

wij = e−d2
ij /h2

dij = ||vPi − vPj ||
p
σ,Lp

, p = 1, 2

parameters are then h, |Ni |, |Pi |

Computing the weights for every pixel
can be quite expensive when using a
standard sliding window approach.
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Rewriting of Nonlocal Means

Fast Nonlocal Filtering Applied to Electron Cryomicroscopy, J. Darbon, A. Cunha,
T.F. Chan, S. Osher, G.J. Jensen, IEEE ISBI 2008, pp. 1331-1334.

We depart from the sliding window approach and resort to more efficient strategies
to deliver a fast algorithm and implementation in contemporary shared memory
computer architectures. Some features of our implementation are:

• Instead of sliding images use shifted images to obtain differences in place

• In the tradeoff between memory and speed we favor speed (for every image
we store another 4 extra auxiliar images to do fast computations)

• Partition the input image into as many computer cores as possible (domain
decomposition)

• Vectorization of all operations (optimize cache locality)

• Use SIMD parallel instructions for single precision floats (AMD and Intel
chipsets)
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Timings

Timings, not included I/O, are averaged after 40 runs in the same image on a AMD
x64, dual core, 2.8GHz platform. We achieve linear scalability.
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Arabidopsis thaliana

Alexandre Cunha (Caltech) Computational Image Analysis KITP UCSB September 2009 17 / 44



Morphodynamics Content Denoising Arabidopsis Segmentation Math Morphology

Denoisig of meristem
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fNLMEANS: Fast Nonlocal Means

And example of the robust denoising method. We apply denoising in images before
further processing. It does help in segmentation and it is a major contributor to the
edge localization method we use to segment cells in sepals and meristem.

Alexandre Cunha (Caltech) Computational Image Analysis KITP UCSB September 2009 19 / 44



Morphodynamics Content Denoising Arabidopsis Segmentation Math Morphology

ACTIWE: Active Contours Without Edges

ACTIWE is an implementation of the Active Contours Without Edges variational
model for segmenting gray level images, introduced by Chan and Vese (IEEE TIP
10(2), 2001):

min
φ
→ J (φ, c1, c2) =

Z

Ω

(u − c1)
2Hε(φ)dx +

Z

Ω

(u − c2)
2(1− Hε(φ))dx

+ µ

Z

Ω

|∇Hε(φ)|dx

where Hε(φ) ∈ [0, 1] is the ε-mollified Heaviside of the level set function φ(x) and

c1 =

R
uH(φ(x))dxR
H(φ(x))dx

(average inside)

c2 =

R
u(1− H(φ(x)))dxR
(1− H(φ(x)))dx

(average outside)

This level set based model can be viewed as a rubber band (the interface where
φ(x) = 0) with stiffness µ separating an image into inside and outside regions
having, respectively, average intensities c1 and c2.
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ACTIWE: Active Contours Without Edges

We cast the minimization problem as a geometric flow of the corresponding
Euler-Lagrange PDE of the energy:

dφ
dt

= δε(φ)[µκ(φ)− (u − c1)
2 + (u − c2)

2]

where δε(φ) is the Dirac delta applied to φ and κ(φ) is the curvature of the rubber.
We solve this PDE using a stable (CFL condition) finite difference scheme:

• Starting with an initial guess φ0, compute c0
1 , c0

2

• Propagate φ according to the discretization of the above PDE,
φk = f (φk−1, ck−1

1 , ck−1
2 , ∆t)

• Recompute c1, c2 for the newly computed φk and repeat

• Convergence is achieved when |ck
1 − ck−1

1 | < ε (same for c2) or a maximum
number of iterations is achieved
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ACTIWE - Whole Sepal Segmentation

Example: segmenting a whole sepal (its gray level version):

Alexandre Cunha (Caltech) Computational Image Analysis KITP UCSB September 2009 22 / 44

Screen Screen



Morphodynamics Content Denoising Arabidopsis Segmentation Math Morphology

ACTIWE - Whole Sepal Segmentation

Achieving good results do depend on initial conditions: the initial zero level set
interface (where do we start the rubber) and the rubber stiffness are major players.

• top row: starting from 6
small circles and a soft
rubber (µ = 0.2) leads to
disjoint regions (a correct
result as the inner and most
outer regions have similar
average intensities - see 3rd
column)

• bottom row: using a single
initial circle with a stronger
rubber (µ = 0.5) gives the
desired result.
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ACTIWE - Whole Sepal Segmentation

By knowing the limitations of the method the biologist could offer a simple
alternative to increase the success rate of the algorithm: make sepals more
homogeneous by staining them with a stronger marker:
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ACTIWE - Whole Sepal Segmentation

We then achieve a fully automatic segmentation with 100% success rate. Below
are automatically segmented masks for 3 different sets of sepals (mutants and
wild):
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ACTIWE - Segmenting Sepal Cells

ACTIWE segmentation of cells in a sepal. We experimentally confirmed the
benefits of denoising before segmenting with the Chan & Vese model even though
the model itself is capable of segmenting noisy patterns.
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Poor quality images

The karma of poor quality images is not going to disappear. We most often have to
deal with images acquired in less than perfect conditions, containing different,
non-uniform patterns of defects. We sometimes can’t afford discarding high value
images, taken of plants in vivo.

We aim to offer the user/biologist means to fix errors either due to the algorithms or
due to poor image quality. This is in line with the principles of the contemporary
Human Computation paradigm.
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Human Computation

Human Computation : because images can be quite complex and computer vision
solutions to interpret them are limited.

reCAPTCHA: Human-Based Character Recognition via Web Security Measures, L.
von Ahn, B. Maurer,C. McMillen, D. Abraham, M. Blum, Science 321, Sep. 2008.
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SEMSEh

Computational Morphogenesis. Tools for Simulating Cell Growth and Division in Arabidopsis
thaliana, A. Cunha, A. Roeder, M. Heisler, E. Mjolsness, E. Meyerowitz, Bioimage Informatics
Conference, HHMI, April 2009.

SEMSEh stands for Segmentation Made Simple and Human. It is our attempt to
(re)introduce the human factor to deal with problems computationally intractable.
We can’t expect to write robust algorithms to detect and fix general defects
(missing information) in poor quality images. We ask the human to do it instead.

Advantages:

• + Empower the end user to intervene in the delivery of expected results

• + Provide solutions in a fraction of time as compared to usual approaches
(lengthy algorithm + code development)

• + Control the quality of results without distorting data

• + Provide feedback that might leverage algorithm developement

Disadvantages:

• - Manual intervention/editing only feasible for small data sets

• - Disagreement between different users of what is correct
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SEMSEh and Mathematical Morphology

We realize SEMSEh through the combination of our robust filter and the fast and
elegant solutions provided by mathematical morphology operators.

Steps we adopt in segmenting with math morphology:

• Denoise input image

• If necessary, use high boost filtering to accentuate edges

• For sepals, compute Prewitt edges

• Then apply the following sequence of operations: threshold, majority filling (fill
holes), thinning (generate one piel wide lines), pruning (remove budds and
open lines), cleaning (remove isolated single pixels)

• If results are OK, done! Otherwise, let user intervene to improve results

User intervention is not on the original image, but on the thick edges generated
prior to thinning. User has to fill or create holes in a binary image. In our experince,
less than 3% of the pixels in the edges are manually edited to obtain good
quality results.
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SEMSEh and Mathematical Morphology

A typical confocal, maximum intensity projection image of a sepal:
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SEMSEh and Mathematical Morphology

Segmentation of a sepal and the connectivity information of cells provided as a
table (after running a connected components search):
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Denosing of meristem

A confocal microscopy z-stack of a meristem; cell walls are shown in green and
nuclei region in red:
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Segmentation of meristem layers

Segmenting slice #4 of cofocal image of meristem:
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Segmentation of meristem layers

Segmenting slice #6 of cofocal image of meristem:
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Segmentation of meristem layers

Segmenting slice #8 of cofocal image of meristem:
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Segmentation of meristem layers

Segmenting slice #10 of cofocal image of meristem:
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Segmentation of meristem layers

Superposition of all segmented slices:
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Morphology - Junction detection

Junctions are singular points where 3 or more cell walls meet. They are
crucial marks in the identification of the topology of non-manifold surface meshes
created to represent cell walls.

We use template matching to detect junctions in our one pixel wide segmented
cell walls:

• Let W = {p|p ∈ cell wall} be the set of pixels belonging to cell walls;

• Let tp = (d0d1 . . . d7) ∀p ∈ W be the 3x3 neighborhood patch (minus p)
centered around wall pixel p. Note that tp is an ordered 8 bit word with binary
entries di ∈ {0, 1}7

i=0;

• Let T = {ti |ti = (b0b1 . . . b7)i , i = 1 . . . 24, bi ∈ {0, 1}} be the set of binary
words ti representing the possible 3x3 junction templates (minus center pixel)
encountered in one pixel wide lines (there are only 24 of them, |T | = 24);

• A wall pixel p is a junction iff tp ∈ T
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Morphology - Junction detection

The 24 junction templates, each represented by a 8 bit word (1 byte per template)
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Morphology - Junction detection

Junctions are shown as centers of the red circles in the image
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Morphology - Junction detection

Zoomming in in the previous slide picture:
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Non-manifold mesh

We stack a few copies of a same segmented slice to form a L1 layer of cells in the
meristem. While this does not give the precise geometry it is a good approximation
as compared to fully polygonal models describing the meristem.
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The end

Thank you!
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