
Developing methods for
developmental modeling:

Learning reduced stochastic dynamics
and

Algebras of dynamic structures

KITP, UC Santa Barbara
15 August 2019

Updated refs: 10 Sept 2019

Eric Mjolsness

University of California, Irvine
http://emj.ics.uci.edu

http://www.ics.uci/edu/~emj

Acknowledgements
• Modeling & computing

• Oliver Ernst (UCSD), Tom Bartol (Salk), Terry Sejnowski (Salk)

• Cory Scott (UCI), Bob Bird (LANL), Eric Medwedeff (UCI)

• Plant Biology

• Elliot Meyerowitz (Caltech), Ray Wightman (SLCU)

• Funding: HFSP, NIA/NIH

• Visits: KITP, CNLS, … SLCU

Outline
• This is a talk about methods - computational and

mathematical

• Preamble: “Principles in biology” (1 slide)

• Machine learning for model reduction: Dynamic Boltzmann
Distributions

• Algebra of dynamic spatially embedded graphs (structures),
as semantics for languages sufficient for bio model reduction

• Epilogue: A conceptual architecture for model stacks (3 slides)
Mappings:

Semantics

Reduction of models

Analysis of models

Implementation of models

Ψ
ℛ
𝒜
ℐ

Physics++
Math(s)

Computing

Biology

Chemistry
-biophysics

-emergent dynamics

-model analysis

Preamble:
Some candidate bio “principles”

• Biophysical

• scarce resources: Follow the … energy, elements/small molecules; information, proximity/access

• specific feedback inhibition in biosynthesis [Umbarger 1950]

• co-option of emergent properties (biomechanics, self-organization, phase separation, …)

• regeneration of ~modular subunits => robustness

• dynamic structures (~spatially embedded graphs) recur at all scales

• Informational

• Information bottlenecks are key (e.g. genome; cell-cell signaling; spatial info flow in cell & dev …)

• regulation, replication, … are catalysis by information. Other processes produce/consume information.

• internal representations (of world, self) are highly functional as reduced models. (E.g. positional
info~charts)

• meta-evolution works (evo of evo; evo of sub-evolutions)

• Methodological

• We’re not smart enough to just think it all through (but we should try anyway; then use cyborg mode …)

• mathematical/computational models, simulations, & analyses are essential tools for understanding …

• but also automated multiscale model stacks ⇒ numeric (ML) plus symbolic AI needed !

(Somewhat standard)
Reduced model examples

• Well-mixed mass action concentration models of
biochemical networks

• PDE mass action reaction-diffusion models
• Cell-centered biomechanical models of SAM
• Vertex biomechanical models of animal epithelia
• FEM multi-compartmental biomechanical models
• Mean field theory approaches to X
• Analyses:

• topology of biomech models
• phase diagram; bifurcation diagram

�5

Learning reduced stochastic
dynamics

Multiple Scales of Synapse

• multiscale modeling of synapse in MCell

• methods vs. problem scale

[O. Ernst / UCSD]

UCI Morphodynamics

E.g.: CaMKII Signaling Model
interacting particles with dynamical state information

[Pepke et al., PLoS Comp Bio, 2010]

[Phys Bio 2015] [Johnson PhD thesis 2012].
Original model: [Pepke et al. 2010]

…

ℛ

UCI Morphodynamics

GCCD: Target and Approximate
Stochastic Dynamics

• Target stoch. dynamics: Chemical master equation
• i.e.

• Approximation: Boltzmann/MRF + parameter ODEs

• Error criterion: L1-regularized sum squared error

• Name: Graph-Constrained Correlation Dynamics
• “Graph” = assumed MRF structure graph; “Correlations” =

[Physical Biology 2015]

ℛ

GCCD eg. Synapse model spike train

• Fine scale: rule-based particle methods
• Coarse scale: time-varying Boltzmann distribution

[Johnson et al.,
Physical Biology 2015]

ℛ

UCI ICS CCM

Mapping: Model reduction

• Nonspatial:
–Graph-Constrained Correlation Dynamics
–warmup case for …

• Spatial generalization:
–Dynamic Boltzmann distributions

Δt

Δt

ℛ

Ψℛ ≃ ℛΨ

UCI Morphodynamics

Slides: Oliver Ernst, Salk
O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

ℛ

Reduced model is linear in

fine-scale model sum over

processes

⇒ respects model structureℛ

… Higher-order calculus!
Slides: Oliver Ernst, Salk O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

·νk(x) = Fk[{ ·νk}K
k=1]

�14

O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

�15

O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

ℛ

�16

Learning

Reaction-

Di↵usion

Systems with

Spatial Dynamic

Boltzmann

Distributions

Oliver K. Ernst

Biochemistry at

Synapses

Model reduction

Dynamic

Boltzmann

Dists.

Spatial Dynamic

Boltzmann

Dists.

Lattice Systems

Future

27/27

What can analytic solutions help here?

Slides: Oliver Ernst, Salk

Spatial Dynamic Boltzmann
Distributions

ℛ

O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

BMLA-like Learning Algorithm

O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

ℛ

Adjoint method BMLA-like
learning algorithm

�18[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]

Benefit of Hidden Units
Network: fratricide + lattice diffusion

ℛ

[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]

Benefit of Hidden Units
Network: fratricide + lattice diffusion

MSE of 4th order stats

ℛ

• Learned DBD ODE RHS, without and with hidden units

[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]

Rössler Oscillator in 3D
• Learned DBD ODE RHS:• Function:

[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]

Rössler Oscillator in 3D
• Learned Configuration• Learned correlations:

[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]

Learned model reduction
maps: Implications

• We can and should seek not models, but model stacks

• simulation = model0 ↪︎ model1 ↪︎ … ↪︎ modeln = analysis

• each reduction is conditional

• great computing resources required at all levels - but
becoming available

Algebras of dynamic
structures

Living matter:
Tissues at cellular scale

Spring biomechanics:

Voronoi (or power) diagrams

fit SAM geometry

Dynamic cell structures in
Drosophila embryo

Intercalation and convergent extension observed during germ band elongation in
Drosophila embryo. Note topological rearrangements. [Bertet et al. 2004]

Dynamic bio structures
• geo-cell complexes of bio-cells in tissues

• cytoskeleton

• supercellular cables

• axons & dendrites

• cytonemes

• …

• cell-centered and vertex biomechanical models

• PDE adaptive meshes and grids

More cortical microtubules, color coded by growth vs shrinkage, in 3D.
From Ray Wightman SLCU 2015.

UCI Morphodynamics

Microtubule dynamics

Cortical microtubules in Arabidopsis petiole cells.
Movie with Ray Wightman SLCU May 2015

WT data.
Also have mutants: spiral2 and botero

More cortical microtubules, color coded by growth vs shrinkage, in 3D.
From Ray Wightman SLCU 2015.

UCI Morphodynamics

Microtubule dynamics

Cortical microtubules in Arabidopsis petiole cells.
Movie with Ray Wightman SLCU May 2015

WT data.
Also have mutants: spiral2 and botero

More cortical microtubules, color coded by growth vs shrinkage, in 3D.
From Ray Wightman SLCU 2015.

UCI Morphodynamics

Microtubule dynamics

Cortical microtubules in Arabidopsis petiole cells.
Movie with Ray Wightman SLCU May 2015

WT data.
Also have mutants: spiral2 and botero

Bundling or Zippering

Collision catastrophe

Simulated bundling,
catastrophe

Dustin Maurer + Francois Nedelec

Simulated bundling,
catastrophe

Dustin Maurer + Francois Nedelec

MT fiber
Stochastic Parametrized Graph Grammar

[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]

MT fiber
Stochastic Parametrized Graph Grammar

[Chakrabortty et al.
Current Biology 2018]

[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]

MT fiber
Dynamical Graph Grammar
(hand-transformed from stochastic G.G.)

𝒳

[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]

MT fiber
Dynamical Graph Grammar
(hand-transformed from stochastic G.G.)

[Chakrabortty et al.
Current Biology 2018]

𝒳

[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]

Operator algebra for
Pure stochastic chemical reactions
• For reaction/rule r:

• For reaction/rules r1 and r2:

Ŵ{m(r)
i }→{n(r)

i } = k(r)∏
i

(̂ai)n(r)
i (ai)m(r)

i

nα ∈ ℕ : [aα, ̂aβ] = δαβI , i . e .
aα ̂aβ = ̂aβaα + δαβIα

nα ∈ {0,1} : aα ̂aβ = (1 − δαβ) ̂aβaα + δαβZα

where (n)l ≡ {n!/(n − l)! for l ≤ n;
0 otherwise .

Why: ∂m
x (xnf(x)) = binomial sum

Ψ

Lie Algebra for
Pure stochastic chemical reactions
• Rotation group:

• Curvature in a Lie group w invariant metric:

• For reaction/rule r:

• For reaction/rules r1 and r2:

�36

Ŵ{m(r)
i }→{n(r)

i } = k(r)∏
i

(̂ai)n(r)
i (ai)m(r)

i

where (n)l ≡ {n!/(n − l)! for l ≤ n;
0 otherwise .

R(X, Y)Z =
1
4

[[X, Y], Z]

[X, Y] = Z + cyclic

[aα, ̂aβ] = δαβI

⃗l ≠ ⃗0

Ψ

Particle to Structure Dynamics
• Particle reactions/transitions, with params

• Labelled graph (structure) transitions

•

W

(and can integrate ODE rules too)

Ψ

Particle to Structure Dynamics
• Particle reactions/transitions, with params

• Labelled graph (structure) transitions

•

W

[EM, MFPS Proc., ENTCS 2010]

(and can integrate ODE rules too)

(and can integrate ODE rules too)

∝

Ψ

Graph rewrite rule operators

• G = LHS labelled graph, G’ = RHS labelled graph

[EM, MFPS Proc. 2010]

τ = 1

τ = 2

τ = 3

τ = 3

τ = 3

τ = 1

τ = 2

Ψ

MT Treadmilling Rules

≃ I
(if dangling edges are removed)

∝

Growth vs. Bundling

bundling

+ end growth

∝

∝

Growth vs. Bundling

expected

rare

energetically

disfavored

• Baker Campbell Hausdorff theorem
• => operator splitting algorithms e.g. Trotter Product Formula …

• Time-ordered product expansions =>
Stochastic Simulation Algorithm (SSA)
– [EMj, Phys Bio 2013]

– weighted SSA (wSSA) possible too

Why operator algebra
yields algorithms

ℐ

UCI Morphodynamics

Generation of valid algorithms,
continued

[Campbell-Baker-Hausorff]

[Zassenhaus]

ℐ

Product Theorems
• Semantics:

• Calculate product … ∝

∝

𝒜

(compositional)

Product Theorems

40 Eric Mjolsness

Fock spaces and master equations built from a collection of rule-level opera-
tors generalizing the Heisenberg algebra creation/annihilation operators could
express graph rewrite rules. They introduce operator representations similar
to our number basis by way of many graph-counting “observable” operators
ŴLHSrÑLHSr (“ N pLHSrq “ Dr in our notation - see Corollary 2 below). They
also derive di↵erential equation dynamics for graph moments in terms of other,
generally higher order moments, which raises the classic moment closure prob-
lem of statistical mechanics. (Behr et al. 2016) also derive their operator con-
struction from the “double pushout” category-theoretic approach to defining
graph grammar semantics, which we will discuss briefly in Section 3.3.4 below.

By comparison, in this work we express Ŵr in terms of products of elemen-
tary creation and annihilation operators and thus provide an explicit imple-
mentation in terms of Boolean and/or integer-valued random variables. This
implementation map (a) enables the integration of graph rewrite semantics
with non-graph modeling language semantics defined in previous sections; (b)
enables the mechanical computation of fundamental commutation relations for
graph rewrite rules as in Propositions 1 and 2 and the Corollaries below, thus
in principle permitting the derivation and analysis of operator splitting sim-
ulation methods underwritten by e.g. the Baker-Campbell-Hausdor↵ (BCH)
theorem; and (c) supports the derivation of model reduction based moment
closure methods such as those of Section 4 below. In addition we include la-
bels for the graph vertices and show how other categories of spatially extended
objects can be mapped to and hence implemented in terms of such labelled
graphs.

As is the case for Equation (3), Equation (29) can be taken as a normal
form for rewrite rule dynamics, but now applied to graphs. We will show next
that (somewhat akin to the “Concurrency theorems” of the double pushout
approach discussed in Section 3.3.4 below, but more general) the product and
commutator of two such forms can be rewritten as a (possibly large) integer-
weighted sum of expressions having the same form, or a form of equivalent
meaning with extra factors of E that don’t a↵ect the active node set; however,
some of the weights may be negative.

3.3.2 Product of Graph Grammar Rules

We approach the mulitplication of grammar rule operators in two steps. First
we consider the simpler form omitting cleanup post-factors:

Ŵr 9 ⇢rp�,�1q
ÿ

ti1,...iku

«
π

p1,q1Prhsprq

´
âip1 iq1

¯g
1
p1 q1

�«
π

p1Prhsprq
pâip1�1

p1 qh
1
p1

�

ˆ
«

π

p,qPlhsprq

`
aipiq

˘gp q

�«
π

pPlhsprq
paip�pqhp

�
.

(33)

where hip P t0, 1u is an indicator function for inclusion of vertex ip inde-
pendent of its edges. This form can leave and/or delete undeleted hanging

Prospects for Declarative Mathematical Modeling of Complex Biological Systems 41

edges, owing to the lack of erasure post-factor. If all hip “ 1 this is the
form used in (Mjolsness 2010). The advantages of this form are that it is (a)
subpermutation-invariant with respect to indexing, like Equation (29), and (b)
already in normal form (monomial in â˚ times monomial in a˚) and therefore
the product of two such expressions takes the same general form, by repeatedly
using Equation (6d):

Proposition 1 The product of two operators taking the form of Equation (33)
can be rewritten as an signed-integer-weighted sum of expressions taking the
same form. The product and the sum are equal, and graph-equivalent, and each
is subpermutation-invariant with respect to indexing.

Proof: The product of two expressions of the form of Equation (33) initially
takes the general form

Ŵr2Ŵr1 9
`
⇢r1p�1,�

1
1
q⇢r2p�2,�

1
2
q
˘ ÿ

ti1,...ik1u

ÿ

tj1,...jk2u
«

π

p1,q1Prhspr2q

´
âip1 iq1

¯g
1
2,p1 q1

�«
π

p1Prhspr2q
pâip1�1

2,p1 qh
1
2,p1

�

ˆ
«

π

p,qPlhspr2q

`
aipiq

˘g2,p q

�«
π

pPlhspr2q
paip�2,pqh2,p

�

ˆ
«

π

p1,q1Prhspr1q

´
âjp1 jq1

¯g
1
1,p1 q1

�«
π

p1Prhspr1q
pâjp1�1

1,p1 qh1,p1

�

ˆ
«

π

p,qPlhspr1q

`
ajpjq

˘g1,p q

�«
π

pPlhspr1q
pajp�1,pqh1,p

�
,

(34)

with each g, h P t0, 1u. Recall that all a, â commutators are either zero, when
operator types or indices don’t match, or they are diagonal and a linear com-
bination of the identity and a normal form N “ âa matrix, multiplied by a
delta function that eliminates one or more indices from the sum over indices.

We repeatedly commute factors of â on line 4 to the left of factors of a on
line 3 until normal form - all creation operators to the left of all annihilation
operators - is restored. Each out-of-order product a↵â� is replaced in turn
using Equation (6d), which has several summands; distributing multiplication
over addition at each step, each summand has the property of reducing the
total (finite) number of out-of-order pairs by at least one pair; convergence to
termination at a finite sum of operator terms generated by symbolic commu-
tation, each in normal order, and each subpermutation invariant due to the
sum over its remaining indices, is thus ensured by induction. Upon termination
each elementary operator â↵ or a↵ will appear linearly, to the power zero or
one, in each summand, since a2

↵
“ 0 “ â2

↵
for all indices ↵; this fact eliminates

summands that aren’t multilinear (since all creation operators commute with
each other and hence can be collected by subscript within the normal form,

Prospects for Declarative Mathematical Modeling of Complex Biological Systems 41

edges, owing to the lack of erasure post-factor. If all hip “ 1 this is the
form used in (Mjolsness 2010). The advantages of this form are that it is (a)
subpermutation-invariant with respect to indexing, like Equation (29), and (b)
already in normal form (monomial in â˚ times monomial in a˚) and therefore
the product of two such expressions takes the same general form, by repeatedly
using Equation (6d):

Proposition 1 The product of two operators taking the form of Equation (33)
can be rewritten as an signed-integer-weighted sum of expressions taking the
same form. The product and the sum are equal, and graph-equivalent, and each
is subpermutation-invariant with respect to indexing.

Proof: The product of two expressions of the form of Equation (33) initially
takes the general form

Ŵr2Ŵr1 9
`
⇢r1p�1,�

1
1
q⇢r2p�2,�

1
2
q
˘ ÿ

ti1,...ik1u

ÿ

tj1,...jk2u
«

π

p1,q1Prhspr2q

´
âip1 iq1

¯g
1
2,p1 q1

�«
π

p1Prhspr2q
pâip1�1

2,p1 qh
1
2,p1

�

ˆ
«

π

p,qPlhspr2q

`
aipiq

˘g2,p q

�«
π

pPlhspr2q
paip�2,pqh2,p

�

ˆ
«

π

p1,q1Prhspr1q

´
âjp1 jq1

¯g
1
1,p1 q1

�«
π

p1Prhspr1q
pâjp1�1

1,p1 qh1,p1

�

ˆ
«

π

p,qPlhspr1q

`
ajpjq

˘g1,p q

�«
π

pPlhspr1q
pajp�1,pqh1,p

�
,

(34)

with each g, h P t0, 1u. Recall that all a, â commutators are either zero, when
operator types or indices don’t match, or they are diagonal and a linear com-
bination of the identity and a normal form N “ âa matrix, multiplied by a
delta function that eliminates one or more indices from the sum over indices.

We repeatedly commute factors of â on line 4 to the left of factors of a on
line 3 until normal form - all creation operators to the left of all annihilation
operators - is restored. Each out-of-order product a↵â� is replaced in turn
using Equation (6d), which has several summands; distributing multiplication
over addition at each step, each summand has the property of reducing the
total (finite) number of out-of-order pairs by at least one pair; convergence to
termination at a finite sum of operator terms generated by symbolic commu-
tation, each in normal order, and each subpermutation invariant due to the
sum over its remaining indices, is thus ensured by induction. Upon termination
each elementary operator â↵ or a↵ will appear linearly, to the power zero or
one, in each summand, since a2

↵
“ 0 “ â2

↵
for all indices ↵; this fact eliminates

summands that aren’t multilinear (since all creation operators commute with
each other and hence can be collected by subscript within the normal form,

*

(*)• Semantics:

• Product:

+ a variant which

 eliminates dangling edges

𝒜

[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]

𝒜

(compositional)

Computed Products
and Commutators

• Computation must yield the form:

• Cf. Heisenberg & rotation-group Lie algebras

• Particular cases simplify further
• eg. polymerization, dendromers, etc..
• analysis for compilation?

Ψ

Algebra of Labelled-Graph
Rewrite Rules

[EM, http://arxiv.org/abs/1909.04118]

Ψ

http://arxiv.org/abs/1909.04118

Algebra of Labelled-Graph
Rewrite Rules

G1;2 in
nodes = Gr1 in

nodes
·∪ (Gr2 in

nodes∖H̃nodes) G1;2 out
nodes = Gr2 out

nodes
·∪ (Gr1 out

nodes∖Hnodes)

G1;2 in
links = Gr1 in

links ∪ h−1⋆(Gr2 in
links∖H̃links) G1;2 out

links = Gr2 out
links ∪ h⋆(Gr1 out

links ∖Hlinks)

Ka = Gra in
nodes ∩ Gra out

nodes

K1;2 = (K1∖Hnodes ∪ h−1(K2∖H̃nodes) ∪ (K1 ∩ h−1⋆(K2))

Ψ

[EM, http://arxiv.org/abs/1909.04118]

http://arxiv.org/abs/1909.04118

Product Theorems
• Double pushout semantics:

• Commutator=0 condition

3.3 Local Church–Rosser and Parallelism Theorems for GT Systems 49

graph of the first typed graph production enter, and the left-hand side and
the gluing graph of the second typed graph production setF lag. Accordingly,
the context graphs, but not the whole direct typed graph transformations, are
depicted:

K1 R1 L2 K2

enter setF lag

P R

T

F2

P

T

R P R P R

crit start

non−active

P
2

T

F2

P
1

R

non−active

start

active

crit

P
2

TP
1

R

non−active

start

active

P
2

T

F2

P
1

R

active

crit
f2g1

n2 m3

D′
1 G′′ D′′

2

... ...

On the other hand, the first two direct typed graph transformations

S
setF lag,m

=⇒ G1
setTurn1,m1=⇒ G5 of the typed graph transformation S ⇒ G5

in Example 3.6 are sequentially dependent: the setTurn loop at the process
node is in the intersection of the first comatch and the second match, but it
is not a gluing item, since it is deleted by the second transformation. ⊓#

In order to show the Local Church–Rosser Theorem (Theorem 3.20), we
need the following more categorical characterization of independence. This
will be used as a definition of independence in Part II and allows us to prove
Theorem 5.12, the categorical version of Theorem 3.20.

Fact 3.18 (characterization of parallel and sequential independence).

Two direct (typed) graph transformations G
p1,m1=⇒ H1 and G

p2,m2=⇒ H2 are par-
allel independent iff there exist morphisms i : L1 → D2 and j : L2 → D1 such
that f2 ◦ i = m1 and f1 ◦ j = m2:

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

l1r1

m1k1n1

f1g1

l2 r2

m2 k2 n2

f2 g2

ij

H. Ehrig · K. Ehrig
U. Prange · G. Taentzer

Fundamentals
of Algebraic
Graph Transformation

With 41 Figures

123

78 4 Adhesive High-Level Replacement Categories

pushouts and pullbacks. The name “van Kampen” is derived from the rela-
tionship between these squares and the Van Kampen Theorem in topology
(see [BJ97]).

Definition 4.1 (van Kampen square). A pushout (1) is a van Kampen
square if, for any commutative cube (2) with (1) in the bottom and where
the back faces are pullbacks, the following statement holds: the top face is a
pushout iff the front faces are pullbacks:

A′

B′

A

B

C′

D′

C

D

(2)

m′

a

f ′

g′

b

m
f

n′

c

d

n
g

A B

C D

(1)

m

f

n

g

It might be expected that, at least in the category Sets, every pushout is
a van Kampen square. Unfortunately, this is not true (see Ex. 4.4). However,
at least pushouts along monomorphisms (injective functions) are VK squares.

Fact 4.2 (VK squares in Sets). In Sets, every pushout along a monomor-
phism is a VK square. Pushout (1) above is called a pushout along a monomor-
phism if m (or, symmetrically, f) is a monomorphism.

Proof. Consider the pushout (1) above, where m is a monomorphism, i.e.
injective. We have to show that, given a commutative cube (2) as above with
(1) in the bottom, where the back faces are pullbacks, the following holds:

the top face is a pushout ⇔ the front faces are pullbacks.

If m is a monomorphism, we also have the result that n, m′, and n′ are
monomorphisms, since monomorphisms in Sets are closed under pushouts
and pullbacks (see Facts 2.17 and 2.23). Now we show the statement.

Part 1 (“⇒”). Assume that the top face in (2) is a pushout. Since pull-
backs are unique up to isomorphism, it is sufficient to prove that B′ and C′

are isomorphic to the corresponding pullback objects.
We have to show that:

1. B′ ∼
= PB1 :=

⋃
d1∈D d−1(d1) ×g−1(d1).

2. C′ ∼
= PB2 :=

⋃
d1∈D d−1(d1) ×n−1(d1).

1. Since PB1 is the pullback object over d and g and d ◦ g′ = g ◦ b, there
is an induced morphism i : B′ → PB1 with i(b′) = (g′(b′), b(b′)) for all
b′ ∈ B′.

in the category of graphs

• L, R = Left, Right graphs;
• K = shared graph;
• G = input, H = output
• Eg:

𝒜

Meta-graph grammar
for scalable implementation

• Transformation target for spatially embedded labeled graph
rewrite dynamics

• For computational reduction to scalable particle codes?

ℐ

Summit Architecture
(#1 in 2018-9)

• Each node:

• 2 x 22 cores/CPU ~1 TFlops

• 6xV100 GPU ~47 TFlops

• 4608 nodes

• ~200 PFlops

• ~340 tons

https://en.wikichip.org/wiki/supercomputers/summit

ℐ

“Cabana” particle sim
can be fast

Aaron Scheinberg and XGC team

ℐ

Cabana-friendly pseudocode:
“Cajete” MT prototype

w. Bob Bird, LANL
void evolve_particle_damped(particle_list_t& particles, size_t i)

{

 auto type = particles.slice<Type>();

 auto force_type_A = particles.slice<Type>()(i);

 auto velocity = particles.slice<Velocity>();

 auto position = particles.slice<Position>();

 auto length = particles.slice<Length>();

 if (force_type_A == positive)

 {

 // ith particle, property j (0..2)

i_1 = nbr_interior.i; j_1 = nbr_interior.j;
velocity(i,j) = v_plus * (1-length(i_1)/length_max) * u(i,j);

 position(i, j) += velocity(i, j) * delta; //?? + length(i);

for all nearby other fibers k {
alpha = - 2dcross((...), (...))/2dcross((...), (...)) ; // 2d cross product
gamma = - 2dcross((...), (...))/2dcross((...), (...)) ; // 2d cross product

// directional derivative of kappa * exp(- gamma^2/(2*epsilon^2)):
velocity(i,j) += kappa * u(i,j)*(-gamma/epsilon^2) * exp(- gamma^2/(2*epsilon^2));
elongation_speed(i_) += v_plus (v_plus + v_minus)*(length(i)/length_max) ;

}

 position(i, j) += velocity(i, j) * delta; //?? + length(i);
 }

 else if (force_type_A == negative)

 {
i_1 = nbr_interior.i;
velocity(i,j) = v_minus * (length(i_1)/length_max) * u(i,j);

 position(i, j) += velocity(i, j) * delta; //?? + length(i);

 }

 else if (force_type_A == intermediate)

 {

// i_1 = nbr1.i; j_1 = nbr2.j; i_2 = nbr2.i; j_2 = nbr2.j;
ftype1 = nbr1.force_type_A;
ftype2 = nbr2.force_type_A;
if ((ftype1 == positive && ftype2==negative)||(ftype1 == negative && ftype2==positive))

elongation_speed(i) += v_plus (v_plus + v_minus)*(length(i)/length_max) ;
else if (ftype1 == positive && ftype2==positive) elongation_speed(i) += 2*v_plus* (1-length(i)/length_max);
else if (ftype1 == negative && ftype2==negative) elongation_speed(i) += 2* v_minus * (length(i_1)/length_max);

length(i) += elongation_speed(i)*delta;

 }

 else if (force_type_A == junction)

 {

 }

 else {

 std::cout << " ??? " << std::endl;

 }

}

ℐ

WoldeGabriel et al., NM Geology 5/16

Cajete MT: First Light

Eric Medwedeff, UCI

Cajete MT: First Light

Eric Medwedeff, UCI

UCI Morphodynamics

Eg: Plant gene expression model
Declarative, with cell growth & division

�56
[Shapiro et al Frontiers
in Plant Science 2013]

Cf.
L-systems:

Dynamical Grammar example: Root growth

[Mironova et al., BMC Systems Biology 2010]

Active auxin transport

Dynamical Grammars:
[EM and Yosiphon, Ann. Math. AI 2006], [EM, Phys. Bio. 2013]

Symbolic transformation:
 {Reaction} --> {ODE}

• This can be done by meta-rules, in a meta-grammar
• As can many modeling-language extensions &

translations

Symbolic model transformations:
endless possibilities

• Meta-rules for transforming dynamics rules
– e.g. Reactions → ~ODEs
– e.g. detailed balance by arrow reversal
– generation of ML algorithms from models, > autodiff

• ~Model reduction by ML (linear combination)
• structural discovery of fast modes

• ~Reduction to spatial graph dynamics
• e.g. adaptive grids by graph rewrite rule

• emergent dynamical structures: tissue, cytoskeleton, …

Fields to Structures

• Dynamical Graph Grammars (DGGs):

• operator addition of reactions, GGs, ODEs;

• but what about PDEs?

• Fields: PDE differential operator dynamics in W

• Approximately eliminate fields by:

• Cell complexes in PDE (adaptive) meshing / FEMs, FVMs

Ψ, ℐ

Geometric meshing:
protective manifolds

[Rand and Walkington 2009]

Cf. [Murphy, Mount, & Gable 2001;

 Engwirda 2016]

Graph Grammars for
2D meshes

• Triangular:

• Cuboid:

•

ℐ

[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]

Higher level rewrite rules
• Identify strata

• Operator algebra semantics for strata and other slices

ℐ

[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]

Extended objects via slices
using graph homomorphisms

Antitubulin labelling in
premitotic epidermal cells

Datura stramonium
[Flanders et al.,

J. Cell Bio. 110, 1990].

Stratified space of MTs:

Operator Algebra variants:

Graded graph

Stratified graph

Abstract cell complex

Graded stratified graph

Graded abstract cell complex

ℐ

[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]

Stratified spaces, not cell complexes,
are necessary for cytoskeleton

Above: Antitubulin labelling at intact cell cortex
[DeBolt et al., PNAS 2007

supplementary info figure 8A.]

Left: Antitubulin labelling in
premitotic epidermal cells

Datura stramonium
[Flanders et al.,

J. Cell Bio. 110, 1990].

[Smith, Nat Rev MCB 2 2001]

UCI Morphodynamics

�66

Graph Lineage Definitions
• Hierarchical Graph Sequence: a mapping from ℕ into some sequence of graphs which

obeys the following:
• G0 is the graph with one vertex and one loop on that vertex
• Edge and vertex cardinality of graphs in the sequence grow at most “exponentially” in some base, b:

.
 

 

• Graded Graph: G is a graded graph if all of the vertices of G are labeled with non-
negative integers such that if (v1 , v2) is an edge, the labels of v1 and v2 differ by at most 1.
 

 

• Graph Lineage: a graded graph where the sequence of ΔL = 0 subgraphs is a HGS and the
subgraphs with ΔL = 1 are a HGS of bipartite graphs. The above is a graph lineage of path
graphs of length 2n.

• Hierarchitecture: A graph lineage, used as a model architecture.

Generating Graph Lineages
• One way to generate a graph lineage (or more generally, graded

graphs) is via local graph rewrite rules.
 

• Rules can be applied locally, or to all cells in a graph
simultaneously:

• Graph labels suppressed, but necessary
• More:

Local Firing Global Firing

Multiscale numerics:
Alg. Multigrid Methods for Graphs

G′� ≃ PTGP

UCI Morphodynamics

Define Graph Process
Directed “Distances”

• Definition requires constrained opt of diffusion operator:

• Constraints: orthogonality; sparsity?

• Optimize time & time dilation due to graph size:

• Can obtain P at early times (“rigid” vs “flexible” def of D):

• △≤ provable with weaker α :

:
restriction.prolongation

;

[C. Scott and EM, http://arxiv.org/abs/1909.04203]

http://arxiv.org/abs/1909.04203

Graph Distance
Experiments

• Triangle inequality

• Graph limits Novel di↵usion-derived distance measures for graphs: Properties and computation 31

Fig. 9. Cauchy-like behavior of graph distance as a function of sequence index, n. The distance between successive
square grids and all other graph sequences appears to diverge (the same behavior is seen for k-barbells). Notably, the
distance between Gridn⇥n and Grid(n+1)⇥(n+1) does not appear to converge, until much higher values of n (n > 100)
than the other convergent series. This may be because the distances calculated are an upper bound, and may be
converging more slowly than the ‘true’ optima.

6 Regularized Distance

We can add a regularization term to the graph di↵usion distance, as follows: define

Dreg(G1, G2) = sup
t

inf
P |C(P)

inf
↵>0

n���
���Pe

t
↵L1 � et↵L2P

���
���
F
+
���
���e

t
↵L1 � etL1

���
���
F
+
����etL2P � et↵L2P

����
F

o
(74)

We can show analytically that this distance satisfies the triangle inequality:

Theorem 8. Dreg satisfies the triangle inequality.

Proof. For graphs G1, G2, G3 and Laplacians L1, L2, L3, for any fixed t � 0, we have:

Dreg(G1, G3|t) = inf
P |C(P)

inf
↵>0

n���
���Pe

t
↵L1 � et↵L3P

���
���
F
+
���
���e

t
↵L1 � etL1

���
���
F
+
����etL3P � et↵L3P

����
F

o
(75)

 Dreg(G1, G3|t,↵ = 1) (76)

= inf
P |C(P)

�����PetL1 � etL3P
����
F
+
����etL1 � etL1

����
F
+
����etL3P � etL3P

����
F

(77)

= inf
P |C(P)

����PetL1 � etL3P
����
F

(78)

Suppose that

↵32, P32 = arg inf
a>0

inf
P |C(P)

n���
���Pe

t
↵L2 � et↵L3P

���
���
F
+
���
���e

t
↵L2 � etL2

���
���
F
+
����etL3P � et↵L3P

����
F

o
(79)

↵21, P21 = arg inf
a>0

inf
P |C(P)

n���
���Pe

t
↵L1 � et↵L2P

���
���
F
+
���
���e

t
↵L1 � etL1

���
���
F
+
����etL2P � et↵L2P

����
F

o
(80)

(81)

Then,

inf
P |C(P)

����PetL1 � etL3P
����
F

����P32P21e

tL1 � etL3P32P21

����
F

(82)

26 C.B. Scott et al.

which measures the degree to which a triplet of graphs violates the triangle inequality (i.e. falls outside of the
unit interval [0,1]), for approximately 3⇥104 such triplets. It is clear that, especially for the linear definition
of the distance, the triangle inequality is not always satisfied. However, we also observe that (for graphs of
these sizes) the discrepancy score is bounded: no triple violates the triangle inequality by more than a factor
of approximately 1.8. This is shown by the histogram of discrepancies in Figure 5. Additionally, the triangle
inequality is satisfied in 28184 (95.2%) of cases.

We see similar but even stronger results when we run the same experiment with D2 instead of D̃2; these
may also be seen in Figure 5. We calculated the discrepancy score analogously, but with D substituted for
D̃. We see similarly that the degree of violation is bounded. In this case, no triple violated the triangle
inequality by a factor of more than 5, and in this case the triangle inequality was satisfied in 99.8% of the
triples.

In both of these cases, the triangle inequality violations may be a result of our optimization procedure
finding local minima/maxima for one or more of the three distances computed. We also repeat the above
procedure for the same triplets of graphs, but with distances computed not in order of increasing vertex
size: calculating Disc(G2, G1, G3) and Disc(G3, G2, G1). All of these results are plotted in Figure 5 and
summarized in table 1.

Fig. 5. Histograms of triangle inequality violation. These plots show the distribution of Disc(G1, G2, G3), as defined
in the text, for the cases (a) left: the linear or small-time version of distance and (b) the exponential or arbitrary-time
version of distance. We see that for the sizes of graph we consider, the largest violation of the triangle inequality
is bounded, suggesting that our distance measure may be an infra-⇢-pseudometric for some value of ⇢ ⇡ 1.8 (linear
version) or ⇢ ⇡ 5.0 (exponential version). See Table 1 for a summary of the distance metric variants introduced in
this paper. We also plot the same histogram for out-of-order (by vertex size) graph sequences: Disc(G2, G1, G3) and
Disc(G3, G2, G1). Each plot has a line at x = 1, the maximum discrepancy score for which the underlying distances
satisfy the triangle inequality.

Square Grids Paths Cycles Multi-Barbells
Square Grids 0.0096700 0.048162 0.046841 0.63429

Paths 0.30256 0.0018735 0.010300 2.1483
Cycles 0.27150 0.0083606 0.0060738 2.0357

Multi-Barbells 0.21666 0.75212 0.72697 0.029317
Table 2. Mean distances between graphs in several lineages. For two lineages G1, G2 . . . (listed at left) and H!, H2, . . .

(listed at the top), each entry shows the mean distance D(Gi, Hi+1) (where the average is taken over i = 1 to 12).
As expected, we see that the distance from elements of a graph lineage to other members of the same lineage (the
diagonal entries of the table) is smaller than distances taken between lineages. Furthermore as expected, 1D paths
are more similar (but not equal) to 1D cycles than to other graph lineages.

with Cory Scott

MS in prep [C. Scott and EM, http://arxiv.org/abs/1909.04203]

http://arxiv.org/abs/1909.04203

UCI Morphodynamics

Key data type:
Stack of models

 w. conditional reductions, each model on the spectrum:
• pure chemical reactions
• parameterized object rewrite rules

– propensity functions
– differential equations (ordinary, stochastic, delay)

• graph grammar rewrite rules
• graph-limit rewrite rules

– support PDEs on Rn, manifolds, CCs, SSs
• sub-grammar calls, macros, types/inheritance

�71[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]

Epilogue
• Interlevel mappings in “morphodynamics”/dev

bio modeling are central to: AI for bio
• Such model reductions can be specified, curated,

optimized and learned computationally
– optimized and learned: Dynamic Boltzmann Distributions,

GCCD, machine learning methods
– specified: ~Dyn Graph Grammar high level languages +

graph limits. Microtubule, cell tissue models as test cases.
– curated: Tschicoma conceptual architecture; Cajete scalable

prototype

• Comments? Want to help? emj@uci.edu .

mailto:emj@uci.edu

Science

Modeling

Mathematics

Computing

!

Analytical

Predictions

Numerical

Predictions

Dynamics

 …

Analysis

 …

Geometry

Topology

Logic

…

Biology

molecular

 cellular

developmental

neuro

…

Chemistry

 …

Physics

biophysics

biomechanics

…

Algorithms

numerical algos

 optimization

…

Software systems

Computer architecture

…

Science

Modeling

Mathematics

Computing

Hierarchy labels

 Composition

	 Constituent

 Scale-change

 Boundary

 Reduction

 …

 Specialization

 Mutually exclusive

 Overlapping

 ….

Processes Objects

Expressions

⋉⊠

“Tchicoma” Architecture
for Mathematical Modeling

• Language meta-hierarchy: (a DAG with edge labels in a tree)

• Mappings therein:

Enables problem-solving
via chaining, theorem-proving

Foments abstraction
via commutation

respecting compositional structure

𝒳,

[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]

Conclusions
• Biological model reduction can be achieved by machine learning, in

spatial stochastic models (and easier ones). Reaction/diffusion
examples.

• Morpho-dynamic spatial structures (and easier models) can be
modeled by dynamical graph grammars with operator semantics. Bio-
universal; scalability is in progress. MT examples.

• Model stacks are the key data structure for understanding complex bio
systems. They require model reduction and bio-universal modeling
languages (perhaps as above). They can intersect productively, and
could be curated in a proposed conceptual architecture “Tchicoma”.

• Declarative modeling languages with operator algebra semantics can
support generic model reduction, hence model stacks.

• In these ways, both symbolic and numeric AI can be brought to bear
on understanding complex biological systems at their own scale.

Science

Modeling

Mathematics

Computing

!

Analytical

Predictions

Numerical

Predictions

Dynamics

 …

Analysis

 …

Geometry

Topology

Logic

…

Biology

molecular

 cellular

developmental

neuro

…

Chemistry

 …

Physics

biophysics

biomechanics

…

Algorithms

numerical algos

 optimization

…

Software systems

Computer architecture

…

A change of view
• Human, physics-

centric viewpoint:

• Computer viewpoint:

Physics++
Math(s)

Computing

Biology

Chemistry
-biophysics

-emergent dynamics

-model analysis

