How can tissues actively avoid rupture? (Cessons from Trichoplax)

Shahaf Armon
KITP 2019

Trichoplax Adhaerens/Placozoa (Tplax)

Animal kingdom evolution

claimed simplest

living animal

- 2D pancake, minimal symmetry breaking
- No neurons or muscles
- Two epithelial layers
- No Extra-cellular-matrix
- Only adherens junctions

but exhibits complex behaviors:

-Directed locomotion
-Taxis
-External digestion
-Division by fission
How does the animal coordinates itself??

Live Tracking from top view:

CMO live membrane stain

Contraction Dynamics
 in Trichoplax Adhaerens

1. Intro: the "simplest living animal"
2. Story \#1: High-speed of single cell contraction
3. Story \#2: Tissue dynamics and the "active cohesion" hypothesis

Fastest Epithelial Contractions in the Animal Kingdom

How come Tplax cells are so fast? or: Why all other cells so slow?

Collecting Statistical Data:

Random orientation 1D contractility speed

Probability for contraction: P

$$
P=1 / 6
$$

Actin-myosin bundle

$$
\dot{A}=\frac{-4 V_{h} A_{0}}{D}\left(-P+\frac{V_{h}}{D} P^{2} t\right)
$$

Armon et al, PNAS 2018

Known machinery can "easily" yield these speeds in free cables

Why only Tplax? Tissue Minimizes Load

1) Tissue is extremely thin

Live cross-sections

3) Peripheral actin bundles (purse-string)
2) Tissue is suspended

4) Cell size variation and steady state

5)Cell shape and stiffness variation

50\% cell-area in 1 sec?!?!

1. ActoMyosin machinery is capable
2. Architecture minimized load on contractions

3. Neighbor-cells are ready to yield

Contraction Dynamics
 in Trichoplax Adhaerens

1. Intro: the "simplest living animal"
2. Story \#1: High-speed of single cell contraction
3. Story \#2: Tissue dynamics and the "active cohesion" hypothesis

biological process time scale/cell [sec]
Protein translation 25
Actin turnover 20
Tplax radial waves 1.5
Tplax uniaxial waves 0.3
Diffusion 10^{-1}
$\begin{array}{ll}\text { Viscoelasticity } & 10^{-2}-10^{-3} \\ \text { Neuronal transmission } & 10^{-7}\end{array}$ fast
(\#1) Is mechanics involved in wave propagation?

The miserable life of a cell:

Despite alternating stresses, and quick changes in cells' size and shape, The tissue always stays intact.
(\#2) How is integrity maintained?

Tissue response to tensile stress:

1. Oriented cell divisions

Spindle orientations

Zhou et al. Curr.Bio. 2019
2. Cell flows

Blankenship et al, Developmental cell 2006

Tissue response to tensile stress:

3. Active softening

Khalilgharibi et al., Nature Physics 2019.
4. Active contraction:

Fernandez-Gonzales Dev Cell 2009

Molecular-level experiments show BOTH

stress stiffening and stress softening:

Chaudhuri et al, Nature 2007

Tissue has two failure modes:

Modeling the two switches

Single cell
(i)

Avoiding high cell strain By active cell contraction:

(ii)

Avoiding high junction stress By local cell softening:

excitable mode relaxation oscillator

Modeling the two switches

(i)

Avoiding high cell strain By active cell contraction:
(ii)

Avoiding high junction stress
By local cell softening:

Response to stretch:

Passive elastic

+contractions

$1 \frac{\text { ® }}{\frac{\text { D }}{\text { ® }}}$

1D simulation:

cell cont
Isolated
Waves

measurables:

A lot of data

Contraction Waves (in 1D)

1. Waves propagate via the viscosity of the media.
2. Spontaneous waves propagate from the rim inwards, in a non-constant speed (slower in the bulk).
3. Noise can create waves anywhere (but slower in the bulk).
4. Waves are non linear and annihilate.
5. Stiffer cells make waves go faster.

Excitable +pinch

Unique to 2D:
 Long quiescence

-Residual stresses -distorted shapes

Active cohesion - future directions

Theory and experiment
Other tissue types (embryonic or not)

Tplax as a model system for epithelium biomechanics

- 2D animal: imaging, manipulation, modeling
- Minimalism: short genome, 6 cell types, no ECM/BM, only adherens junctions
- Speed of events - faster than genetic and biochemical time scales.

Mechanics must be sensed and activated

- High strains - stresses can be "seen"

Thanks!

V. Prakash et al, bio-arxiv 2019

Membrane tubes

Time

Stiffness matters, and emerge

stiff
 soft

