Developing methods for developmental modeling: Learning reduced stochastic dynamics and

Algebras of dynamic structures

Eric Mjolsness

University of California, Irvine
http://emj.ics.uci.edu

KITP, UC Santa Barbara
15 August 2019
Updated refs: 10 Sept 2019

Acknowledgements

- Modeling \& computing
- Oliver Ernst (UCSD), Tom Bartol (Salk), Terry Sejnowski (Salk)
- Cory Scott (UCI), Bob Bird (LANL), Eric Medwedeff (UCI)
- Plant Biology
- Elliot Meyerowitz (Caltech), Ray Wightman (SLCU)
- Funding: HFSP, NIA/NIH
- Visits: KITP, CNLS, ... SLCU

Outline

- This is a talk about methods - computational and mathematical

Machine learning for model reduction: Dynamic Boltzmann Distributions

Algebra of dynamic spatially embedded graphs (structures), as semantics for languages sufficient for bio model reduction

- Epilogue: A conceptual architecture for model stacks (3 slides) Mappings:

Semantics

Preamble:
 Some candidate bio "principles"

- Biophysical
- scarce resources: Follow the ... energy, elements/small molecules; information, proximity/access
- specific feedback inhibition in biosynthesis [Umbarger 1950]
- co-option of emergent properties (biomechanics, self-organization, phase separation, ...)
- regeneration of \sim modular subunits $=>$ robustness
- dynamic structures (~spatially embedded graphs) recur at all scales
- Informational
- Information bottlenecks are key (e.g. genome; cell-cell signaling; spatial info flow in cell \& dev ...)
- regulation, replication, ... are catalysis by information. Other processes produce/consume information.
- internal representations (of world, self) are highly functional as reduced models. (E.g. positional info~charts)
- meta-evolution works (evo of evo; evo of sub-evolutions)
- Methodological
- We're not smart enough to just think it all through (but we should try anyway; then use cyborg mode ...)
- mathematical/computational models, simulations, \& analyses are essential tools for understanding ...
- but also automated multiscale model stacks \Rightarrow numeric (ML) plus symbolic AI needed!

(Somewhat standard)

Reduced model examples

- Well-mixed mass action concentration models of biochemical networks
- PDE mass action reaction-diffusion models
- Cell-centered biomechanical models of SAM
- Vertex biomechanical models of animal epithelia
- FEM multi-compartmental biomechanical models
- Mean field theory approaches to X
- Analyses:
- topology of biomech models
- phase diagram; bifurcation diagram

Learning reduced stochastic dynamics

Multiple Scales of Synapse

- multiscale modeling of synapse in MCell
- methods vs. problem scale

	Particle Distribution Uniform Non-uniform	
	Gridless SSA (Stochastic Sim. Algorithm)	Particle-Based (MCell)
	Gridless SSA	Gridded SSA
	Stochastic ODEs	Stochastic PDEs
Infinite	ODEs (Mass action)	PDEs (Finite elements)

E.g.: CaMKII Signaling Model

interacting particles with dynamical state information

[Pepke et al., PLoS Comp Bio, 2010]

```
(* CaM binding/unbinding free CaMKII *)
{CaM[n,c], CaMKII[num]} -> {Kk[n,c,0], CaMKII[num-1]},
    with[num*kon2[n,c,p0]/timeMultiplier],
{Kk[a0,b0,0], CaMKII[num]} -> {CaM[a0,b0], CaMKII[num+1]},
    with[koff2[a0,b0,0] If [a0>=0&&b0>=0,1,0]/timeMultiplier],
```


Figure 7.1: An MRF model of calcium binding, CaM/CaMKII interaction, and CaMKII dimerization.

GCCD: Target and Approximate Stochastic Dynamics

- Target stoch. dynamics: Chemical master equation

$$
\frac{d p}{d t}=W \cdot p \quad \text { i.e. } \quad \frac{d p\left(\left[n_{i}\right]\right)}{d t} \simeq \sum_{r} \rho^{\rho^{(r)}}\left(\prod_{j}\left(n_{j}-S_{j}^{(r)}\right)_{m_{j}^{\prime \prime}}\right) p\left(\left[n_{i}-S_{i}^{(r)}\right]\right)-\sum_{r} \rho^{(r)}\left(\prod_{j}\left(n_{j} j_{m_{j}^{(r)}}\right) p p\left(n_{i}\right]\right)
$$

- Approxımation: Boltzmann/MRF + parameter ODEs

$$
\hat{p}(R, t)=\exp \left[-\sum_{\alpha} \mu_{\alpha}(t) V_{\alpha}(R)\right] / \mathcal{Z}(\mu(t))
$$

$$
\frac{d}{d t} \mu_{\alpha}=f_{\alpha}(\mu \mid \theta)=\sum_{A} \theta_{A} f_{\alpha A}(\mu)
$$

- Error criterion: L1-regularized sum squared error

$$
S\left(\left[\theta_{A}\right]\right)=\sum_{\alpha, t_{\text {tiser }}} \|\left.\frac{d \mu_{\alpha}(t)}{d t}\right|_{f i t}\left[\theta_{\alpha A}\right]-\left.\frac{d \mu_{\alpha}(t)}{d t}\right|_{B M L A}| |^{2}+\lambda \sum_{A}\left|\theta_{A}\right|
$$

- Name: Graph-Constrained Correlation Dynamics
- "Graph" $=$ assumed MRF structure graph; "Correlations" $=\quad \mu_{c} V_{c}\left(X_{c}\right)$

GCCD eg. Synapse model spike train

- Fine scale: rule-based particle methods
- Coarse scale: time-varying Boltzmann distribution

[Johnson et al.,
Physical Biology 2015]

Figure 7.12: Set of ordinary differential equations with learned coefficients (red lines) versus time series of eight MRF parameter values (colored lines) (MCell), spike train.

Mapping: Model reduction

$$
\begin{aligned}
& \Psi \mathscr{R} \simeq \mathscr{R} \Psi \\
& \frac{d p}{d t}=W \cdot p
\end{aligned}
$$

- Nonspatial: $\quad \hat{p}(R, t)=\exp \left[-\sum_{\alpha} \mu_{\alpha}(t) V_{\alpha}(R)\right] / \mathcal{Z}(\mu(t))$
-Graph-Constrained Correlation Dynamics
- warmup case for ...
$\sum^{N}{ }^{2} w^{v} S$ Spatial generalization: $\quad \tilde{p}(n, \boldsymbol{x}, \boldsymbol{\alpha}, t)=\frac{1}{Z} \exp \left[-\sum_{k=1}^{K} \sum_{\langle j\rangle} \nu_{k}\left(\boldsymbol{x}_{\langle j\rangle}, \boldsymbol{\alpha}_{\langle j\rangle}, t\right)\right]$, -Dynamic Boltzmann distributions

Approximating Statistical Systems by Dynamic Boltzmann Distributions

MaxEnt Problem

$$
\begin{array}{r}
S=\int_{0}^{\infty} d t \mathcal{D}_{\mathcal{K} \mathcal{L}}(p| | \tilde{\rho}) \\
\mathrm{w} / \mathcal{D}_{\mathcal{K} \mathcal{L}}(p \| \tilde{\tilde{\rho}})=\sum_{n=0}^{\infty} \int d x p \ln \frac{p}{\tilde{p}} \\
\tilde{p}(n, x, \alpha, t)=\frac{1}{Z} \exp \left[-\sum_{k=1}^{K} \sum_{(j)}^{\left.\nu_{k}\left(x_{(j)}, \alpha_{j j)}\right), t\right)}\right],
\end{array}
$$

Variational problem

$$
\begin{equation*}
\frac{\delta S}{\delta F_{k}\left[\left\{\nu_{k}(x)\right\}_{k=1}^{K}\right]}=0 \text { for } k=1, \ldots, K \text { at all } \boldsymbol{x} \tag{12}
\end{equation*}
$$

where the variation is with respect to a set of functionals

$$
\begin{equation*}
\dot{\nu}_{k}(\mathbf{x})=F_{k}\left[\left\{\dot{i}_{k}\right\}_{k=1}^{K}\right] \tag{13}
\end{equation*}
$$

... Higher-order calculus!

Variational Problem: Spatial systems

$$
\begin{align*}
& \frac{\delta S}{\delta F_{k}[\boldsymbol{\nu}(\boldsymbol{x})]}=\sum_{k^{\prime}=1}^{K} \int d \boldsymbol{x}^{\prime} \int d t \frac{\delta S}{\delta \nu_{k^{\prime}}\left(\boldsymbol{x}^{\prime}, t\right)} \frac{\delta \nu_{k^{\prime}}\left(\boldsymbol{x}^{\prime}, t\right)}{\delta F_{k}[\boldsymbol{\nu}(\boldsymbol{x})]}=0 \tag{19}\\
& \text { (1) } \sqrt{\delta \frac{\delta S}{\delta \nu_{k^{\prime}}\left(\boldsymbol{x}^{\prime}, t\right)}=\left\langle\sum_{\left\langle i i^{n}\right)_{k^{\prime}}} \delta\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}_{\left.(i)_{k^{\prime}}^{n}\right)}\right\rangle_{p}-\left\langle\sum_{\left\langle(i)_{k^{\prime}}^{\prime}\right.} \delta\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}_{\left.(i)_{k^{\prime}}^{\prime}\right)}\right\rangle_{\tilde{p}}\right.\right.} \\
& \text { e.g. } k^{\prime}=1:\left\langle\sum_{i=1}^{n} \delta\left(x_{i}-x^{\prime}\right)\right\rangle \text { for all } x^{\prime} \tag{20}\\
& k^{\prime}=2:\left\langle\sum_{i=1}^{n} \sum_{j>i} \delta\left(x_{i}-x_{1}^{\prime}\right) \delta\left(x_{j}-x_{2}^{\prime}\right)\right\rangle \text { for all } x_{1}^{\prime}, x_{2}^{\prime}
\end{align*}
$$

Need to choose a parametrization for functional!

Diffusion-inspired parametrization

$$
\begin{array}{r}
p(x) \sim \exp \left[-\frac{\left(x-x_{0}\right)^{2}}{4 D t}\right] \rightarrow \exp \left[-\nu_{1}(x)\right] \\
\text { satisfies: } \frac{\partial \nu_{1}}{\partial t}=D \nabla^{2} \nu_{1}(x)-D\left(\nabla \nu_{1}(x)\right)^{2} \\
\therefore F_{k}[\boldsymbol{\nu}(\boldsymbol{x})]=F_{k}^{(0)}+\sum_{\lambda=1}^{k} F_{k \lambda}^{(1)}\left(\nabla \nu_{\lambda}\right)^{2}+\sum_{\lambda=1}^{k} F_{k \lambda}^{(2)}\left(\nabla^{2} \nu_{\lambda}\right) \tag{20}
\end{array}
$$

where: $F=$ some funcs of ν on LHS

$$
\frac{\delta S}{\delta F_{k}^{(0)}}=0, \frac{\delta S}{\delta F_{k \lambda}^{(1)}}=0, \frac{\delta S}{\delta F_{k \lambda}^{(2)}}=0
$$

PDE-constrained Optimization Problem

$$
\begin{equation*}
\text { Minimize } \sum_{k^{\prime}=1}^{K} \int_{0}^{\infty} d t\left(\left\langle\sum_{\left.(i)^{\prime}\right)^{\prime}} \delta\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}_{\left.(i)^{k_{k}^{\prime}}\right)}\right\rangle_{p}-\left\langle\sum_{(i)_{k^{\prime}}^{\prime}} \delta\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}_{(i)^{\prime} \bar{k}^{\prime}}\right\rangle_{\tilde{p}}\right) \frac{\delta \nu_{k^{\prime}}(t)}{\delta F}\right.\right. \tag{23}
\end{equation*}
$$

subject to PDE constraints for $\delta \nu_{k^{\prime}}(t) / \delta F$.

Spatial Dynamic Boltzmann Distributions

$\mathcal{Z}=\sum_{\{s\}} \sum_{\{\alpha\}} \exp \left\lfloor\sum_{i=1} h_{\alpha_{i}}(t) s_{i}+\sum_{i=1} J_{\alpha_{i}, \alpha_{i+1}}(t) s_{i} s_{i+1}\right\rfloor$

Diffusion: $\tilde{F}_{J} \quad A \rightarrow \varnothing: \tilde{F}_{J} \quad A+A \rightarrow \varnothing: \tilde{F}_{J} \quad A \rightarrow A+A: \tilde{F}_{J} \quad A+A \rightarrow A: \tilde{F}_{J}$

BMLA-like Learning Algorithm

Algorithm 2. Boltzmann machine-style learning of dynamics.
Initialize
Initial $\theta^{(r)}$ for all r.
Max. integration time T.
A formula for the learning rate λ.
Time-series of lattice spins $\{s\}(t)$ from stochastic
simulations from some known IC h_{0}, J_{0}.
Fully visible MRF with NN connections and as many units as lattice sites N.
while not converged do
\triangleright Generate trajectory in reduced space:
Solve the PDE constraint (52) with IC h_{0}, J_{0}
for $0 \leq t \leq T$.
\triangle Awake phase:
Evaluate true moments $\mu(t), \Delta(t)$ from the
Stochastic simulation data $\{s\}(t)$.
\triangle Asleep phase:
Evaluate moments $\tilde{\mu}(t), \tilde{\Delta}(t)$ of the Boltzmann distribution by Gibbs sampling.
\triangle Update to decrease objective function:
Solve (54) for derivative terms.
Update $\theta^{(s)}$ to decrease the objective function
for all s by taking: $\theta^{(s)} \rightarrow \theta^{(s)}-\lambda \times(53)$.

Adjoint method BMLA-like learning algorithm

```
            Algorithm 1 Stochastic Gradient Descent for Learning Restricted Boltzmann Machine Dynamics
Initialize
    Parameters \(\boldsymbol{u}_{k}\) controlling the functions \(F_{k}\left(\boldsymbol{\theta} ; \boldsymbol{u}_{k}\right)\) for all \(k=1, \ldots, K\).
    Time interval \(\left[t_{0}, t_{f}\right]\), a formula for the learning rate \(\lambda\).
while not converged do
    Initialize \(\Delta F_{k, i}=0\) for all \(k=1, \ldots, K\) and parameters \(i=1, \ldots, M_{k}\).
    for sample in batch do
        \(\triangleright\) Generate trajectory in reduced space \(\boldsymbol{\theta}\) :
        Solve the PDE constraint \((27)\) for \(\theta_{k}(t)\) with a given IC \(\theta_{k, 0}\) over \(t_{0} \leq t \leq t_{f}\), for all \(k\). \(\frac{d}{d t} \theta_{k}(t)=F_{k}\left(\boldsymbol{\theta}(t) ; \boldsymbol{u}_{k}\right)\)
\(\triangleright\) Wake phase:
        Evaluate moments \(\mu_{k}(t)\) of the data for all \(k, t\).
        \(\triangleright\) Sleep phase:
        Evaluate moments \(\tilde{\mu}_{k}(t)\) of the Boltzmann distribution.
        \(\triangleright\) Solve the adjoint system:
        Solve the adjoint system \((31)\) for \(\phi_{k}(t)\) for all \(k, t\).
        \(\triangleright\) Evaluate the objective function:
        Update \(\Delta F_{k, i}\) as the cumulative moving average of the sensitivity equation (30) over the batch.
    \(\triangleright\) Update to decrease objective function:
    \(u_{k, i} \rightarrow u_{k, i}-\lambda \Delta F_{k, i}\) for all \(k, i\).
        \(\frac{d S}{d u_{k, i}} \stackrel{\uparrow}{=}-\int_{t_{0}}^{t_{f}} d t \frac{\partial F_{k}\left(\boldsymbol{\theta}(t) ; \boldsymbol{u}_{k}\right)}{\partial u_{k, i}} \phi_{k}(t)\)
```


Benefit of Hidden Units

Network: fratricide + lattice diffusion

$$
\begin{aligned}
& E\left(\boldsymbol{v}, \boldsymbol{h}, b(t), W(t), b^{\prime}(t)\right)=-b(t) \sum_{i=1}^{N} v_{i}-b^{\prime}(t) \sum_{j=1}^{N-1} h_{j}-W(t) \sum_{i=1}^{N} \sum_{j=i-1, i} v_{i} h_{j}, \\
& \frac{d}{d t} \gamma=F_{\gamma}\left(b, b^{\prime}, W ; \boldsymbol{u}_{\gamma}\right) \text { for } \gamma=b, b^{\prime}, W .
\end{aligned}
$$

$$
\begin{aligned}
E(\boldsymbol{v}, b(t), J(t), K(t)) & =-b(t) \sum_{i=1}^{N} v_{i}-J(t) \sum_{i=1}^{N-1} v_{i} v_{i+1}-K(t) \sum_{i=1}^{N-2} v_{i} v_{i+1} v_{i+2}, \\
\frac{d}{d t} \gamma & =F_{\gamma}\left(b, J, K ; \boldsymbol{u}_{\gamma}\right) \text { for } \gamma=b, J, K .
\end{aligned}
$$

Benefit of Hidden Units \mathscr{R}

 Network: fratricide + lattice diffusion- Learned DBD ODE RHS, without and with hidden units

MSE of 4th order stats

FIG. 2. Top row: Learned time-evolution functions for the fully visible model (19), using the Q_{3}, C_{1} finite element parameterization (21) with $5 \times 5 \times 5$ evenly spaced cubic cells. Left: Training set of initial points (b, J, K) (cyan) sampled evenly in $[-1,1]$. Stochastic simulations for each initial point are used as training data (learned trajectories shown in black, endpoints in magenta). Other panels: the time evolution functions learned. Bottom row: Hidden layer model (20) and parameterization (21) with the same number of cells as the visible model. Initial points are generated by BM learning the points of the visible model.

Rössler Oscillator in 3D

- Function:

- Learned DBD ODE RHS:

[Ernst,Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]

Rössler Oscillator in 3D

- Learned correlations:
- Learned Configuration

Learned model reduction maps: Implications

- We can and should seek not models, but model stacks
- simulation $=$ model $_{0} \hookrightarrow$ model $_{1} \hookrightarrow \ldots \hookrightarrow$ model $_{n}=$ analysis
- each reduction is conditional
- great computing resources required at all levels - but becoming available

Algebras of dynamic structures

Living matter: Tissues at cellular scale

Tessellations and Pattern Formation in Plant
Growth and Development
Bruce E Shapiro, Henrik Jonsson, Patrick Sahlin, Marcus Heisler, Adrienne
Roeder, Michael Burl, Elliot M Meyerowitz, Eric D Mjolsness

Spring biomechanics:

Voronoi (or power) diagrams fit SAM geometry

Dynamic cell structures in Drosophila embryo

Intercalation and convergent extension observed during germ band elongation in Drosophila embryo. Note topological rearrangements. [Bertet et al. 2004]

Dynamic bio structures

\checkmark geo-cell complexes of bio-cells in tissues cytoskeleton

- supercellular cables
- axons \& dendrites
- cytonemes
\checkmark cell-centered and vertex biomechanical models
- PDE adaptive meshes and grids

Microtubule dynamics

Cortical microtubules in Arabidopsis petiole cells. Movie with Ray Wightman SLCU May 2015

WT data.
Also have mutants: spiral2 and botero

More cortical microtubules, color coded by growth vs shrinkage, in 3D. From Ray Wightman SLCU 2015.

Microtubule dynamics

Cortical microtubules in Arabidopsis petiole cells. Movie with Ray Wightman SLCU May 2015

WT data.
Also have mutants: spiral2 and botero

More cortical microtubules, color coded by growth vs shrinkage, in 3D. From Ray Wightman SLCU 2015.

Microtubule dynamics

Cortical microtubules in Arabidopsis petiole cells. Movie with Ray Wightman SLCU May 2015

WT data.
Also have mutants: spiral2 and botero

More cortical microtubules, color coded by growth vs shrinkage, in 3D. From Ray Wightman SLCU 2015.

Bundling or Zippering

Collision catastrophe

Simulated bundling, catastrophe

Dustin Maurer + Francois Nedelec

Simulated bundling, catastrophe

Dustin Maurer + Francois Nedelec

MT fiber

Stochastic Parametrized Graph Grammar

```
\(\left(\boldsymbol{\bullet}_{1}\right)\left\langle\left\langle\left(\boldsymbol{x}_{1}, \boldsymbol{u}_{1}\right)\right\rangle\right\rangle\left(\mathrm{O}_{1} \longrightarrow \boldsymbol{\bullet}_{2}\right)\left\langle\left(\boldsymbol{x}_{1}, \boldsymbol{u}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{u}_{2}\right)\right\rangle\)
    with \(\hat{\rho}_{\text {grow }}([\) tubulin \(]) \mathcal{N}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2} ; L \boldsymbol{u}_{1}, \sigma\right) \mathcal{N}\left(\boldsymbol{u}_{2} ; \boldsymbol{u}_{1} /\left(\left|\boldsymbol{u}_{1}\right|+\epsilon\right), \epsilon\right)\),
\(\left(\boldsymbol{■}_{1} \rightarrow \mathrm{O}_{2}\right)\left\langle\left(\boldsymbol{x}_{1}, \boldsymbol{u}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{u}_{2}\right)\right\rangle \longrightarrow\left(\boldsymbol{■}_{2}\right)\left\langle\left\langle\left(\boldsymbol{x}_{2}, \boldsymbol{u}_{2}\right)\right\rangle\right.\)
    with \(\hat{\rho}_{\text {retract }}\)
```



```
    with \(\hat{\rho}_{\text {bundle }}\left(\left|\boldsymbol{u}_{2} \cdot \boldsymbol{u}_{4}\right| /\left|\cos \theta_{\text {crit }}\right|\right) \exp \left(-\left|\boldsymbol{x}_{2}-\boldsymbol{x}_{4}\right|^{2} / 2 L^{2}\right)\)
\(\left(\boldsymbol{■}_{1} \rightarrow \boldsymbol{\bullet}_{2}\right)\left\langle\left(\boldsymbol{x}_{1}, \boldsymbol{u}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{u}_{2}\right)\right\rangle \longleftrightarrow \varnothing \quad\) with \(\quad\left(\hat{\rho}_{\text {retract }}\right.\),
    \(\hat{\rho}_{\text {nucleate }}([\) tubulin \(\left.]) \mathcal{N}\left(\boldsymbol{x} ; \mathbf{0}, \sigma_{\text {broad }}\right) \delta_{\text {Dirac }}\left(\left|\boldsymbol{u}_{1}\right|-1\right) \delta_{\text {Dirac }}\left(\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)\right)\)
\(\left.\left.\left(\bullet_{1}\right)\left\langle\left(\boldsymbol{x}_{1}, \boldsymbol{u}_{1}\right)\right\rangle\right\rangle\left(\boldsymbol{■}_{1}\right)\left\langle\left(\boldsymbol{x}_{1}, \boldsymbol{u}_{1}\right)\right\rangle\right\rangle\)
    with \(\left(\hat{\rho}_{\text {retract } \leftarrow \text { growth }}, \hat{\rho}_{\text {growth }} \leftarrow\right.\) retract \()\)
```


MT fiber

Stochastic Parametrized Graph Grammar

```
\(\left(\boldsymbol{\bullet}_{1}\right)\left\langle\left\langle\left(x_{1}, u_{1}\right)\right\rangle\right\rangle \longrightarrow\left(○_{1} \longrightarrow \boldsymbol{\bullet}_{2}\right)\left\langle\left\langle\left(x_{1}, u_{1}\right),\left(x_{2}, u_{2}\right)\right\rangle\right\rangle\)
    with \(\hat{\rho}_{\text {grow }}\left(\left[\mathrm{Y}_{g}\right]\right) \mathcal{N}\left(x_{1}-x_{2} ; L \boldsymbol{u}_{1}, \sigma\right) \mathcal{N}\left(\boldsymbol{u}_{2} ; \boldsymbol{u}_{1} /\left(\left|\boldsymbol{u}_{1}\right|+\epsilon\right), \epsilon\right)\),
\(\left(\boldsymbol{\Xi}_{1} \longrightarrow O_{2}\right)\left\langle\left\langle\left(x_{1}, \boldsymbol{u}_{1}\right),\left(x_{2}, u_{2}\right)\right\rangle \longrightarrow\left(\boldsymbol{\Xi}_{2}\right)\left\langle\left(x_{2}, u_{2}\right)\right\rangle\right\rangle\)
    with \(\hat{\rho}_{\text {retract }}\left(\left[\mathrm{Y}_{r}\right]\right)\)
```



```
    with \(\hat{\rho}_{\text {bundle }}^{\prime \prime}\left(\left|\boldsymbol{u}_{2} \cdot \boldsymbol{u}_{4}\right| /\left|\cos \theta_{\text {crit }}\right|\right) \exp \left(-\left|\boldsymbol{x}_{2}-\boldsymbol{x}_{5}\right|^{2} / 2 L^{2}\right)\)
\(\left(\boldsymbol{\Xi}_{1} \longrightarrow \boldsymbol{\bullet}_{2}\right)\left\langle\left\langle\left(x_{1}, \boldsymbol{u}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{u}_{2}\right)\right\rangle \longleftrightarrow \varnothing\right.\)
    with \(\left(\hat{\rho}_{\text {retract }}\left(\left[\mathrm{Y}_{r}\right]\right), \hat{\rho}_{\text {nucleate }}\left(\left[\mathrm{Y}_{g}\right]\right) \mathcal{N}\left(\boldsymbol{x} ; \mathbf{0}, \sigma_{\text {broad }}\right) \delta_{\text {Dirac }}\left(\left|\boldsymbol{u}_{1}\right|-1\right) \delta_{\text {Dirac }}\left(\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)\right)\)
\(\left(\boldsymbol{\bullet}_{1}\right)\left\langle\left\langle\left(\boldsymbol{x}_{1}, \boldsymbol{u}_{1}\right)\right\rangle \longleftrightarrow\left(\boldsymbol{■}_{1}\right)\left\langle\left\langle\left(\boldsymbol{x}_{1}, \boldsymbol{u}_{1}\right)\right\rangle\right\rangle\right.\)
    with \(\left(\hat{\rho}_{\text {retract } \leftarrow \text { growth }}, \hat{\rho}_{\text {growth }} \leftarrow\right.\) retract \()\)
\(\left(\bigcirc_{1} \longrightarrow \bigcirc_{2} \longrightarrow ○_{3}\right)\left\langle\left(x_{1}, u_{1}\right),\left(x_{2}, u_{2}\right),\left(x_{3}, u_{3}\right)\right\rangle\)
    \(\longrightarrow\left(○_{1} \longrightarrow \boldsymbol{\oplus}_{2} \boldsymbol{■}_{4} \longrightarrow \bigcirc_{3}\right)\left\langle\left\langle\boldsymbol{x}_{1}, \boldsymbol{u}_{1}\right),\left(x_{2}, \boldsymbol{u}_{2}\right),\left(x_{3}, \boldsymbol{u}_{3}\right),\left(\boldsymbol{x}_{4}, \boldsymbol{u}_{4}\right)\right\rangle\)
    with \(\hat{\rho}_{\text {sever }}([\) katanin \(\left.]) \mathcal{N}\left(\boldsymbol{x} ; \mathbf{0}, \sigma_{\text {broad }}\right) \delta_{\text {Dirac }}(|\boldsymbol{u}|-1)\right)\)

\section*{MT fiber}

\section*{Dynamical Graph Grammar (hand-transformed from stochastic G.G.) \\ 5.2 MT dynamical graph grammar}
// Treadmilling (growth end):
\(\left.\left(\bigcirc_{1}-\boldsymbol{\bullet}_{2}\right)\left\langle(l, \boldsymbol{u}),\left(\boldsymbol{x}_{+}, \boldsymbol{u}_{+}\right)\right\rangle \longrightarrow\left(\bigcirc_{1}-\boldsymbol{\bullet}_{2}\right) 《(l, \boldsymbol{u}),\left(\boldsymbol{x}_{+}+d x_{+}, \boldsymbol{u}_{+}\right)\right\rangle\) solving \(d x_{+} / d t=\hat{\rho}_{\text {grow }}\left(\left[\mathrm{Y}_{g}\right]\right)\left(1-l / l_{\text {max }}\right) u_{+}\)
\(/ /\) Treadmilling (retracting end):
\(\left.\left(\boldsymbol{\Xi}_{1}-O_{2}\right)\left\langle\left(x_{-}, \boldsymbol{u}_{-}\right),(l, \boldsymbol{u})\right\rangle \longrightarrow\left(\boldsymbol{\Xi}_{1}-O_{2}\right) 《\left(\boldsymbol{x}_{-}+d x_{-}, \boldsymbol{u}_{-}\right),(l, \boldsymbol{u})\right\rangle\) solving \(d x_{-} / d t=\hat{\rho}_{\text {retract }}\left(\left[Y_{r}\right]\right)\left(l / l_{\text {max }}\right) \boldsymbol{u}\)
// Treadmilling (interior node):

solving \(d l / d t=\left|d x_{+} / d t\right|-\left|d x_{-} / d t\right|=\hat{\rho}_{\text {grow }}\left(\left[\mathrm{Y}_{g}\right]\right)-\left(\hat{\rho}_{\text {grow }}\left(\left[\mathrm{Y}_{g}\right]\right)+\hat{\rho}_{\text {retract }}\left(\left[\mathrm{Y}_{r}\right]\right)\right)\left(l / l_{\text {max }}\right)\)
// Treadmilling (interior node):
\(\left.\left(\bullet_{1}-\mathrm{O}_{2}-\bullet_{3}\right)\left\langle\left(\boldsymbol{x}_{-}, \boldsymbol{u}_{-}\right),(l, \boldsymbol{u}),\left(\boldsymbol{x}_{+}, \boldsymbol{u}_{+}\right)\right\rangle\right\rangle\)
\(\left.\xrightarrow{\longrightarrow} \bullet_{1}-\mathrm{O}_{2}-\bullet_{3}\right)\left\langle\left(\boldsymbol{x}_{-}, \boldsymbol{u}_{-}\right),(l+d l, \boldsymbol{u}),\left(\boldsymbol{x}_{+}, \boldsymbol{u}_{+}\right)\right\rangle\)
solving \(d l / d t=\left|d x_{+} / d t\right|-\left|d x_{-} / d t\right|=2 \hat{\rho}_{\text {grow }}\left(\left[\mathrm{Y}_{g}\right]\right)\left(1-l / l_{\max }\right) u_{+}\)
// Treadmilling (interior node):
```

(■
\longrightarrow (\boldsymbol { \Xi } _ { 1 } - O _ { 2 } - \boldsymbol { \Xi } _ { 3 }) \langle < (\boldsymbol { x } _ { - } ^ { \prime } , \boldsymbol { u } _ { - } ^ { \prime }) , (l + d l , \boldsymbol { u }) , (\boldsymbol { x } _ { + } , \boldsymbol { u } _ { + }) \rangle
solving dl/dt=|d\mp@subsup{x}{+}{}/dt|-|d\mp@subsup{x}{-}{}/dt|=2\mp@subsup{\hat{\rho}}{\mathrm{ retract }}{}([\mp@subsup{Y}{r}{}])(l/\mp@subsup{l}{\mathrm{ max }}{})\mp@subsup{u}{-}{}
// Fiber collision, exerting continuous force:
((* * < O
solving {{$$
\begin{array}{rl}{d\mp@subsup{x}{5}{}/dt}&{=\kappa\mp@subsup{u}{5}{}[\mp@subsup{\partial}{\gamma}{}\operatorname{exp}(-\mp@subsup{\gamma}{}{2}/2\mp@subsup{\epsilon}{}{2})]\Theta(\epsilon\leqslant\alpha\leqslant1-\epsilon)}\\{d\mp@subsup{l}{4}{}/dt}&{=\mp@subsup{u}{5}{}\cdotd\mp@subsup{x}{+}{}/dt=\kappa[\mp@subsup{\partial}{\gamma}{}\operatorname{exp}(-\mp@subsup{\gamma}{}{2}/2\mp@subsup{\epsilon}{}{2})]\Theta(\epsilon\leqslant\alpha\leqslant1-\epsilon)}\end{array}
$$

```
[EM, Bull. Math Biol. 81:8 Aug 2019
+arXiv:1804.11044]
where \(\left\{\begin{array}{l}\gamma=-\left[\left(x_{3}-x_{1}\right) \times\left(x_{1}-x_{5}\right)\right]_{z} /\left[\left(x_{3}-x_{1}\right) \times \boldsymbol{u}_{5}\right] z \quad / / \text { rel. distance to intersection along } \boldsymbol{u}_{5} \\ \alpha=-\left[\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{4}\right) \times \boldsymbol{u}_{5}\right]_{z} /\left[\left(\boldsymbol{x}_{3}-\boldsymbol{x}_{1}\right) \times \boldsymbol{u}_{5}\right]_{z} \quad / / \text { fractional location of intersection along } \boldsymbol{u}_{2}\end{array}\right.\)

\section*{Dynamical Graph Grammar (hand-transformed from stochastic G.G.)} // (continued)
// Fiber collision, with several alternative discrete outcomes:

where \(\begin{aligned} & \gamma=-\left[\left(x_{3}-x_{1}\right) \times\left(x_{1}-x_{5}\right)\right]_{z} /\left[\left(x_{3}-x_{1}\right) \times \boldsymbol{u}_{5}\right]_{z} \quad / / \text { rel. distance to intersection along } \boldsymbol{u}_{5} \\ & \alpha=-\left[\left(x_{1}-x_{5}\right) \times \boldsymbol{u}_{5}\right]_{z} /\left[\left(x_{3}-x_{1}\right) \times \boldsymbol{u}_{5}\right]_{z} \quad / / \text { fractional location of intersection along } \boldsymbol{u}_{2}\end{aligned}\)
[EM, Bull. Math Biol. 81:8 Aug 2019

\section*{Operator algebra for}

\section*{Pure stochastic chemical reactions}
- For reaction/rule \(r\) :
\[
\begin{array}{ll}
n_{\alpha} \in \mathbb{N}: & {\left[a_{\alpha}, \hat{a}_{\beta}\right]=\delta_{\alpha \beta} I,} \\
a_{\alpha} \hat{a}_{\beta}=\hat{a}_{\beta} a_{\alpha}+\delta_{\alpha \beta} I_{\alpha} \\
n_{\alpha} \in\{0,1\}: \quad & a_{\alpha} \hat{a}_{\beta}=\left(1-\delta_{\alpha \beta}\right) \hat{a}_{\beta} a_{\alpha}+\delta_{\alpha \beta} Z_{\alpha}
\end{array}
\]

\[
\begin{aligned}
\hat{W}_{\left\{m_{i}^{\left(r_{2}\right)}\right\} \rightarrow\left\{n_{i}^{\left(r_{2}\right)}\right\}} \hat{W}_{\left\{m_{i}^{\left(r_{1}\right)}\right\} \rightarrow\left\{n_{i}^{\left(r_{1}\right)}\right\}}= & k^{\left(r_{2}\right)} k^{\left(r_{1}\right)} \sum_{\left\{l_{i}=0 \ldots \min \left(m_{i}^{\left.\left.\left(r_{2}\right), n_{i}^{\left(r_{1}\right)}\right)\right\}}\right.\right.}\left(\prod_{i} \frac{\left(m_{i}^{\left(r_{2}\right)}\right)_{l}\left(n_{i}^{\left(r_{1}\right)}\right) l}{l_{i}!}\right) \\
& \times \hat{W}_{\left\{\left(m_{i}^{\left(r_{1}\right)}+m_{i}^{\left(r_{2}\right)}-l_{i}\right)\right\} \rightarrow\left\{\left(n_{i}^{\left(r_{1}\right)}+n_{i}^{\left(r_{2}\right)}-l_{i}\right)\right\}}
\end{aligned}
\]

Why: \(\partial_{x}^{m}\left(x^{n} f(x)\right)=\) binomial sum

\section*{Lie Algebra for}

\section*{Pure stochastic chemical reactions}
- Rotation group: \([X, Y]=Z+\) cyclic
- Curvature in a Lie group w invariant metric:
\[
R(X, Y) Z=\frac{1}{4}[[X, Y], Z]
\]
- For reaction/rule \(r: \quad\left[a_{\alpha} \hat{o}_{\beta \beta}\right]=\delta_{\alpha \beta} I\)
- For reaction/rules \(r_{1}\) and \(r_{2}\) : where \(\left(n_{n}\right) \equiv\left\{\begin{array}{l}n!(n-1)!\text { for } 1 \leq n ; \\ 0 \\ \text { ofterwise }\end{array}\right.\)
\[
\begin{aligned}
& \left.\left[\hat{W}_{\left\{m_{i}^{\left(r_{2}\right)}\right\} \rightarrow\left\{n_{i}^{\left(r_{2}\right)}\right\}}\right\}^{\left\{\hat{W}_{\left\{m_{i}^{\left(r_{1}\right)}\right\} \rightarrow\left\{n_{i}^{\left(r_{1}\right)}\right\}}\right]} \begin{array}{l}
=k^{\left(r_{2}\right)} k^{\left(r_{1}\right)} \sum_{\substack{\left\{l_{i}=0 \ldots \min ^{(m)}\left(m_{i}^{\left(r_{2}\right)}, n_{i}^{\left(r_{1}\right)}\right)\right\}}}\left[\left(\prod_{i} \frac{\left(m_{i}^{\left(r_{2}\right)}\right)_{l}\left(n_{i}^{\left(r_{1}\right)}\right) l}{l_{i}!}\right)-\left(\prod_{i} \frac{\left(m_{i}^{\left(r_{1}\right)}\right) l\left(n_{i}^{\left(r_{2}\right)}\right) l}{l_{i}!}\right)\right] \\
\quad \times \hat{W}_{\left\{\left(m_{i}^{\left(r_{1}\right)}+m_{i}^{\left(r_{2}\right)}-l_{i}\right)\right\} \rightarrow\left\{\left(n_{i}^{\left(r_{1}\right)}+n_{i}^{\left(r_{2}\right)}-l_{i}\right)\right\}}
\end{array}\right]
\end{aligned}
\]

\section*{Particle to Structure Dynamics}
- Particle reactions/transitions, with params
\[
\begin{aligned}
& A_{1}\left(x_{1}\right), A_{2}\left(x_{2}\right), \ldots, A_{n}\left(x_{n}\right) \rightarrow B_{1}\left(y_{1}\right), B_{2}\left(y_{2}\right), \ldots, B_{m}\left(y_{m}\right) \text { with } \rho\left(\left\{x_{i}\right\},\left\{y_{j}\right\}\right) \\
& \tilde{O}_{r}=\rho_{r} \sum_{\left\{x^{\prime} i, x_{j}\right\}} \prod_{i \in \operatorname{rds}(r)} \hat{a}\left(\tau_{i}, x_{i}\right) \prod_{j \in \operatorname{lns}(r)} a\left(\tau_{j}, x_{j}\right) \operatorname{Pr}\left(\left\{x_{i}\right\} \mid\left\{x_{j}\right\}\right) \\
& \text { (and can integrate ODE rules too) } \\
& {\left[0_{a}, \hat{a}_{a d}\right]=I \delta_{(c)},(d)} \\
& {[a, a]=[\hat{a}, \hat{a}]=0}
\end{aligned}
\]

\section*{Particle to Structure Dynamics}
- Particle reactions/transitions, with params
\(A_{1}\left(x_{1}\right), A_{2}\left(x_{2}\right), \ldots, A_{n}\left(x_{n}\right) \rightarrow B_{1}\left(y_{1}\right), B_{2}\left(y_{2}\right), \ldots, B_{m}\left(y_{m}\right)\) with \(\rho\left(\left\{x_{i}\right\},\left\{y_{j}\right\}\right)\)
\(\tilde{o}_{r}=\rho_{r} \sum_{\left\{x^{\prime}, x_{j}\right]} \prod_{i \in \sin (r)\}} \hat{a}\left(\tau_{i}, x_{i}\right) \prod_{j \in \ln (r)} a\left(\tau_{j}, x_{j}\right) \operatorname{Pr}\left(\left(x_{i}\right\} \mid\left\{x_{j}\right\}\right)\)
(and can integrate ODE rules too)
```

[a,ad, 餙d
[a, a] [[\hat{a},\hat{a}]=0

```

Labelled graph (structure) transitions

\[
\hat{W}_{r} \propto \int d \lambda d \lambda^{\prime} \rho_{r}\left(\lambda, \lambda^{\prime}\right) \sum_{\left\langle i_{1}, \ldots i_{k}\right\rangle \neq} \hat{a}_{i_{1}, \ldots i_{k}}\left(G^{r \text { out }}\right) a_{i_{1}, \ldots i_{k}}\left(G^{r \text { in }}\right)
\]
(and can integrate ODE rules too)
[EM, MFPS Proc., ENTCS 2010]
\[
\begin{aligned}
\hat{a}_{\alpha}^{2} & =0=a_{\alpha}^{2} \\
a_{\alpha} \hat{a}_{\beta} & =\left(1-\delta_{\alpha \beta}\right) \hat{a}_{\beta} a_{\alpha}+\delta_{\alpha \beta} Z_{\alpha} \\
Z_{\alpha} & \equiv I_{\alpha}-N_{\alpha} \\
N_{\alpha} & \equiv \hat{a}_{\alpha} a_{\alpha}
\end{aligned}
\]
\[
\begin{aligned}
\hat{a}_{i_{1}, \ldots i_{k}}\left(G^{\prime}\right) & =\hat{a}_{i_{1}, \ldots i_{k}}\left(G_{\text {links }}^{\prime}\right) \hat{a}_{i_{1}, \ldots i_{k}}\left(G_{\text {nodes }}^{\prime}\right) \\
& =\left[\prod_{s^{\prime}, t^{\prime} \text { erhs }(r)}\left(\hat{a}_{i_{s^{\prime}} i_{t^{\prime}}}\right)^{g_{s^{\prime} t^{\prime}}^{\prime}}\right]\left[\prod_{v^{\prime} \in \operatorname{rhs}(r)} \hat{a}_{i_{v^{\prime}} \lambda_{v^{\prime}}^{\prime}}\right] \\
a_{i_{1}, \ldots i_{k}}(G) & =a_{i_{1}, \ldots i_{k}}\left(G_{\text {links }}\right) a_{i_{1}, \ldots i_{k}}\left(G_{\text {nodes }}\right) \\
& =\left[\prod_{s, t \in \operatorname{lhs}(r)}\left(a_{i_{s} i_{t}}\right)^{g_{s} t}\right]\left[\prod_{v \in \operatorname{lhs}(r)} a_{i_{v} \lambda_{v}}\right] .
\end{aligned}
\]

\section*{Graph rewrite rule operators}
- \(\mathrm{G}=\) LHS labelled graph, \(\mathrm{G}^{\prime}=\) RHS labelled graph

\(\hat{O}_{r}=\frac{1}{k!} \sum_{\left\{i_{1}, \ldots i_{k}\right\}}\left[\prod_{c, d \in \mathrm{rhs}(r)}^{\tau=3}\left(\hat{a}_{i_{c} i_{d}}\right)^{g^{\prime}{ }_{c d}}\right]\left[\prod_{c \in \mathrm{rrhs}(r)} \hat{a}_{i_{c} \lambda_{c}} c\right]\left[\prod_{a, b \in \operatorname{lhs}(r)}\left(a_{i_{a} i_{b}}\right)^{g_{a b}}\right]\left[\prod_{a \in \operatorname{lhs}(r)} a_{i_{a} \lambda_{a}}\right]\)
[EM, MFPS Proc. 2010]
\[
\begin{aligned}
\hat{a}_{\alpha}^{2} & =0=a_{\alpha}^{2} \\
a_{\alpha} \hat{a}_{\beta} & =\left(1-\delta_{\alpha \beta}\right) \hat{a}_{\beta} a_{\alpha}+\delta_{\alpha \beta} Z_{\alpha} \\
Z_{\alpha} & \equiv I_{\alpha}-N_{\alpha} \\
N_{\alpha} & \equiv \hat{a}_{\alpha} a_{\alpha}
\end{aligned}
\]

\section*{MT Treadmilling Rules}
\[
\begin{aligned}
& \lambda+ \\
& \hat{w}_{1}=\sum_{i j} \hat{a}_{i, 0} \hat{a}_{0,+} \hat{a}_{J i} a_{i,+} \\
& \text { Rule 2: - end retraction } \\
& q \quad \frac{1}{2} \longrightarrow 0^{2} \longrightarrow \quad \text { 家 } \\
& \lambda-\omega \\
& \hat{w}_{2}=\sum_{i^{\prime}, 1} \hat{a}_{j, 1} a_{i, 1} a_{j_{j}^{\prime} \Delta} a_{j_{1}^{\prime}}
\end{aligned}
\]

Growth vs. Bundling
in
+ end growth

bundling

\[
\begin{aligned}
& \hat{w}_{3} \propto \sum_{\left\langle j_{1} J_{2} J_{3} J_{4}\right\rangle F}=\left(\hat{a}_{J_{2},} \hat{a}_{J_{3} J_{2}} \hat{a}_{J_{2} J}, \hat{a}_{j_{4}, 0} \hat{a}_{J_{3}, 0} \hat{a}_{J_{2}} \Delta \hat{a}_{J, 0}\right) \\
&\left(a_{J_{3} J_{2}} a_{J_{2}, J_{1}} a_{J_{4}}+a_{J_{3}, 0} a_{J_{2}} 0 a_{J_{1} 0}\right)
\end{aligned}
\]

Growth vs. Bundling
\(S_{2}\left[\hat{w}_{3}, \hat{w}_{1}\right]=\hat{w}_{3} \hat{w}_{1}-\hat{w}_{1} \hat{w}_{3}\)


expected
rare
energetically disfavored

\section*{Why operator algebra yields algorithms}
- Baker Campbell Hausdorff theorem
- => operator splitting algorithms e.g. Trotter Product Formula ...
\[
\lim _{n \rightarrow \infty}\left[e^{(t / n) H_{0}} e^{(t / n) H_{1}}\right]^{n}
\]
- Time-ordered product expansions => Stochastic Simulation Algorithm (SSA)
- [EMj, Phys Bio 2013]
\[
\begin{aligned}
\exp \left(t\left(W_{0}+W_{1}\right)\right) & =\exp \left(t W_{0}\right)\left(\exp \left(\int_{0}^{t} \exp \left(-\tau W_{0}\right) W_{1} \exp \left(\tau W_{0}\right) d \tau\right)\right)_{+} \\
& \equiv \exp \left(t W_{0}\right)\left(\exp \left(\int_{0}^{t} W_{1}(\tau) d \tau\right)\right)_{+}
\end{aligned}
\]
- weighted SSA (wSSA) possible too

Generation of valid algorithms, continued

Approximate alyserthms from
\[
\begin{aligned}
& \text { Operator Expmentands } \\
& \text { C } / \text { /n } 5 m+11 \text { : } \\
& e^{t(A+B)}=e^{t A} e^{t\left[B+\frac{t^{2}}{2}[B, A]+\frac{t^{3}}{12}\left(2[A,[A B]]-[B[B, A]]+G\left(t^{4}\right)\right.\right.} \\
& \text { [Campbell-Baker-Hausorff] } \\
& =e^{t A} e^{t B}+O\left(t^{2}\right) \\
& e^{t / A+B)}=e^{t t A / 2} e^{t B} e^{t A / 2} e^{D_{3}^{\prime} t^{3}}+O\left(t^{4}\right) \\
& =e^{t A} e^{t B} e^{-\frac{t^{2}}{2}[A, B]} e^{D_{3} t^{3}}+\Delta\left(t^{4}\right) \\
& \text { [Zassenhaus] } \\
& D_{3}^{\prime}=\frac{1}{24}[A,[A, B]]-\frac{1}{12}[B,[B, A]] \\
& D_{3}^{*}=\frac{1}{6}\left[A_{j}\left[A_{j} B\right]\right]-\frac{1}{3}\left[B_{-}[B A]\right]
\end{aligned}
\]

So rammataters ark key th an-bsing error, d minmizing it begand \(O\left(t^{2}\right)\).

\section*{Product Theorems}
- Semantics: \(\quad \hat{w}_{r} \propto \int d \lambda d \lambda^{\prime} \rho_{r}\left(\lambda, \lambda^{\prime}\right) \sum_{\left\langle i_{1}, \ldots i_{k}\right\rangle \neq}{\hat{i_{i}, \ldots, i_{k}}\left(G^{r}\left(G^{\text {out }}\right) a_{i_{1}, \ldots, i_{k}}\left(G^{r} \text { in }\right)\right.}^{\text {(compositional) }}\)
- Calculate product ...


\section*{Product Theorems}
- Semantics: (compositional)
- Product:
\[
\begin{aligned}
\hat{W}_{r_{2}} \hat{W}_{r_{1}} \propto & \propto\left(\rho_{r_{1}}\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{1}^{\prime}\right) \rho_{r_{2}}\left(\boldsymbol{\lambda}_{2}, \boldsymbol{\lambda}_{2}^{\prime}\right)\right) \sum_{\left\{i_{1}, \ldots i_{k_{1}}\right\}} \sum_{\left\{j_{1}, \ldots j_{k_{2}}\right\}} \\
& {\left[\prod_{p^{\prime}, q^{\prime} \in \operatorname{rhs}\left(r_{2}\right)}\left(\hat{a}_{i_{p^{\prime}} i_{q^{\prime}}}\right)^{g^{\prime}{ }_{2, p^{\prime} q^{\prime}}}\right]\left[\prod_{p^{\prime} \in \operatorname{rhs}\left(r_{2}\right)}\left(\hat{a}_{i_{p^{\prime}} \lambda^{\prime}}{ }_{2, p^{\prime}}\right)^{h_{2, p^{\prime}}^{\prime}}\right] } \\
& \times\left[\prod_{p, q \in \operatorname{lhs}\left(r_{2}\right)}\left(a_{i_{p} i_{q}}\right)^{g_{2, p q}}\right]\left[\prod_{p \in \operatorname{lhs}\left(r_{2}\right)}\left(a_{i_{p} \lambda_{2, p}}\right)^{h_{2, p}}\right] \\
& \times\left[\prod_{p^{\prime}, q^{\prime} \in \operatorname{rhs}\left(r_{1}\right)}\left(\hat{a}_{j_{p^{\prime}} j_{q^{\prime}}}\right)^{g^{\prime}}{ }_{1, p^{\prime}{q^{\prime}}^{\prime}}\right]\left[\prod_{p^{\prime} \in \operatorname{rhs}\left(r_{1}\right)}\left(\hat{a}_{j_{p^{\prime}} \lambda^{\prime}}{ }_{1, p^{\prime}}\right)^{h_{1, p^{\prime}}}\right] \\
& \times\left[\prod_{p, q \in \operatorname{lhs}\left(r_{1}\right)}\left(a_{\left.\left.j_{p} j_{q}\right)\right)^{g_{1, p}}}\right]\left[\prod_{p \in \operatorname{lhs}\left(r_{1}\right)}\left(a_{j_{p} \lambda_{1, p}}\right)^{h_{1, p}}\right]\right.
\end{aligned}
\]
+ a variant which eliminates dangling edges

Proposition 1 The product of two operators taking the form of Equation (*) can be rewritten as an signed-integer-weighted sum of expressions taking the same form. The product and the sum are equal, and graph-equivalent, and each is subpermutation-invariant with respect to indexing.
[EM, Bull. Math Biol. 81:8 Aug 2019

\section*{Computed Products and Commutators}
- Computation must yield the form:
\(\hat{\sigma}_{C_{1}} \cdot \hat{\sigma}_{r_{2}}=\sum_{\alpha}\left(w_{\alpha}: \mathbb{Z}\right) \hat{\sigma}_{G}^{(\alpha)} \rightarrow L^{(\alpha) /}\)
\(\left[\hat{\sigma}_{r_{1}}, \hat{\sigma}_{r_{2}}\right]=\sum_{\alpha}\left(w_{\mu}: \mathbb{Z}\right) \hat{\sigma}_{G^{\prime}(x) \rightarrow G^{(\alpha) \prime}}\)
- Cf. Heisenberg \& rotation-group Lie algebras
- Particular cases simplify further
- eg. polymerization, dendromers, etc..
- analysis for compilation?

\section*{Algebra of Labelled-Graph Rewrite Rules}

\section*{Algebra of Labelled-Graph Rewrite Rules}
\[
\hat{W}_{G^{r_{2} \text { in }} \rightarrow G^{r_{2} \text { out }}} \hat{W}_{G^{r_{1} \text { in }} \rightarrow G^{r_{1} \text { out }}} \simeq \sum_{\substack{H \subseteq G^{r_{1} \text { out }} \simeq \tilde{H} \subseteq G^{r_{2} \text { in }} \\ \text { । edge-maximal }}} \sum_{h: H \xrightarrow{H_{1-1}} \tilde{H}} \hat{W}_{G^{r_{1} \text { in }} \cup\left(G^{r_{2} \text { in }} \backslash \tilde{H}\right) \rightarrow G^{r_{2} \text { out }} \cup\left(G^{r_{1} \text { out }} \backslash H\right)}
\]
\[
\begin{aligned}
& G_{\text {nodes }}^{1 ; 2 \text { in }}=G_{\text {nodes }}^{r_{1} \text { in }} \dot{\cup}\left(G_{\text {nodes }}^{r_{2} \text { in }} \backslash \tilde{H}_{\text {nodes }}\right) \quad G_{\text {nodes }}^{1 ; 2 \text { out }}=G_{\text {nodes }}^{r_{2} \text { out }} \dot{\cup}\left(G_{\text {nodes }}^{r_{1} \text { out }} \backslash H_{\text {nodes }}\right) \\
& G_{\text {links }}^{1 ; 2 \text { in }}=G_{\text {links }}^{r_{1} \text { in }} \cup h^{-1 \star}\left(G_{\text {links }}^{r_{2} \text { in }}\left\langle\tilde{H}_{\text {links }}\right) \quad G_{\text {links }}^{1 ; 2 \text { out }}=G_{\text {links }}^{r_{2} \text { out }} \cup h^{\star}\left(G_{\text {links }}^{r_{1} \text { out }} \backslash H_{\text {links }}\right)\right. \\
& K_{a}=G_{\text {nodes }}^{r_{r} \text { in }} \cap G_{\text {nodes }}^{r_{a} \text { out }} \\
& K_{1 ; 2}=\left(K_{1} \backslash H_{\text {nodes }} \cup h^{-1}\left(K_{2} \backslash \tilde{H}_{\text {nodes }}\right) \cup\left(K_{1} \cap h^{-1 \star}\left(K_{2}\right)\right)\right.
\end{aligned}
\]

\section*{Product Theorems}
- Double pushout semantics:
in the category of graphs
- Commutator=0 condition

Definition 4.1 (van Kampen square). A pushout (1) is a van Kampen square if, for any commutative cube (2) with (1) in the bottom and where the back faces are pullbacks, the following statement holds: the top face is a pushout iff the front faces are pullbacks:


Fact 3.18 (characterization of parallel and sequential independence). Two direct (typed) graph transformations \(G \stackrel{p_{1}, m_{1}}{\Longrightarrow} H_{1}\) and \(G \xrightarrow{p_{2}, m_{2}} H_{2}\) are parallel independent iff there exist morphisms \(i: L_{1} \rightarrow D_{2}\) and \(j: L_{2} \rightarrow D_{1}\) such that \(f_{2} \circ i=m_{1}\) and \(f_{1} \circ j=m_{2}\) :

- L, R = Left, Right graphs;
- \(\mathrm{K}=\) shared graph;
- \(\mathrm{G}=\) input, \(\mathrm{H}=\) output
- Eg:

H. Ehrig. K. Ehrig
U. Prange - G. Taentzer

Fundamentals of Algebraic
Graph Transformation

\section*{Meta-graph grammar for scalable implementation}
- Transformation target for spatially embedded labeled graph rewrite dynamics
- For computational reduction to scalable particle codes?
```

x,y,z: real-valued params
a,b,c: discete-valued params
A,B,C: OIDs
particle(A,a,x) --> itself under an ODE |a
particle(A, a, x), particle(B, b, y) --> themselves under an ODE |a,b for x
particle(A, a, x), particle(B, b, y), link(A,B)
--> themselves under an ODE |a,b for x
particle(A, a, x) <--> particle(A, a, x), particle(B, b, y)
with a propensity depending on x-y, a, b
particle(A, a, x) <--> null with a propensity depending on x
(null is non-modeled stuff - but violates conservation)
particle(A, a, x), particle((B, b, y)
<--> particle(A, a, x), particle((B, b, y), link(A,B)
with a propensity depending on x-y, a, b
particle(A, a, x), particle((B, b, y), link(A,B)
<--> particle(A, a, x, particle(B,Y), link(A,B), link(B,A)
particle(A, a, x), particle((B, b, y), link(A,B), particle(C,z), link(B,C)
<--> particle(A, a, x), particle(B, b, y), link(A,B), particle(C, C, z),
link(B,C), link(C,A) with a propensity(x-y,y-z,z-x | a,b,c)

```

\section*{Summit Architecture}
(\#1 in 2018-9)
- Each node:
- \(2 \times 22\) cores/CPU ~1 TFlops
- 6xV100 GPU ~47 TFlops

https://en.wikichip.org/wiki/supercomputers/summit

\section*{"Cabana" particle sim can be fast}


\section*{Cabana-friendly pseudocode:} "Cajete" MT prototype

\author{
w. Bob Bird, LANL
}
void evolve_particle_damped(particle_list_t\& particles, size_t i)
WoldeGabriel et al., NM Geology 5/16

\section*{\{}
auto type \(=\) particles.slice \(<\) Type \(>\) ();
auto force_type_A = particles.slice<Type>()(i);
auto velocity \(=\) particles.slice<Velocity>();
auto position \(=\) particles.slice \(<\) Position \(>\) ();
auto length \(=\) particles.slice<Length \(>\) (;
if ( force_type_A == positive )
\{
// ith particle, property j (0..2)
\(\mathbf{i}_{-} 1=\) nbr_interior.i; j_1 = nbr_interior.j; velocity \((\mathrm{i}, \mathrm{j})=\) v_plus * (1-length(i_1)/length_max) * \(u(i, j)\);
position( \(\mathbf{i}, \mathrm{j})\) += velocity \((\mathrm{i}, \mathrm{j})\) * delta; //?? + length( i\()\);
for all nearby other fibers \(\mathbf{k}\) \{
alpha \(=-2 d \operatorname{cross}((\ldots),(\ldots).) / 2 d c r o s s((\ldots),(. .).) ; / / 2 d\) cross product gamma \(=-2 \operatorname{dcross}((\ldots),(\ldots)) / 2 d \operatorname{cross}((\ldots),(\ldots)) ; / / 2 d\) cross product
// directional derivative of kappa * \(\exp (-\) gamma^2/(2*epsilon^2)): velocity \((\mathrm{i}, \mathrm{j})+=\) kappa \({ }^{*} u(\mathrm{i}, \mathrm{j})^{\star}\left(- \text { gamma/epsilon }{ }^{\wedge} 2\right)^{*} \exp \left(-\right.\) gamma^^2/(2*epsilon \(\left.{ }^{\wedge} 2\right)\) ); elongation_speed(i_) +=v_plus (v_plus + v_minus)*(length(i)/length_max) ;
\}
position(i, j) += velocity(i, j) * delta; //?? + length(i);
else if ( force_type_A == negative )
\{
i_1 = nbr_interior.i;
velocity \((\mathbf{i}, \mathrm{j})=\) v_minus * \(\left(\right.\) length( \(\left.\mathbf{i} \_1\right) /\) /ength_max) * \(\mathbf{u}(\mathrm{i}, \mathrm{j})\);
position(i, j) += velocity(i, j) * delta; //?? + length(i);
\}
else if ( force_type_A == intermediate )
\{
// i_1 = nbr1.i; j_1 = nbr2.j; i_2 = nbr2.i; j_2 = nbr2.j; ftype1 = nbr1.force_type_A;
ftype2 = nbr2.force_type_A;
if ((ftype1 == positive \&\& ftype2==negative)||(ftype1 == negative \&\& ftype2==positive))
elongation_speed(i) += v_plus (v_plus + v_minus) \({ }^{\star}\) (length(i)/length_max) ;
else if (ftype1 \(==\) positive \(\& \&\) ftype \(2==\) positive) elongation_speed(i) \(+=2^{\star}\) v_plus* (1-length(i)/length_max); else if (ftype1 \(==\) negative \(\& \&\) ftype2 \(==\) negative) elongation_speed(i) \(+=\mathbf{2}^{*}\) v_minus * (length(i_1)/length_m
length(i) += elongation_speed(i)*delta;
else if (force_type_A == junction )

\section*{Cajete MT: First Light}


Eric Medwedeff, UCI

\section*{Cajete MT: First Light}


Eric Medwedeff, UCI

\section*{Eg: Plant gene expression model Declarative, with cell growth \& division}
\[
\begin{aligned}
& \left\{\left\{\emptyset \rightarrow \mathrm{U}, \mathrm{k}_{1} \mathrm{TIP}[\mathrm{t}]\right\},\left\{\mathrm{U} \rightarrow \emptyset, \mathrm{k}_{2}\right\},\left\{\mathrm{U} \longrightarrow \mathrm{U}, \operatorname{Diffusion}\left[\mathrm{D}_{\mathrm{U}}\right]\right\},\right. \\
& \left\{\emptyset \rightarrow \mathrm{V}, \mathrm{k}_{3} \mathrm{~L} 1[\mathrm{t}]\right\},\left\{\mathrm{V} \rightarrow \emptyset, \mathrm{k}_{4}\right\},\left\{\mathrm{V} \longrightarrow \mathrm{~V}, \operatorname{Diffusion}\left[\mathrm{D}_{\mathrm{V}}\right]\right\}, \\
& \left\{\emptyset \rightleftarrows \mathrm{Z}, \mathrm{k}_{7}, \mathrm{k}_{8} \mathrm{U}[\mathrm{t}]\right\},\left\{\mathrm{X} \mapsto \mathrm{~V}, \operatorname{GRN}\left[\mathrm{v}_{\mathrm{V}}, \mathrm{~T}_{\mathrm{WV}}, 1, \mathrm{~h}_{\mathrm{V}}\right]\right\}, \\
& \left\{\{\mathrm{U}, \mathrm{~V}, \mathrm{~W}\} \mapsto \mathrm{W}, \operatorname{GRN}\left[\mathrm{v}_{\mathrm{W}},\left\{\mathrm{~T}_{\mathrm{UW}}, \mathrm{~T}_{\mathrm{VW}}, \mathrm{~T}_{\mathrm{WW}}\right\}, 1, \mathrm{~h}_{\mathrm{W}}\right]\right\},\left\{\mathrm{W} \rightarrow \emptyset, \mathrm{k}_{6} \mathrm{Z}[\mathrm{t}]+\mathrm{k}_{9} \mathrm{~L} 2[\mathrm{t}]\right\} \\
& \left\{\mathrm{W} \mapsto \mathrm{X}, \operatorname{GRN}\left[\mathrm{v}_{\mathrm{X}}, \mathrm{~T}_{\mathrm{WX}}, 1, \mathrm{~h}_{\mathrm{X}}\right]\right\},\left\{\mathrm{X} \rightarrow \emptyset, \mathrm{k}_{5}\right\},\left\{\mathrm{X} \longrightarrow \mathrm{X}, \operatorname{Diffusion}\left[\mathrm{D}_{\mathrm{X}}\right]\right\} \text {, } \\
& \left\{\operatorname{cell} \longrightarrow \text { cell, Grow[GrowthRate }\left[\mu, \mathrm{f}_{\mu}\right] \text {, Pressure }\left[\mathrm{P}, \mathrm{f}_{\mathrm{P}}\right], \operatorname{Spring}\left[\mathrm{k}, \mathrm{f}_{\mathrm{k}}\right]\right\} \text {, } \\
& \underset{\text { L-systems: }}{c \text { c. }} \quad\{\text { cell } \longrightarrow \text { cell }+ \text { cell, Errera[cell }, \mu, \sigma\}\}
\end{aligned}
\]

[Shapiro et al Frontiers in Plant Science 2013]

\section*{Dynamical Grammar example: Root growth}

Cell division
\[
\begin{gathered}
\left\{\operatorname{Cell}\left(x_{i}, r_{i}, m_{i}=2, a_{i}, y_{i}\right)\right\} \rightarrow\left\{\begin{array}{l}
\operatorname{Cell}\left(x_{l}, \frac{r_{i}}{2}, m_{l}=1, a_{l}, y_{l}\right), \operatorname{Cell}\left(x_{l+1}, \frac{r_{l+1}}{2}, m_{l+1}=1, a_{l+1}, y_{l+1}\right) \\
\left.s_{l, l+1}=\operatorname{spring}\left(c_{l}, c_{l+1}\right)\right\} \rightarrow\left\{c_{l}, c_{l+1}, s_{l, l+1}\right\}
\end{array}\right\} \\
\text { with } \rho_{d i v}\left(y_{i}\right)=\left(\frac{y_{i}}{k_{d i v, 1}}\right)^{h_{a n, i}} /\left(1+\left(\frac{y_{i}}{k_{d v i, 2}}\right)^{h_{d x, 2}}\right)
\end{gathered}
\]

Active auxin transport
\(\left\{c_{i}=\operatorname{Cell}\left(x_{i}, r_{i}, m_{i}, a_{i}, y_{i}\right), \quad c_{i+1}=\operatorname{Cell}\left(x_{i+1}, r_{i+1}, m_{i+1}, a_{i+1}, y_{i+1}\right), \quad s_{i ; i+1}=\operatorname{spring}\left(c_{i}, c_{i+1}\right)\right\} \rightarrow\left\{c_{i}, c_{i+1}, s_{i ;+1}\right\}\) solving \(\left\{\frac{d a_{i+1}}{d t}=-K_{0} a_{i+1} b\left(a_{i+1}\right), \frac{d a_{i}}{d t}=K_{0} a_{i+1} b\left(a_{i+1}\right)\right\}\)

Auxin flow from the shoot

Hypothetical substance \(Y\)
\[
\begin{aligned}
& \left\{c_{N}=\operatorname{Cell}\left(x_{N}, r_{N}, m_{N}, a_{N}, y_{N}\right)\right\} \rightarrow\left\{c_{N}\right\} \\
& \quad \text { solving }\left\{\frac{d a_{N}}{d t}=\alpha_{\text {init }}+\frac{0.17 t}{\text { CellCycleTime }}\right\} \\
& \left\{c_{i}=\operatorname{Cell}\left(x_{i}, r_{i}, m_{i}, a_{i}, y_{i}\right)\right\} \rightarrow\left\{c_{i}\right\} \\
& \text { solving }\left\{\frac{d y_{i}}{d t}=-y_{i}\left(K_{d, y}\left(a_{i}\right)+\frac{v\left(r_{i}\right)}{r_{i}}\right), \frac{d r_{i}}{d t}=v\left(r_{i}\right)\right\} \\
& K_{d, y}\left(a_{i}\right)=k_{d, y}^{0}\left(1+\left(\frac{a_{i}}{k_{d, y}^{l}}\right)^{h_{y, 1}} /\left(1+\left(\frac{a_{i}}{k_{d, y}^{2}}\right)^{h_{y, 2}}\right)\right)
\end{aligned}
\]

[Mironova et al., BMC Systems Biology 2010]

\title{
Symbolic transformation: \{Reaction\} --> \{ODE\}
}

- This can be done by meta-rules, in a meta-grammar
- As can many modeling-language extensions \& translations

\section*{Symbolic model transformations: endless possibilities}
- Meta-rules for transforming dynamics rules
\(\checkmark\) e.g. Reactions \(\rightarrow\) ODEs
e.g. detailed balance by arrow reversal
- generation of ML algorithms from models, > autodiff
- \(\sim\) Model reduction by ML (linear combination)
- structural discovery of fast modes
- ~Reduction to spatial graph dynamics
- e.g. adaptive grids by graph rewrite rule

- emergent dynamical structures: tissue, cytoskeleton, ...

\section*{Fields to Structures}
- Dynamical Graph Grammars (DGGs):
- operator addition of reactions, GGs, ODEs;
- but what about PDEs?
- Fields: PDE differential operator dynamics in W
- Approximately eliminate fields by:
- Cell complexes in PDE (adaptive) meshing / FEMs, FVMs

\title{
Geometric meshing: protective manifolds
}

[Rand and Walkington 2009]
Cf. [Murphy, Mount, \& Gable 2001;
Engwirda 2016]

\section*{Graph Grammars for 2D meshes}
- Triangular:

- Cuboid:


\section*{Higher level rewrite rules}
- Identify strata

(Diag
each inverse image \(\left(\chi_{G_{s}}^{-1}\right)(d)\) must be a fully disconnected
- Operator algebra semantics for strata and other slices
\[
\rho_{\text {graph } r}\left((\boldsymbol{\kappa}, \boldsymbol{\lambda}),\left(\boldsymbol{\kappa}^{\prime}, \boldsymbol{\lambda}^{\prime}\right)\right)=\Theta\left(P_{H}(\boldsymbol{\kappa})\right) \times \Theta\left(P_{H}\left(\boldsymbol{\kappa}^{\prime}\right)\right) \times \rho_{\text {slice } H, r}\left(\boldsymbol{\lambda}, \boldsymbol{\lambda}^{\prime}\right)
\]


\section*{Extended objects via slices}

\section*{using graph homomorphisms}

\[
\left.H=\hat{\mathbb{N}}, \quad \hat{J}_{D}, \quad \hat{\mathbb{N}}_{D}^{\mathrm{Op}}, \quad C_{D}, \quad \text { or } \quad \tilde{C}_{D}\right]
\]
```

```
\mathbb{N}}\equiv(\mathbb{N},\mathrm{ Successor)
```

```
```

\mathbb{N}}\equiv(\mathbb{N},\mathrm{ Successor)

```
\(=\) nonnegative integers \(\{0,1, \ldots\}\) as vertices,
with (possibly directed) edges from each
integer \(i\) to its immediate successor \(i+1\) and to itself;
```

- (pog

```








```

```
```

\mp@subsup{\mathbb{N}}{D}{\mathrm{ op }}\equiv{$$
\begin{array}{l}{\mathrm{ integers {0,_DD} with (i,j) edge iff }i=j+1 or i=j directed graphs;}\end{array}
$$}\begin{array}{l}{\mathrm{ integers }{0,···D}\mathrm{ with (i,j) edge iff }|i-j|\leqslant1 undirected graphs}

```
```

```
\mp@subsup{\mathbb{N}}{D}{\mathrm{ op }}\equiv{\begin{array}{l}{\mathrm{ integers {0,_DD} with (i,j) edge iff }i=j+1 or i=j directed graphs;}\end{array}}\begin{array}{l}{\mathrm{ integers }{0,\ldotsD}\mathrm{ with (i,j) edge iff }|i-j|\leqslant1 undirected graphs}
```

```
```

\mp@subsup{\mathbb{N}}{D}{\mathrm{ op }}\equiv{$$
\begin{array}{l}{\mathrm{ integers {0,_DD} with (i,j) edge iff }i=j+1 or i=j directed graphs;}\end{array}
$$}\begin{array}{l}{\mathrm{ integers }{0,···D}\mathrm{ with (i,j) edge iff }|i-j|\leqslant1 undirected graphs}

```
```

```
\mp@subsup{\mathbb{N}}{D}{\mathrm{ op }}\equiv{\begin{array}{l}{\mathrm{ integers {0,_DD} with (i,j) edge iff }i=j+1 or i=j directed graphs;}\end{array}}\begin{array}{l}{\mathrm{ integers }{0,\ldotsD}\mathrm{ with (i,j) edge iff }|i-j|\leqslant1 undirected graphs}
CD}\equiv\equiv\hat{\mathbb{N}}\square\mp@subsup{\hat{J}}{D}{
CD}\equiv\equiv\hat{\mathbb{N}}\square\mp@subsup{\hat{J}}{D}{
CD}\equiv\equiv\hat{\mathbb{N}}\square\mp@subsup{\hat{J}}{D}{
CD}\equiv\equiv\hat{\mathbb{N}}\square\mp@subsup{\hat{J}}{D}{
\mp@subsup{C}{D}{}}\equiv\hat{\mathbb{N}}\square\mp@subsup{\hat{\mathbb{N}}}{D}{\textrm{op}
```

```
\mp@subsup{C}{D}{}}\equiv\hat{\mathbb{N}}\square\mp@subsup{\hat{\mathbb{N}}}{D}{\textrm{op}
```

```
\mp@subsup{C}{D}{}}\equiv\hat{\mathbb{N}}\square\mp@subsup{\hat{\mathbb{N}}}{D}{\textrm{op}
```

```
\mp@subsup{C}{D}{}}\equiv\hat{\mathbb{N}}\square\mp@subsup{\hat{\mathbb{N}}}{D}{\textrm{op}
```

```

Stratified space of MTs:


Antitubulin labelling in premitotic epidermal cells Datura stramonium [Flanders et al., J. Cell Bio. I IO, 1990].

\section*{Operator Algebra variants:}
\(\rho_{\text {graph } r}\left((\boldsymbol{\kappa}, \boldsymbol{\lambda}),\left(\boldsymbol{\kappa}^{\prime}, \boldsymbol{\lambda}^{\prime}\right)\right)=\Theta\left(P_{H}(\boldsymbol{\kappa})\right) \times \Theta\left(P_{H}\left(\boldsymbol{\kappa}^{\prime}\right)\right) \times \rho_{\text {slice } H, r}\left(\boldsymbol{\lambda}, \boldsymbol{\lambda}^{\prime}\right)\)

\section*{Stratified spaces, not cell complexes, are necessary for cytoskeleton}


Left:Antitubulin labelling in premitotic epidermal cells

Datura stramonium
[Flanders et al.,
J. Cell Bio. I IO, 1990].


[Smith, Nat Rev MCB 2 2001]


Above: Antitubulin labelling at intact cell cortex
[DeBolt et al., PNAS 2007 supplementary info figure 8A.]

\section*{Graph Lineage Definitions}
- Hierarchical Graph Sequence: a mapping from \(\mathbb{N}\) into some sequence of graphs which obeys the following:
- \(\mathrm{G}_{0}\) is the graph with one vertex and one loop on that vertex
- Edge and vertex cardinality of graphs in the sequence grow at most "exponentially" in some base, \(b\) : \(O\left(b^{l+\varepsilon}\right)\)

- Graded Graph: \(G\) is a graded graph if all of the vertices of \(G\) are labeled with nonnegative integers such that if \(\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\) is an edge, the labels of \(\mathrm{v}_{1}\) and \(\mathrm{v}_{2}\) differ by at most 1 .

- Graph Lineage: a graded graph where the sequence of \(\Delta L=0\) subgraphs is a HGS and the subgraphs with \(\Delta L=1\) are a HGS of bipartite graphs. The above is a graph lineage of path graphs of length \(2^{n}\).
- Hierarchitecture: A graph lineage, used as a model architecture.

\section*{Generating Graph Lineages}
- One way to generate a graph lineage (or more generally, graded graphs) is via local graph rewrite rules.

- Rules can be applied locally, or to all cells in a graph simultaneously:


Local Firing


Global Firing
- Graph labels suppressed, but necessary
- More:


\title{
Multiscale numerics: \\ Alg. Multigrid Methods for Graphs
}
\[
G^{\prime} \simeq P^{T} G P
\]


\section*{Define Graph Process Directed "Distances"}
- Definition requires constrained opt of diffusion operator:
\[
\begin{aligned}
D\left(G_{1}, G_{2} \mid R, \alpha>0, t\right) & =\inf _{P \mid C(P)}\left\|P \exp \left(\alpha^{-1 / 2} t W_{1}^{(R)}\right)-\exp \left(\alpha^{1 / 2} t W_{2}^{(R)}\right) P\right\|_{F} \\
D\left(G_{1}, G_{2} \mid R, t\right) & =\inf _{\alpha>0} D\left(G_{1}, G_{2} \mid R, \alpha, t\right)
\end{aligned}
\]
- Constraints: orthogonality; sparsity?
\[
C(P): \quad \begin{gathered}
P^{T} P=I \\
\text { restriction.prolongation }
\end{gathered} ; \quad \max \text { fanout }(P) \leq\left(n_{P \text { fine }} / n_{P \text { course }}\right)^{s}
\]
- Optimize time \& time dilation due to graph size:
\[
\tilde{D}\left(G_{1}, G_{2} \mid R\right)=\sup _{t>0} \inf _{\alpha>0} D\left(G_{1}, G_{2} \mid R, \alpha, t\right)
\]
- Can obtain \(P\) at early times ("rigid" vs "flexible" def of \(D\) ):
\[
\begin{aligned}
D_{\text {rigid }}\left(G_{1}, G_{2} \mid R, t\right) & =\inf _{P \mid C(P)}\left\|P^{*} \exp \left(\alpha^{*-1 / 2} t W_{1}^{(R)}\right)-\exp \left(\alpha^{* 1 / 2} t W_{2}^{(R)}\right) P^{*}\right\|_{F}, \text { where } \\
\left(\alpha^{*}, P^{*}\right) & =\operatorname{argmin}_{\alpha>0, P \mid C(P)}\left\|\alpha^{-1 / 2} P W_{1}^{(R)}-\alpha^{1 / 2} W_{2}^{(R)} P\right\|_{F}
\end{aligned}
\]
- \(\triangle \leq\) provable with weaker \(\alpha: \quad \alpha=\left(\frac{n_{1}}{n_{2}}\right)^{r}\)

\section*{Graph Distance Experiments}
- Triangle inequality
- Graph limits

with Cory Scott
MS in prep


Key data type:

\section*{Stack of models}
w. conditional reductions, each model on the spectrum:
- pure chemical reactions
- parameterized object rewrite rules
- propensity functions
- differential equations (ordinary, stochastic, delay)
graph grammar rewrite rules
graph-limit rewrite rules
- support PDEs on \(\mathrm{R}^{\mathrm{n}}\), manifolds, CCs, SSs
- sub-grammar calls, macros, types/inheritance

\section*{Epilogue}
- Interlevel mappings in "morphodynamics"/dev bio modeling are central to: AI for bio
- Such model reductions can be specified, curated, optimized and learned computationally
- optimized and learned: Dynamic Boltzmann Distributions, GCCD, machine learning methods
- specified: ~Dyn Graph Grammar high level languages + graph limits. Microtubule, cell tissue models as test cases.
- curated: Tschicoma conceptual architecture; Cajete scalable prototype
- Comments? Want to help? emj@uci.edu .

\section*{_nem "Tchicoma" Architecture for Mathematical Modeling}
- Language meta-hierarchy: (a DAG with edge labels in a tree)

- Mappings therein:
respecting compositional structure

Enables problem-solving via chaining, theorem-proving

Foments abstraction via commutation
[EM, Bull. Math Biol. 81:8 Aug 2019
+arXiv:1804.11044]


Algorithms
numerical algos
optimization

\section*{Conclusions}
- Biological model reduction can be achieved by machine learning, in spatial stochastic models (and easier ones). Reaction/diffusion examples.
- Morpho-dynamic spatial structures (and easier models) can be modeled by dynamical graph grammars with operator semantics. Biouniversal; scalability is in progress. MT examples.
- Model stacks are the key data structure for understanding complex bio systems. They require model reduction and bio-universal modeling languages (perhaps as above). They can intersect productively, and could be curated in a proposed conceptual architecture "Tchicoma".
- Declarative modeling languages with operator algebra semantics can support generic model reduction, hence model stacks.
- In these ways, both symbolic and numeric AI can be brought to bear on understanding complex biological systems at their own scale.

\section*{A change of view}
- Human, physicscentric viewpoint:
- Computer viewpoint:


Dynamics
Analysis Geometry Topology Logic```

