The mechanical regulation of morphogenesis in plants and fungi

Arezki Boudaoud Department of Biology Ecole Normale Supérieure de Lyon

Morphogenesis in plants and fungi

Growth regulation

Palkerning
Tissues
 Whole organism

Arabidopsis thaliana

Molecular and genetic regulation Focus on physical effectors

Walled cells

\star Walled cells

- Green algae and land plants
- Fungi
- Eubacteria
- Archaea
- Red algae
- Brown algae

Stiff casing (no change in shape when depolymerising cytoskeleton)

Tobacco - BY2

Cell wall thickness 0.1 to 10 m m Plasma membrane

Cytoplasm

Outline

An introduction to walled cells Growth mechanics in fission yeast Growth mechanics in Arabidopsis Morphogenesis in fission yeast Growth homogeneity in Arabidopsis Architecture in Arabidopsis

Introduction

Growth in charales (Nitella, Chara)

~day

Nitella axilaris
Paul Green 1970s

Introduction

Is the cell wall soft or hard?

Chara corallina

=> Elastic modulus
(anisotropy?)
E(units of pressure)
Stiff $<=>$ high E
Soft <=> small E

Agar: 0.1-1MPa
PDMS (silicon): ~1MPa
Rubber: 10-100MPa
Plastics: mostly ~1GPa
Metals: ~10GPa
$\mathrm{E}^{\sim} 100 \mathrm{MPa}$

Introduction

How can they grow within a stiff casing? Slower growth in hyperosmotic medium

In walled cells: turgor pressure 0.5 to 20 atm (0.05 to 2 MPa)

Introduction

Anisotropic growth?

Introduction

Imaging between cross-polarizers

Introduction

Cell wall thickness
0.1 †o 10 $\mu \mathrm{m}$ Plasma
membrane

Cyłoplasm

Introduction

The basis of morphogenesis?

Growth of single cell / hypocotyl
>structure: cell wall
powered by: turgor pressure (osmotic)
vrowth rate: soft/stiff wall BUT
growth orientation: orientation of fibers

How different from animal morphogenesis?

Introduction

Not that much
A directional brake/facilitator:
Cell wall $<=>$ Actomyosin cortex

A power:
Osmotic pressure

LETTER

Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding
Martin P. Stewart ${ }^{1,2}$, Jonne Helenius ${ }^{1}$, Yusuke Toyoda ${ }^{3}$, Subramanian P. Ramanathan ${ }^{1}$, Daniel J. Muller ${ }^{1}$ \& Anthony A. Hyman ${ }^{3}$

But:
adhesion, topology

Growth mechanics in fission yeast

A model system for polarised growth

Nicolas MINC
Columbia University now Institut Jacques Monod Paris

Fred CHANG
Columbia University

Minc et al. Curr. Biol 2009

Growth mechanics in fission yeast

Growth mechanics in fission yeast

$>$ Force deduced from well deformation
$>$ Buckling threshold yields wall stiffnes

$\mathrm{E}_{\text {fission yeast }}=100 \pm 30 \mathrm{MPa}$

Confirmed by 'swelling-shrinking' experiments

Growth mechanics in fission yeast

Force generation by MTs?
Max ~ 50nN

Growth mechanics in fission yeast

Stall force $F=1 \mid \mu \mathrm{N}$
Cross section $S=3.14 \times 2^{2}=12.6 \mu \mathrm{~m}^{2}$
Corresponding pressure $\mathrm{P}=\mathrm{F} / \mathrm{S}$
WT: $\mathrm{P}=0.9 \mathrm{MPa}$ (=9bars)

Growth mechanics in fission yeast

Turgor-powered growth

Simplest model

Geometry, wall thickness => turgor, wall properties

Multicellular context?

Growth mechanics in Arabidopsis

The shoot apex

An ideal system:

>well-characterised molecularly/genetically
$>$ determines aerial architecture
\rangle accessible in the reproductive state

Growth mechanics in Arabidopsis

Continuous development

Heisler, 2005

Growth mechanics in Arabidopsis

Appropriate approaches: indentation (eg AFM); swelling-shrinking

Growth mechanics in Arabidopsis

Does this stiffness pattern correspond to cell identity?

Pascale MILANI Vincent MIRABET

Pradeep DAS and Coralie CELLIER and Olivier HAMANT
P. Milani et al., unpublished

Morphogenesis in fission yeast

Nicolas MINC's group Institut Jacques Monod, Paris ; Matthieu PIEL

Jean-Daniel JULIEN

Morphogenesis in fission yeast

Flatness of leaves and petals

Why are leave flat?

Flatness of leaves and petals

Torn plastic sheets and beet leaves Sharon Nature 2002

Antirrhinum cin Nath Science 2003

African tulip tree UCSB campus

Arabidopsis jaw-D Palatnik Nature 2003

Arabidopsis $\Delta p p d$ White PNAS 2006

Flatness of leaves and petals

- A thin elastic body
>enhanced growth at the edge
>mechanical equilibrium
with Basile AUDOLY, PRL 2003

By default: leaves are not flat

Growth homogeneity in Arabidopsis

What if each cell had its own growth rate?

Shraiman PNAS 2005
Aergerter-Wilemsen et al Mech Dev 2007
Hufnagel et al PNAS 2007

Circumferential mechanical stress around fast growing cells

Growth homogeneity in Arabidopsis

Growth rate in area (volume)
Anisotropy
Direction of maximal growth
Regulation of growth rate?
Control of anisotropy?

Growth homogeneity in Arabidopsis

Cellulose microfibrils

Burgert and Fratzl 2009

Growth anisotropy: Microłubules orientation

Growth homogeneity in Arabidopsis

No cortical microtubules
 Isotropic growth

F. Corson et al. PNAS 2009

Francis CORSON Olivier HAMANT

Jan TRAAS Lyon

Yves COUDER
Paris Dideroł

Steffen Bohn Paris Dideroł

Growth homogeneity in Arabidopsis

No cortical microtubules
Isotropic growth
NPA + oryzalin

Oryzalin

Growth homogeneity in Arabidopsis

Larger growth rate in big cells?

Suggests pressure differences between cells

Growth homogeneity in Arabidopsis

Model:
$>$ Two dimensions
-Cell based

- Viscoelastic cell walls

Growth driven by furgor
Turgor pressure is regulated in each cell through osmolite contents

$$
\begin{array}{ll}
T_{i}=\mu h\left(\frac{l_{i}}{l_{i}^{0}}-1\right)=\frac{\nu h}{l_{i}^{0}} \frac{d l_{i}^{0}}{d t} & \frac{\mathrm{~d} n}{\mathrm{~d} t}=\frac{P(S) S-n}{\tau} \\
\kappa_{i}=\frac{\delta P}{T_{i}} & P(S)=\nu h S^{-1 / 2}
\end{array}
$$

Growth homogeneity in Arabidopsis

+ retrieve experimental distributions of angles

Growth homogeneity in Arabidopsis

Suggest turgor regulation to maintain homogeneity Now with microtubules?

Olivier HAMANT

O. Hamant et al. Science 2008

Marcus HEISLER now EMBL

Yves COUDER
Paris Dideroł

Henrik JONSSON now Lund and Cambridge

Jan TRAAS
Lyon also Pawel KRUPINSKI, Magalie UYTTEWAAL, Plamen BOKOV, Francis CORSON, Patrik SAHLIN

Growth homogeneity in Arabidopsis

Pattern of mechanical stress at the shoot apex

- A continuum mechanical model of the shoot apex
\downarrow Much stiffer epidermis
$>$ Turgor
-Prediction of mechanical stress patterns
$>$ Link with growth?
-with cellulose/microtubules?

Mechanical feedback

 direction of maximal force

Mechanical feedback

Unstable Microtubules seem to be preferentially recruited by mechanical stress

Growth homogeneity in Arabidopsis

Circumferential mechanical stress around fast growing cells

Alignment in the direction of maximal stress
$>$ Long term re-enforcement in that direction
Reduction of growth heterogeneity?

Growth homogeneity in Arabidopsis

Suggest turgor regulation to maintain homogeneity Now with microtubules?

Magalie UYTTEWAAL now INRA Versailles

Uyttewaal et al. Cell 2012

Karen ALIM Harvard

Agata BURIAN University of Silesia

Olivier HAMANT

Doroła KWIATKOWSKA University of Silesia, Poland also Benoit LANDREIN, Dorota BOROVSKA-WYKRET, Annick DEDIEU, Alexis PEAUCELLE, Michal LUDYNIA, Jan TRAAS

Growth homogeneity in Arabidopsis

Does the microtubule response to stress homogenize growth?

Model: A link between mechanical forces and growth rate

Hypotheses:
i. A specified growth rate for each cell, noisy ii. Mechanical feedback:
less growth in the direction of main stress
two important parameters: noise level + feedback strength

Growth homogeneity in Arabidopsis

Generalization (anisotropy) of a model used for animal epithelia
Elastic energy
Quasi-static equilibrium

$$
\mathcal{E}\left(\mathbf{r}_{\mathrm{m}}\right)=\Sigma_{i}\left\|M_{i}-M_{i}^{(0)}\right\|^{2}
$$

Mechanical stress computed from equilibrium state

specified growth with noisy source + mechanical feedback

$$
\frac{d}{d t} M_{i}^{(0)}=\gamma_{0} M_{i}^{(0)}-\gamma_{1} \frac{M_{i}^{(0)} D_{i}+D_{i} M_{i}^{(0)}}{2}
$$

two important parameters: noise level + feedback strength

Growth homogeneity in Arabidopsis

Optimum of growth homeostasis?

Test: a mutant with a decreased reponse to mechanical stress

Growth homogeneity in Arabidopsis

atktn1 = Katanin mutant

GFP-MBD
atktn1 GFP-MBD

Growth homogeneity in Arabidopsis

Weaker response to mechanical forces in atktn1

Growth heterogeneity in Arabidopsis

Heterogeneous growth

O

O ○

Homogeneous growth

Growth homogeneity in Arabidopsis

Mechanical stress can increase growth heterogeneity

Growth heterogeneity

The shape of the SAM is altered in atktn1

WT

atktn1

Growth heterogeneity

Organs of comparable rank

WT
atktn1
Over-reaction to forces => organ emergence
Consequences on architecture?

Conclusions

- Morphogenesis in walled cells
\downarrow Regulation of cell wall and turgor
$>$ Links with cell identity?
-Mechanical feedbacks
-Stabilising and destabilising!
-Questions:
$>$ Role of variability

AND

Acknowledgements

AND

The force side of plant morphogenesis

