How can tissues actively avoid rupture? (lessons from Trichoplax)

KITP 2019

shahaf.armon@weizmann.ac.il

Trichoplax Adhaerens/Placozoa (Tplax)

Animal kingdom evolution

<u>claimed simplest</u> <u>living animal</u>

- 2D pancake, minimal symmetry breaking
- No neurons or muscles
- Two epithelial layers
- No Extra-cellular-matrix
- Only adherens junctions

but exhibits complex behaviors:

- -Directed locomotion
- -Taxis
- -External digestion
- -Division by fission

How does the animal coordinates itself??

Live Tracking from top view:

CMO live membrane stain 10x fast

0.5

0.3 0.4 v[mm]

0.1

0.2

<u>Contraction Dynamics</u> in *Trichoplax Adhaerens*

- 1. <u>Intro</u>: the "simplest living animal"
- 2. <u>Story #1</u>: High-speed of single cell contraction
- Story #2: Tissue dynamics and the "active cohesion" hypothesis

Fastest Epithelial Contractions in the Animal Kingdom

How come Tplax cells are so fast? or: Why all other cells so slow?

Collecting Statistical Data:

Random orientation 1D contractility speed

Known machinery can "easily" yield these speeds in <u>free cables</u>

Why only Tplax? Tissue Minimizes Load

[um]

disp

Relative

3) Peripheral actin bundles (purse-string)

expansion forced Uum 350% membrane cytoskeleton ed contr forced contraction cell-cell junction high tension contracted steady state 50% k expanded death Armon et al, PNAS 2018 700%

4) Cell size variation and steady state

5)Cell shape and stiffness variation

50% cell-area in 1 sec?!?!

1. ActoMyosin machinery is capable

2. Architecture minimized load on contractions

3. Neighbor-cells are ready to yield

<u>Contraction Dynamics</u> <u>in Trichoplax Adhaerens</u>

- 1. <u>Intro</u>: the "simplest living animal"
- 2. <u>Story #1</u>: High-speed of single cell contraction
- 3. <u>Story #2</u>: Tissue dynamics and the "active cohesion" hypothesis

biological process	time scale/cell [sec]	
Protein translation	25	
Actin turnover	20	slow
Tplax radial waves	1.5	
Tplax uniaxial waves	0.3	
Diffusion	10-1	
Viscoelasticity	10 ⁻² -10 ⁻³	fast
Neuronal transmissio	n 10 ⁻⁷	

(#1) Is mechanics involved in wave propagation?

The miserable life of a cell:

Despite alternating stresses, and quick changes in cells' size and shape, The tissue always stays intact.

(#2) How is integrity maintained?

Tissue response to tensile stress:

1. Oriented cell divisions

Spindle orientations

Zhou et al. Curr.Bio. 2019

Blankenship et al, Developmental cell 2006

2. Cell flows

Tissue response to tensile stress:

3. Active softening

Khalilgharibi et al., Nature Physics 2019.

4. Active contraction:

Fernandez-Gonzales Dev Cell 2009

Noll et al Nature Physics 2017

Molecular-level experiments show **BOTH** stress stiffening and stress softening:

Chaudhuri et al, Nature 2007

Tissue has two failure modes:

Contraction + softening = "Active Cohesion" ?

Modeling the two switches

Modeling the two switches

(i) Avoiding high **cell strain** By active <u>cell contraction</u>:

(ii) Avoiding high junction stress By local <u>cell softening</u>:

Matt Bull

Response to stretch:

Passive elastic

+contractions

1D simulation:

Isolated Waves

A lot of data Tss[s] Amp/N $\tau_1[s]$ 10⁵ 10⁴ 10⁻¹ 10

Contraction Waves (in 1D)

- Waves propagate via the viscosity of the media. 1.
- Spontaneous waves propagate from the rim 2. inwards, in a non-constant speed (slower in the bulk).
- Noise can create waves anywhere (but slower in 3. the bulk).
- Waves are non linear and annihilate. 4.
- 5. Stiffer cells make waves go faster.

Excitable +pinch

Unique to 2D: Long quiescence -Residual stresses -distorted shapes

<u>Active cohesion – future directions</u>

Theory and experiment Other tissue types (embryonic or not)

Tplax as a model system for epithelium biomechanics

- **2D animal:** imaging, manipulation, modeling
- **Minimalism:** short genome, 6 cell types, no ECM/BM, only adherens junctions
- Speed of events faster than genetic and biochemical time scales.

Mechanics must be sensed and activated

• High strains – stresses can be "seen"

Thanks!

Manu Prakash

Matt Bull

AndresDeepakVivekAranda-DiazKrishnamurthyPrakash

FG

V. Prakash et al, bio-arxiv 2019

Membrane tubes

Live membrane stain

Charras Nature 2005

Hoffman, Physiol.Rev, 2009

hyper-pressure: blebbing

hipo-pressure: Membrane tubes

live animal

5xfast

Area change rate [um^2/s]

Stiffness matters, and emerge

