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!Walled cells 
•Green algae and land plants
•Fungi
•Eubacteria
•Archaea 
•Red algae
•Brown algae

Stiff casing (no change in shape 
when depolymerising 
cytoskeleton)

Cytoplasm

Cell wall

Plasma 
membrane
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Figure 2: Experimental considerations for cell mechanical measurements

(A) Confocal stacks showing plasmolysis of BY2 cells, stained with calcaflru white (White, cell wall) and 
FM4-64 (yellow, membrane). (B) Effect of membrane/cytoplasm presence on viscoelastic experiments in BY2 
cells. (C) Effect of turgor on coefficient of elasticity measurements in BY2 cells. (D) Graph of coefficient of 
elasticity during an osmotic series, as pressure estimate, and (E) confirmation of plasmolysis point with confo-
cal microscopy.
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An introduction to walled cells
Growth mechanics in fission yeast
Growth mechanics in Arabidopsis
Morphogenesis in fission yeast
Growth homogeneity in Arabidopsis
Architecture in Arabidopsis



Introduction
Growth in charales (Nitella, Chara)
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Nitella axilaris  
Paul Green 1970s
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Introduction

Slower growth in hyperosmotic medium

In walled cells: 
turgor pressure 0.5 to 20 atm (0.05 to 2MPa)

How can they grow within a stiff casing?
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Cell wall

turgor

Anisotropic growth?
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Imaging between cross-polarizers
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(A) Confocal stacks showing plasmolysis of BY2 cells, stained with calcaflru white (White, cell wall) and 
FM4-64 (yellow, membrane). (B) Effect of membrane/cytoplasm presence on viscoelastic experiments in BY2 
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Introduction
The basis of morphogenesis?

Growth of single cell / hypocotyl
‣structure: cell wall
‣powered by: turgor pressure (osmotic)
‣growth rate: soft/stiff wall BUT
‣growth orientation: orientation of fibers

Cell wall

turgor

How different from animal morphogenesis?



Introduction

Not that much

A directional brake/facilitator:
Cell wall <=> Actomyosin cortex

A power:
Osmotic pressure

But:
adhesion, topology

LETTER
doi:10.1038/nature09642

Hydrostatic pressure and the actomyosin cortex
drive mitotic cell rounding
Martin P. Stewart1,2, Jonne Helenius1, Yusuke Toyoda3, Subramanian P. Ramanathan1, Daniel J. Muller1 & Anthony A. Hyman3

During mitosis, adherent animal cells undergo a drastic shape
change, from essentially flat to round1–3. Mitotic cell rounding is
thought to facilitate organization within the mitotic cell and be
necessary for the geometric requirements of division4–7. However,
the forces that drive this shape change remain poorly understood
in the presence of external impediments, such as a tissue envir-
onment2. Here we use cantilevers to track cell rounding force and
volume.We show that cells have an outward rounding force, which
increases as cells enter mitosis. We find that this mitotic rounding
force depends both on the actomyosin cytoskeleton and the cells’
ability to regulate osmolarity. The rounding force itself is gener-
ated by an osmotic pressure. However, the actomyosin cortex is
required to maintain this rounding force against external impedi-
ments. Instantaneous disruption of the actomyosin cortex leads to
volume increase, and stimulation of actomyosin contraction leads
to volume decrease. These results show that in cells, osmotic pres-
sure is balanced by inwardly directed actomyosin cortex contrac-
tion. Thus, by locally modulating actomyosin-cortex-dependent
surface tension and globally regulating osmotic pressure, cells
can control their volume, shape and mechanical properties.
To analyse cell shape duringmitosis, we simultaneously used atomic

force microscopy (AFM), to measure cell height, and transmitted light
microscopy, to measure cell width (Methods and Supplementary Fig.
1). Because we can determine the position of the cantilever with nano-
metre precision, this provides a similarly precise measure of the cell
dimensions. Metaphase HeLa cells had a height-to-width ratio of
0.866 0.04 (mean6 s.d.; Supplementary Fig. 1b). Mitotic cells with-
out retraction fibres were almost spherical, as were interphase cells
detached with trypsin (Supplementary Fig. 1b, c). Therefore, we con-
clude that a detached, isolated cell will be nearly spherical, independent
of its cell cycle phase. This suggests that loss of adhesion as cells enter
mitosis permits cell rounding3.
A role for actin-based processes has previously been demonstrated

in mitotic cell rounding1,4,6,8,9. Therefore, we tested the role of the
actin cytoskeleton in maintaining a spherical shape by adding cyto-
chalasin D to rounded cells (Supplementary Fig. 1a, e). After treat-
ment, both detached mitotic and interphase cells remained round.
However, if retraction fibres were present, rounded cells sagged to
height-to-width ratios of ,0.5 on cytochalasin D treatment.
Therefore, the actomyosin cytoskeleton is necessary for generating
a rounding force against adhesion.
To quantify the force of cell rounding, a tipless cantilever was posi-

tioned over a prophase HeLa cell, 8mm above the substrate (Fig. 1a),
and held there while the cell underwent mitosis. We refer to this
method as a ‘constant-height assay’. When becoming rounder in pro-
metaphase, themitotic cell came in contact with the cantilever and the
upward force that it exerted on the cantilever was measured with
subnanonewton accuracy. Simultaneously, the cell’s progression
through mitosis was monitored using light microscopy (Fig. 1b).
Within ,10min after nuclear envelope breakdown, cells were cylin-
drical, and remained so until division. As cells progressed through

prometaphase and into metaphase, the force exerted on the cantilever
increased. Because cortical tension was uniform across the cell until
anaphase10 (Supplementary Fig. 2), we were able to normalize force by

1ETH Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland. 2Biotechnology Center, University of Technology Dresden, D-01307 Dresden, Germany. 3Max-Planck-
Institute of Molecular Cell Biology and Genetics, D-1307 Dresden, Germany.
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Figure 1 | Cells exert an increased rounding pressure in mitosis.
a, Constant-height assay (Methods Summary). V, voltage signal at the AFM
photodiode; F, force. b, Overlaid differential interference contrast (DIC) and
histoneH2B/green fluorescent protein (GFP) images of amitoticHeLa cell at the
times indicated by the grey dashed lines. Graphed is themeasured upward force
(green) and calculated rounding pressure (red), which could be derived only
while the cell was cylindrical (Methods). Time zero denotes nuclear envelope
breakdown (NEBD). Mitotic phases are as follows: prophase (P, green),
prometaphase (orange),metaphase (blue) and anaphase (red). c, As inbbut for a
mitotic cell pre-rounded with trypsin treatment before NEBD. Error bars,62%
(based on measurement uncertainty from DIC images); scale bars, 10mm.
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1ETH Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland. 2Biotechnology Center, University of Technology Dresden, D-01307 Dresden, Germany. 3Max-Planck-
Institute of Molecular Cell Biology and Genetics, D-1307 Dresden, Germany.

b

c

a
Photodiode

Prophase
cell

Laser
source

Constant height

Photodiode

Metaphase
cell

Laser
source

Constant height

P Prometaphase Metaphase Anaphase

P Prometaphase Metaphase Anaphase

N
EB

D
N

EB
D

P

P n as

m s

 2 s 6 s 20 s 34 s 44 s

 4 s 2 s 26 s 48 s 54 s

100

80

60

40

20

0
Fo

rc
e 

(n
N

)
50403020100

Time (min)

0.20

0.15

0.10

0.05

0.00

100

80

60

40

20

0

Fo
rc

e 
(n

N
)

50403020100
Time (min)

0.20

0.15

0.10

0.05

0.00

R
ounding pressure (nN

 µm
 

2)
R

ounding pressure (nN
 µm

 2)

∆V ∝ ∆F

Figure 1 | Cells exert an increased rounding pressure in mitosis.
a, Constant-height assay (Methods Summary). V, voltage signal at the AFM
photodiode; F, force. b, Overlaid differential interference contrast (DIC) and
histoneH2B/green fluorescent protein (GFP) images of amitoticHeLa cell at the
times indicated by the grey dashed lines. Graphed is themeasured upward force
(green) and calculated rounding pressure (red), which could be derived only
while the cell was cylindrical (Methods). Time zero denotes nuclear envelope
breakdown (NEBD). Mitotic phases are as follows: prophase (P, green),
prometaphase (orange),metaphase (blue) and anaphase (red). c, As inbbut for a
mitotic cell pre-rounded with trypsin treatment before NEBD. Error bars,62%
(based on measurement uncertainty from DIC images); scale bars, 10mm.

0 0 M O N T H 2 0 1 0 | V O L 0 0 0 | N A T U R E | 1

Macmillan Publishers Limited. All rights reserved©2010



Growth mechanics in fission yeast

Minc et al. Curr. Biol 2009

Fred CHANG
Columbia University

5 µm

A model system for polarised growth

Nicolas MINC
Columbia University

now 
Institut Jacques Monod

Paris



Growth mechanics in fission yeast

FB =
p2R3hEcw

L2
T

; (Equation 2)

withLT thedistancebetweencell tips along the forceaxis,R the
cell’s radius, and h the cell-wall thickness (see Supplemental
Data and [22]). Note that turgor pressure is not included in
this equation because it is compensated by the tension in the
wall. The deformation of the chamber (Figure 2B), d = LT 2 D,
concomitantly provides ameasurement of the force, F, exerted
by the cell on the chamber (see Supplemental Data):

F =
8

3
EchRd: (Equation 3)

The balance of forces, FB = F, leads to

d=

 
3p2

8

R2

ðD+dÞ2Ech

!

Ecwh=
Ecwh

E*
; (Equation 4)

Figure 1. Microfabricated Chambers as Single-Cell Force Sensors for
Studying the Mechanical Properties of Fission Yeast Cells

(A) Parameters of a fission yeast cell. The cell-wall layer has an elastic
modulus, Ecw, and a thickness h. The turgor pressure inside the cell is
P. The rod-shaped cell has a radius R and a length L.
(B) Schematic showing how yeast cells are placed into the PDMS cham-
bers.
(C) Top-view image of an array of chambers with cells inside. Scale bar
represents 10 mm.

Figure 2. Measuring Fission Yeast Cell-Wall
Elastic Modulus

(A) Single fission yeast cells with similar cell
lengths were pushed into chambers smaller
than the cells. Chambers with decreasing elastic
moduli Ech (from left to right) are shown. Scale
bars represent 5 mm.
(B) Illustration of the method used to compute
chamber deformation. (Left) The initial chamber
diameter, D, is measured on the surrounding
chambers (precision better than 5%), and the
deformation, d, is measured along the force
axis. (Right) The force from thechamberdeforma-
tion equilibrates the buckling force. Because this
buckling force is proportional to the cell-wall
surface modulus, this method allows for a direct
calculation of the cell-wall surface modulus at
the single-cell level. Scale bar represents 5 mm.
(C) Plot of the chamber deformation as a function
of the inverse of the scaled chamber elastic
modulus (E*, see Equation 4) obtained from 155
single cells. Different symbols correspond to
different chamber elastic moduli, as shown in
the legend. The fit used is parabolic to account
for second-order saturations at larger deforma-
tion. The imprecision in the measurement is
found to be higher than the scattering of the
data around the proposed fit. The strain is NM11.

in which we introduced E* as a rescaled elastic modulus for
the chamber. This relation allows for computing the surface
modulus of the cell wall, scw =Ecwh (Figure 2B).
We measured the behavior of cells of varying length in

chambers of varying diameters and elasticity, allowing us
to vary d and E* by an order of magnitude. Figure 2C
depicts measurements of 155 cells. Although we obtained
a good linear scaling between d and (E*)21 at small

deformation, saturation was noted at very high deformation;
this property may arise from a nonlinear elastic response of
the material (Figure S1B). We thus used a second-order poly-
nomial fit, in which the linear term corresponds to the surface
modulus, and obtained scw = 20.26 6.1 N.m21. Given that the
thickness of the fission yeast cell wall (h) has been measured
by electron microscopy to be around 200 nm [23], our
measurements estimate the Young’s elastic modulus of the
fission yeast cell wall to be: Ecw = 101 6 30 MPa.
This elastic modulus was independent of cell length (corre-

lation coefficient: R2 = 0.07) and did not vary significantly
between interphase and mitotic cells. We note that this
measurement corresponds to the elasticity of the side wall
in this buckling experiment. However, we predict that although
the elasticity of the cell tips may be slightly softer than
this measured value to account for localized cell growth, it is
likely to be similar to the measured value, as demonstrated
by the near-uniform response of the cell wall to osmotic

Mechanical Properties of Fission Yeast Cells
1097
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With E*=Ech*R^2/d^2

‣Force deduced from well deformation
‣Buckling threshold yields wall stiffnes

Efission yeast= 100 ± 30 MPa

Confirmed by
‘swelling-shrinking’ 
experiments



Growth mechanics in fission yeast

shock or when pushing against the wall of the chamber (see
below).

Force-Velocity Relationships of Cell Growth
Next, we sought to measure the force exerted by the growth of
single cells, using the chambers of varying stiffness as force
sensors. In principle, the maximum force of cell growth can

be estimated by measuring the external force required to stall
growth, the ‘‘stall force.’’ In these experiments, we introduced
into the chambers cells that were initially shorter than the
diameter of the chamber. Over time, the cells elongated, and
when both cell ends contacted the wall of the chamber, the
cells pushed against the chamber (Figure 3A and Movie S3).
Because growth patterns change over the cell cycle, we

Figure 3. Force-Velocity Relations for Fission Yeast Cell Growth

(A) Time-lapse sequence of a fission yeast cell growing in and deforming a chamber made of soft PDMS (elastic modulus, Ech = 0.16 Mpa). Scale bar repre-
sents 10 mm.
(B) Schematic illustrating the basis of the experiments. The free growth rate, v0, is measured before the cell is deforming the chamber. When the cell deforms
the chamber, the force from the deformation opposes turgor andmay reduce the growth rate, v(F). As the cell deforms the chambermore andmore, the force
increases (F2 > F1), which may continue changing the growth rate.
(C) Cell growth under an external force . (Left) Example of growth curve of a single cell growing in a stiff chamber (Ech = 0.65MPa). The dotted lines follow the
free growth rate as measured before contact. The gray part highlights the phase of growth under external force. The left axis plots the cell elongation: DL =
L(t)-L(t = 0). The right axis plots the external force of the deformed chamber. (Right) Force-velocity plot. Each point is averaged on typically 3–4 different
experimental sets, and forces are binned so that a sample size is kept almost constant. The vertical error bars represent the standard deviations. The dotted
line plots a linear fit that corresponds to Equation 5.
(D) Free growth rate measured in bipolar wild-type and gpd1D cells in the presence of increasing concentrations of sorbitol (0. 0.05, 0.1, and 0.2 M). n = 10
cells for each condition.
(E) Force-velocity plot of gpd1D cells in the absence and in the presence of 0.05 M sorbitol. n = 15 cells in both conditions.
(F) Stalling forces extrapolated from force-velocity curves in the indicated mutants and conditions. The yeast strains are: NM11, NM183, and NM209 (all in
a cdc25-22 background and grown at 25C). Double asterisks represent a Student’s t test, p < 0.005.

Current Biology Vol 19 No 13
1098

Force generation by MTs?
Max ~ 50nN
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Stall force F=11µN
Cross section S=3.14x2  =12.6µm
Corresponding pressure P=F/S
WT: P=0.9MPa (=9bars)
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L(t)-L(t = 0). The right axis plots the external force of the deformed chamber. (Right) Force-velocity plot. Each point is averaged on typically 3–4 different
experimental sets, and forces are binned so that a sample size is kept almost constant. The vertical error bars represent the standard deviations. The dotted
line plots a linear fit that corresponds to Equation 5.
(D) Free growth rate measured in bipolar wild-type and gpd1D cells in the presence of increasing concentrations of sorbitol (0. 0.05, 0.1, and 0.2 M). n = 10
cells for each condition.
(E) Force-velocity plot of gpd1D cells in the absence and in the presence of 0.05 M sorbitol. n = 15 cells in both conditions.
(F) Stalling forces extrapolated from force-velocity curves in the indicated mutants and conditions. The yeast strains are: NM11, NM183, and NM209 (all in
a cdc25-22 background and grown at 25C). Double asterisks represent a Student’s t test, p < 0.005.
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Growth mechanics in Arabidopsis

An ideal system: 
‣well-characterised molecularly/genetically
‣determines aerial architecture
‣accessible in the reproductive state

visualizes the development of the plant (main axis and
first-order branches), with the individual organs de-
scribed from early stages (approximately 1 mm in size)
to maturity. The model integrates a large amount of ex-
perimental data, including sizes and shapes of indi-
vidual organs (internodes, leaves, and flower organs)
measured at frequent time intervals.
Construction of a model operating in continuous

time created the problem of interpolating the experi-
mental data. In the case of scalar measurements, such
as lengths or widths, this interpolation was accom-
plished by fitting growth curves to the data. In addi-
tion, allometric relations were used to correlate the
length andwidth of some organs (internodes, pedicels,
stamens, and carpels) and thus reduced the number of
independent variables in the model.
The interpolation of leaf and petal shapes was more

difficult. It was addressed by approximating organ
contours using spline curves and interpolating posi-
tions of their control points over time.
Another problem arose from the destructive nature

of measurements made in the early stages of organ

development. This was addressed by correlating size
data obtained in a nondestructive manner with the
shape data obtained by dissecting plants at specific de-
velopmental stages.

Our model represents in an integrated manner
several aspects of Arabidopsis development and mor-
phology. At the architectural level, these include the
correlated fluctuation in divergence angle (Medford
et al., 1992; Callos andMedford, 1994) and plastochron
during early Arabidopsis growth, the basipetal se-
quence of the switch to flowering in lateral branches,
and the gradual changes in the number of cauline
leaves supported by consecutive branches. At the organ
level, our model captures variation of leaf shapes in
space (along the stem and in lateral branches) and over
time.

Our model is constructed according to the values of
measured parameters averaged over several plants.
Since we also know the variances, it is tempting to
select model parameters according to the measured
distributions (mean values and standard errors) in an
attempt to capture the variability of Arabidopsis form.
Nevertheless, although incorporation of stochastic
variation into the model is technically simple, it is
questionable how meaningful the resulting simula-
tions would be, since in reality parameter values are
likely to be correlated, and our model does not reflect
these correlations.

In addition to providing a reference for the kinetics
of Arabidopsis development, this descriptive model
may also serve as a stepping stone for constructing
future mechanistic models, with the aim of better
understanding plant development in genetic, physio-
logical, ecological, and evolutionary terms. In these
applications, the descriptive model will provide a
framework into which mechanistic components can
easily be plugged. For example, the descriptive model
makes use of the measured divergence angles for
leaves and lateral inflorescences subtended by them.
The observed inverse correlation between divergence
angle and plastochron suggests that the timing and
positioning of primordia are interdependent; primor-
dia that are initiated close together in time are posi-
tioned far apart in space. This may reflect the
dynamics of a spacing mechanism in which formation
of a primordium is influenced by where and when
other primordia have formed (Douady and Couder,
1996). A mechanistic component might thus be built
into the model to generate the observed values of
plastochrons and divergence angles according to
a phyllotactic mechanism. Such a mechanism should
also be consistent withmolecular data (Reinhardt et al.,
2003). Similarly, the basipetal pattern of the switch to
flowering in lateral branches, which is currently re-
enacted according to experimental data, might be
generated by simulating an auxin-related mechanism
of apical dominance (Thimann and Skoog, 1934;
Booker et al., 2003). The development of inflorescences
could be controlled by a model component that simu-
lates interaction between crucial genes, such as LFY,

Figure 10. Comparison of sample Arabidopsis plants (A, C, E) with the
model (B, D, F). A and B, at 264 hfs; C and D, at 417 hfs; E and F, at 491
hfs. Scale bar 5 1 cm.

Quantitative Modeling of Arabidopsis Development
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Does this stiffness pattern correspond to cell identity?
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Flatness of leaves and petals

sophila melanogaster26 and miR-23 in human cells27. Although
naturally occurring animal miRNAs are able to target artificial,
perfectly complementary mRNAs for destruction28, their normal
targets have only limited complementarity, which apparently
prevents degradation of the target RNAs.
In plants, it is unknown whether miRNAs are involved in

translational control, but there are several examples of mRNAs
that are cleaved in positions complementary to endogenous
miRNAs3,4,12,13. Circumstantial evidence for this mechanism being
important in regulating accumulation of specific mRNAs came
initially from an analysis of dominant mutations at the PHV locus.
Thesemutations affect RNAcleavage in a cell-free system4 and cause
aberrant accumulation of PHV mRNA in vivo29; however, because
they also change the amino acid sequence of a potential regulatory
motif predicted to be involved in sterol- or lipid-binding, it was
unclear whether the primary defect is indeed in aberrant mRNA
accumulation, and not, as originally proposed29, due to a change in
protein function.
We identified a new miRNA, miR-JAW, using a genetic screen,

along with a new set of miRNA targets related to the CIN gene1 of
snapdragon. These targets constitute a subset of TCP genes, which,
in contrast to several other transcription factor genes with potential
roles in development, had not been previously recognized as
candidate miRNA targets. We have shown that miRNA-directed
cleavage of TCP mRNAs is not only required for normal develop-

ment, but that it is also the main control point for regulating mRNA
accumulation.

CIN mRNA is normally downregulated in non-dividing, differ-
entiating cells. Developing leaves of cin mutants therefore suffer
from a delay in cell division arrest (and subsequent differentiation),
leading to accumulation of excess cells at the periphery and
a crinkled leaf phenotype1. Thus, miRNA-mediated control of
CIN and other target TCP genes is probably required for proper
timing of the transition between cell division and differentiation in
developing leaves. Both the MIR-JAW precursor and the miRNA
target motif in TCP genes are found across awide range of flowering
plants, even though these have very different leaf morphologies
and modes of leaf development. This observation supports a
conserved role of the CIN-class of TCP genes in controlling leaf
morphogenesis.

Although the growth-arrest phenotype of dominant TCP4
mutants is consistent with a role of Arabidopsis TCP genes in
differentiation, some of the dominant TCP2 phenotypes, such as
elongated hypocotyls or reduced apical dominance, are not readily
explained by growth inhibition. Conversely, jaw-D mutants have
phenotypes in addition to crinkly leaves, such as late flowering,
suggesting additional roles for TCP genes and miR-JAW targets. A
further layer of complexity is added by the fact that the Arabidopsis
genome contains at least two regions with the potential to produce
miR-JAW, as well as several potential precursors for a family of
three almost identical miRNAs (miR159a–c) that are related to
miR-JAW. In contrast to miR-JAW, miR159 is predicted to prefer-
entially target three MYB genes, as miR159 shows better comple-
mentarity with the MYB than the TCP genes.

Our finding that only overexpression of an miRNA-resistant
form of MYB33 has major phenotypic consequences provides
strong evidence for miRNA regulation of MYB33. It does not
discriminate between miRNA-controlled RNA cleavage and trans-
lational repression, which leaves several possible explanations for
the absence of an effect of jaw-D on MYB RNA expression. Our
favourite model is thatMYB genes are not cleaved by miR-JAW, but
by other miRNAs such as miR159. Alternatively, translational
regulation of MYB genes by miRNAs may be more important
than mRNA cleavage. These observations highlight the importance
of examining predicted targeting events in vivo.

The complex relationships between related miRNAs on the one
hand and overlapping sets of potential targets on the other hand
indicates that the miRNA regulatory network is similarly intricate
compared with transcriptional networks in which families of related
DNA-binding proteins control overlapping sets of target genes.
Global transcript analysis, together with miRNA overexpression
and the engineering of miRNA-resistant target genes, as
implemented in our study, should be powerful tools for dissecting
the miRNA regulatory network in plants.
Note added in proof: Overexpression experiments suggest that some
plant miRNAs act also through translational control40. A

Methods
Plant material
Plants were grown in long days (16 h light/8 h dark) under fluorescent lights at 23 8C.
jaw-1D, jaw-2D, dcl1-7 and 35S::P1/HC-Pro plants have been described10,12,14. jaw-3D and
jaw-4D were isolated using pSKI015 (ref. 14). Transgenic plants were generated as
described30.

Transgenes
The genomic fragment used in pXW74 was obtained by plasmid rescue14. TCP and MYB
complementary DNAs were amplified from a Columbia cDNA library (gift of P. Wigge).
Mutated versions of TCPgenes andMYB33were generated by PCR. Promoter sequences of
TCP4 were isolated from genomic DNA by PCR. All amplification products were verified
by sequencing. Primer sequences are available on request.

Microarray analysis
RNAwas extracted using the Plant RNeasyMini kit (Qiagen). Double-stranded cDNAwas
synthesized from 10 mg total RNA using the Superscript Choice System (Invitrogen) and

Figure 6 Effects of miRNA-resistant transgenes and trans-complementation of jaw-1D.
a, Different patterning defects in seedlings transformed with a genomic copy of TCP4
containing point mutations in the miRNA target site (see Fig. 4a). b, Plants that
overexpress mutated TCP2 (35S::mTCP2); note the elongated hypocotyls shown in the

inset (wild type to the left). c, Patterning defects in 35S::mTCP4 seedlings; compare to a.
d, Effects of mutated MYB33 (35S::mMYB33) on rosette morphology. e, Partial to
complete complementation of the jaw-D leaf phenotype by overexpressing wild-type

TCP2 and TCP4, or mutated TCP2.

articles
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subcrispa (suba). These mutants have flow-
ers with reduced petal lobes and leaves with a
crinkly lamina. Crosses showed that cin and
suba were allelic to each other and to the
deletions. Moreover, both cin and suba had
alterations in the coding region of the TCP
gene (18). This implied that the same locus,
named CIN after its first representative, had
been affected in all cases.

Three aspects of leaf geometry were af-
fected in cin mutants: shape, size, and curva-
ture (Figs. 2 and 3). The lamina of a mature
wild-type leaf has an elliptical shape, whereas
that of a mature cin leaf is rounder (Fig. 2)
(see length-to-width ratio in Table 1). This
difference in shape first became apparent
when the leaves were about 10 mm long
(Figs. 2C and 3A). The rate of growth in
width was similar for the cin and the wild
type. However, the cin leaves grew for a
longer period of time (Fig. 3B), resulting in a

greater final width and total area (Table 1).
Although a mature wild-type Antirrhinum

leaf can show mild downward curvature, it
can be flattened without introducing any cuts
or folds and therefore has overall zero Gauss-
ian curvature. By contrast, mature cin leaves
could not be flattened without introducing
folds, indicating overall negative curvature.
The extent of curvature was estimated from
the excess area within the folds (Fig. 2C, dark
patches). Negative curvature appeared in the
cin mutant after the leaves were about 20 mm
long and increased steadily thereafter until
maturity (Fig. 3C). In addition, the cin mu-
tants showed local bulging of lamina on the
abaxial (ventral) side, in between leaf veins
(Fig. 2B, arrow), indicating an excess of
growth in intervein regions.

The perimeter of the cin leaves was about
50% greater than the perimeter of the wild
type (Table 1). To test whether this might

account for negative curvature, we measured
the leaf perimeter (P) at various stages rela-
tive to total leaf area (A). For a perfect circu-
lar leaf, P/!A is 2"r/!"r 2 # 3.55. For
wild-type leaves, P/!A was slightly greater
than this, measuring 3.8 (Table 1), as expect-
ed from their elliptical shape (Fig. 3D). For
the cin mutants, P/!A was initially similar to
the wild-type value but started increasing af-
ter the leaf was $30 mm long, to a maximum
of 5.0 at maturity, even though the length-to-
width ratio continued to remain at about 1.0.
This showed that the perimeter of cin grew
faster than a circular shape could accommo-
date, consistent with negative curvature.

To determine whether excess growth of
the cin mutant leaves arose through changes
in cell division or expansion, we compared
cell sizes near the margins of wild-type and
mutant leaves. Cells usually remain small
during proliferation but increase in size fol-
lowing the arrest of division, when further
growth is accommodated by cell expansion.
In young wild-type leaves, cells throughout
the leaf were relatively small. By the time the
leaf was about 3 mm long, cells near the tip
started to increase in size, reflecting an early
arrest of division (Fig. 3E). Shortly after this,
cells in the middle of the leaf also started to
increase in size, indicating that these cells
underwent arrest at a slightly later stage than
those at the tip. Cells in proximal regions
remained small for the longest period. This
behavior is consistent with a front of cell-
cycle arrest moving gradually from the leaf
tip to base, as described in other species
(19–25). Cells in the proximal and distal re-
gions of the cin leaves showed a pattern of
cell size changes similar to that of the wild
type. However, cells in the middle region
showed a delay in cell-size increase, indicat-
ing that progression of the arrest front
through this region was delayed (Fig. 3F).

We further examined the progression of the
arrest front by analyzing the expression pattern
of HISTONE4 (H4). H4 expression varies dur-
ing the cell cycle such that only a proportion of
cells give a strong signal in proliferating tissue
(26). In the wild type, a decline in the propor-
tion of cells expressing H4 was detected at the
tip of young leaves, and this decline moved
progressively toward the base during later stag-
es, confirming the movement of a graded arrest
front from the tip toward the base (Fig. 4A). In
the cin mutants, the decline of H4 proceeded
more slowly through the middle region of the
leaf compared with that in the wild type, and
had a strongly concave rather than weakly con-
vex shape (Fig. 4B). Expression of CYCLIN
D3b, a key regulator of the cell cycle in plants
(27), showed a parallel pattern (Fig. 4C), al-
though the decline in expression was detected
more proximally, reflecting the lower abun-
dance of CYCLIN D3b relative to H4 (28).

These effects on the progression and shape

Fig. 2. Phenotype of wild-type and cin-756 plants. (A) One-month-old wild-type (left) and cin-756
(right) plants. (B) Mature leaves at the fourth node of wild-type (left) and cin-756 (right) plants.
Arrow indicates bulge between veins. (C) Stages of wild-type (upper row) and cin-756 (lower row)
leaves scaled to the same length. Numbers in black show leaf lamina lengths in millimeters. Scale
bars are 1 mm for the first three leaves and 10 mm for the last three leaves.

Table 1. Measurements of mature wild-type and cin leaf laminae. Each data point is the mean (%SD) of
measurements from at least eight leaves at the fourth node (cotyledon corresponds to first node).

Length
(mm)

Width
(mm)

Perimeter
(mm)

Area
(mm2)

Length/
width

Perimeter/
!area

Wild type 64% 3 42% 1.3 168% 4.3 1990% 130 1.5 3.8
cin 51% 5 53% 3 260% 33 2670% 352 1.0 5.0
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Flatness of leaves and petals
•A thin elastic body
‣enhanced growth at the edge
‣mechanical equilibrium

with Basile AUDOLY, PRL 2003

By default: leaves are not flat



Growth homogeneity in Arabidopsis

What if each cell had its own growth rate?
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Circumferential mechanical stress around fast growing cells
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Growth rate in area (volume)
Anisotropy
Direction of maximal growth

Regulation of growth rate? 
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Fig. 3. Sections showing the evolution of the shape of individual cells of
the apex of Fig. 2. A and C correspond to time t = 0 immediately before the
oryzalin treatment, whereas B and D correspond to t = 72 h. To allow a better
comparison of the cell shapes, B and D have been scaled down by a factor of
2.5. (Scale bar, 10 µm.) A and B show sections parallel to the surface of the
same cells of the meristem. At time t = 0, the two walls separating cells 2 and
3 and cells 5 and 6 had been recently formed. These new cell walls connect
to the existing ones approximately at right angles; 72 h later, all the angles
of these vertices have relaxed to 120◦. C and D show the evolution of the L1
layer on two transverse sections of a primordium at time t = 0 and t = 72 h.
On the latter image, the outer cell walls exhibit a larger outward curvature.

This angle distribution is the same as in a 2D soap froth, where
it results from the equality of the tensions in the 3 soap films
meeting at a vertex. This condition is naturally met by an array
of hexagonal bubbles separated by straight films. If the bubble
lattice is irregular, however, the soap films bordering nonhexag-
onal bubbles must become curved. This is also what is observed
in oryzalin-treated meristems: the walls of cells having <6 sides
become convex, whereas those of cells having more sides become
concave (see Figs. 2 and 3). This is responsible for the soap froth
aspect of the cellular array. Moreover, due to Laplace’s law in
the soap froth, the pressure inside a bubble is modified if it has
curved walls, so that the pressure in bubbles with convex walls
is larger than in bubbles with concave walls. Thus, the curved

Fig. 4. Geometry of the meristem. (A, B) Histograms of the angles at the ver-
tices of the L1 cellular layer for t = 0, and t = 72 h. (C) Sum of all the angles of
a cell versus the number of its edges. Solid line, (n − 2) × 180◦ corresponding
to straight walls and a polygonal cell; dotted line, n × 120◦ corresponding to
curved walls and all vertex angles equal to 120◦.

walls of the cells in the SAM suggest a nonuniform turgor; this
might be surprising knowing that cell cytoplasmic membranes are
connected by plasmodesmata, which, in principle, allow free dif-
fusion of solutes. Therefore, our observations on the geometry
hint to a closing of plasmodesmata, at least for meristems treated
with oryzalin. This has been observed in a different context: the
rapid elongation of cotton fibers is accompanied by the closing of
plasmodesmata (17).

However, the 2 systems evolve in a different way. In a soap froth,
the 120◦ angles are achieved instantaneously. The pressure differ-
ence between bubbles generate a slow evolution, as it induces a
gas diffusion from the bubbles with a small number of sides (which
are convex) into those with a large number of sides (which are con-
cave). The latter grow larger, but the former shrink and ultimately
vanish. This phenomenon is responsible for the coarsening of soap
froths (16). In contrast, the 120◦ angles in oryzalin-treated meris-
tems result from a slow evolution. Moreover, we measured the rate
of growth of cells as a function of time and found it roughly con-
stant and independent of the number of sides, as shown on Fig. 5.

Model and Simulation Results
In what follows, we discuss the mechanisms needed for the geo-
metrical structure of the meristem to arise, relying on a theoretical
and numerical model of plant cell growth. As mentioned above,
the 120◦ angles in a soap froth result from a balance of equal
forces and generate pressure differences between bubbles with dif-
ferent numbers of sides. Conversely, that the angles tend toward
120◦ in the SAM implies that the tensions in the walls are becom-
ing uniform, whereas the turgor pressure is getting nonuniform,
suggesting a regulation of growth.

As in the experiments, we consider a single layer of cells, delim-
ited by a network of walls (18, 19), and two successive regimes.
Starting from a small number of cells, we allow cell prolifera-
tion to proceed until the chosen number of cells has formed.
Subsequently, cell division is stopped, and enlargement contin-
ues. The simulation is eventually terminated when the increase
in cell size is of the same order as in the experiments. To avoid
edge effects, the simulations presented below are performed with
periodic boundary conditions.

Each wall is modeled as a viscoelastic rod of negligible bending
rigidity [this is justified by the small ratio between wall thicknesses
and cell sizes (20)]. Growth is similar to a plastic deformation of
cell walls under turgor pressure (21, 22). In accordance with exper-
imental observations, a clear separation of timescales between
the equilibration of water potential through water redistribution,
turgor regulation, and growth is assumed (orders of magnitude
reported in, e.g., ref. 23 are 10 min, 1 h, and 1 day, respectively).
At any given time, the system is thus in a state of equilibrium. As
in soap froths, each wall supports a uniform tension Ti (because

Fig. 5. Geometry of the meristem: time evolution of the area of the cross-
sections of cells of the L1 layer having different numbers of sides (the sections
are parallel to the surface). The growth is approximately exponential but
slows down slightly between 46 and 72 h. Cells from the meristem (A) exhibit
a weaker rate of growth that those from primordia (B). However, in both
regions, the rate of growth of the cells is found to be independent of the
number of sides.

Corson et al. PNAS May 26, 2009 vol. 106 no. 21 8455

Suggests pressure differences between cells
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Model:
‣Two dimensions
‣Cell based 
‣Viscoelastic cell walls
‣Growth driven by turgor
‣Turgor pressure is regulated in each cell
through osmolite contents

there are no tangential forces), and exhibits a constant curvature
κi related to Ti and to the pressure difference δP between the cells
on either side of the wall by an equation similar to Laplace’s law:

κi = δP
Ti

. [1]

Wall yielding is described by Maxwell’s model, i.e., the rate of
irreversible deformation is proportional to the elastic strain; if l0

i
and li are the rest length and actual length (augmented by elastic
stretching) of wall i, then the tension in this wall is given by

Ti = µh
(

li
l0
i

− 1
)

= νh
l0
i

dl0
i

dt
, [2]

where uniform wall thickness h, elastic modulus µ, and viscosity
ν are assumed. Note that this viscoelastic model is fundamentally
different from those used for animal tissues, in which growth is
driven solely by cell division (see, e.g., ref. 13). At each time step,
the state of the system is determined by minimizing its mechanical
energy, which comprises its elastic energy and pressure potential
energy, e.g., if turgor is uniform,

E =
∑

walls

µhl0
i

2

(
li
l0
i

− 1
)2

−
∑

cells

PSi, [3]

where Si is the area of cell i, then the rest lengths are updated
according to Eq. 2. Until it is stopped, cell division occurs when
the area of a cell exceeds a given threshold, through the insertion
of a new wall. The location of the division plane is chosen so as
to minimize the length of the new wall while dividing the cell into
2 daughter cells of approximately equal size (18). The unit length
is such that the threshold area for cell division is one, so that the
average cell size in the proliferating tissue is of order one. The
tension in each wall is of order PS1/2. Measuring stress in units
such that µh = 1, the strains are also of order PS1/2, which is
assumed small with respect to one so that the strains remain small
(e.g., P = 0.02). The timescale is chosen such that the strain rate
in the proliferation regime is close to one. More specifically, we
set νh = P.

In support of the proposed modeling approach, we first note that
it reproduces the detailed structure of the angle distribution in a
proliferating tissue. As in the measured histograms three peaks
can be distinguished (compare Fig. 4 A and Fig. 8A), which result
from the coexistence of new vertices with older ones in which the
angles have relaxed to 120◦.

We first consider the situation where turgor is uniform and con-
stant. In this case, there are no pressure differences and the walls
remain straight. After divisions are stopped, the tension in the
walls and the strain rate increase rapidly, as S1/2, and the evolu-
tion of the tissue is catastrophic, reaching an infinite size in a finite
time. Until this happens, all cells do not grow at the same rate: cells
having more edges grow more rapidly, and the differences in cell
sizes also increase without limit (Fig. 6). The angle standard devia-
tion does decrease over time, yet only slightly, from 26.0◦ at t = 0
to 17.0◦ at t = 1 (during the same time, cell areas increase by
over a hundredfold). Indeed, as stated earlier, the angles cannot
converge without the walls becoming curved.

The above outcome of the model suggests that turgor is not
uniform and constant. This may seem incompatible with the exis-
tence of plasmodesmata, which allow the diffusion of water and
solutes between cells; possible explanations would be that plas-
modesmata are closed or partially closed, or that diffusion is too
slow to allow turgor equilibration. From the curvatures observed
in experiments and Laplace’s law Eq. 1, we may infer that turgor is
negatively correlated with cell area. For simplicity, we will assume
in what follows that turgor depends directly on cell size, discussing
later a more realistic, indirect mechanism for such a correlation.

Fig. 6. Simulation of growth with uniform turgor pressure—all cell walls
remain straight. (A) Normal growth of a 2D cellular structure giving the initial
state at t = 0 when cell divisions become inhibited (dimensions of simulation
box ≈4.2 × 3.7). (B) The 2D cellular structure resulting from the same simula-
tion at time t = 1 after the inhibition of cell divisions (dimensions ≈86 × 75);
cells with <6 sides tend to vanish relatively. (C) Cell area versus time; dot-
ted lines correspond to individual cells having different numbers of sides, the
solid line to an average over all cells.

More specifically, a cell of size S tends to adjust its pressure to
P(S), through changing the concentration of a solute. Assuming
uniform water potential,

Pi = ni

Si
, [4]

where ni is the quantity of solute in cell i (in units such that the
constant of proportionality is one). The pressure is equal to its
target value if n = P(S)S. To account for a finite response time,
we assume that the quantity of solute evolves according to

dn
dt

= P(S)S − n
τ

[5]

We have used the numerical value τ = 0.1 (turgor regulation is
faster than growth), which is consistent with the above-mentioned
orders of magnitude found in experiments. However, turgor regu-
lation is slower than water redistribution, so the quantity of solute
ni in each cell can be considered constant in determining the state
of equilibrium of the system, which is done by minimizing the
energy

E =
∑

walls

µhl0
i

2

(
li
l0
i

− 1
)2

−
∑

cells

ni ln Si, [6]

instead of Eq. 3. Regarding the target pressure P(S), the relatively
constant overall growth rate (Fig. 5) is consistent with

P(S) = νhS−1/2, [7]

which yields

dn
dt

= 1
τ

(
νhS1/2 − n

)
. [8]

In that case, cells having fewer edges, which are generally smaller
to begin with, initially grow less rapidly, leading to higher turgor
pressures and an convex curvature of the walls, while cells hav-
ing more edges exhibit concave walls (Fig. 7). The angles between
walls progressively become closer to 120 degrees (Figs. 7B and 8),
with the deviation decreasing from 24.2◦ at t = 0 to 9.6◦ at
t = 2. Thus, this form of turgor regulation allows to reproduce
the observed convergence to a froth-like geometry.
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there are no tangential forces), and exhibits a constant curvature
κi related to Ti and to the pressure difference δP between the cells
on either side of the wall by an equation similar to Laplace’s law:

κi = δP
Ti

. [1]

Wall yielding is described by Maxwell’s model, i.e., the rate of
irreversible deformation is proportional to the elastic strain; if l0

i
and li are the rest length and actual length (augmented by elastic
stretching) of wall i, then the tension in this wall is given by

Ti = µh
(

li
l0
i

− 1
)

= νh
l0
i

dl0
i

dt
, [2]

where uniform wall thickness h, elastic modulus µ, and viscosity
ν are assumed. Note that this viscoelastic model is fundamentally
different from those used for animal tissues, in which growth is
driven solely by cell division (see, e.g., ref. 13). At each time step,
the state of the system is determined by minimizing its mechanical
energy, which comprises its elastic energy and pressure potential
energy, e.g., if turgor is uniform,

E =
∑

walls

µhl0
i

2

(
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l0
i

− 1
)2

−
∑

cells

PSi, [3]

where Si is the area of cell i, then the rest lengths are updated
according to Eq. 2. Until it is stopped, cell division occurs when
the area of a cell exceeds a given threshold, through the insertion
of a new wall. The location of the division plane is chosen so as
to minimize the length of the new wall while dividing the cell into
2 daughter cells of approximately equal size (18). The unit length
is such that the threshold area for cell division is one, so that the
average cell size in the proliferating tissue is of order one. The
tension in each wall is of order PS1/2. Measuring stress in units
such that µh = 1, the strains are also of order PS1/2, which is
assumed small with respect to one so that the strains remain small
(e.g., P = 0.02). The timescale is chosen such that the strain rate
in the proliferation regime is close to one. More specifically, we
set νh = P.

In support of the proposed modeling approach, we first note that
it reproduces the detailed structure of the angle distribution in a
proliferating tissue. As in the measured histograms three peaks
can be distinguished (compare Fig. 4 A and Fig. 8A), which result
from the coexistence of new vertices with older ones in which the
angles have relaxed to 120◦.

We first consider the situation where turgor is uniform and con-
stant. In this case, there are no pressure differences and the walls
remain straight. After divisions are stopped, the tension in the
walls and the strain rate increase rapidly, as S1/2, and the evolu-
tion of the tissue is catastrophic, reaching an infinite size in a finite
time. Until this happens, all cells do not grow at the same rate: cells
having more edges grow more rapidly, and the differences in cell
sizes also increase without limit (Fig. 6). The angle standard devia-
tion does decrease over time, yet only slightly, from 26.0◦ at t = 0
to 17.0◦ at t = 1 (during the same time, cell areas increase by
over a hundredfold). Indeed, as stated earlier, the angles cannot
converge without the walls becoming curved.

The above outcome of the model suggests that turgor is not
uniform and constant. This may seem incompatible with the exis-
tence of plasmodesmata, which allow the diffusion of water and
solutes between cells; possible explanations would be that plas-
modesmata are closed or partially closed, or that diffusion is too
slow to allow turgor equilibration. From the curvatures observed
in experiments and Laplace’s law Eq. 1, we may infer that turgor is
negatively correlated with cell area. For simplicity, we will assume
in what follows that turgor depends directly on cell size, discussing
later a more realistic, indirect mechanism for such a correlation.

Fig. 6. Simulation of growth with uniform turgor pressure—all cell walls
remain straight. (A) Normal growth of a 2D cellular structure giving the initial
state at t = 0 when cell divisions become inhibited (dimensions of simulation
box ≈4.2 × 3.7). (B) The 2D cellular structure resulting from the same simula-
tion at time t = 1 after the inhibition of cell divisions (dimensions ≈86 × 75);
cells with <6 sides tend to vanish relatively. (C) Cell area versus time; dot-
ted lines correspond to individual cells having different numbers of sides, the
solid line to an average over all cells.

More specifically, a cell of size S tends to adjust its pressure to
P(S), through changing the concentration of a solute. Assuming
uniform water potential,

Pi = ni

Si
, [4]

where ni is the quantity of solute in cell i (in units such that the
constant of proportionality is one). The pressure is equal to its
target value if n = P(S)S. To account for a finite response time,
we assume that the quantity of solute evolves according to

dn
dt

= P(S)S − n
τ

[5]

We have used the numerical value τ = 0.1 (turgor regulation is
faster than growth), which is consistent with the above-mentioned
orders of magnitude found in experiments. However, turgor regu-
lation is slower than water redistribution, so the quantity of solute
ni in each cell can be considered constant in determining the state
of equilibrium of the system, which is done by minimizing the
energy

E =
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instead of Eq. 3. Regarding the target pressure P(S), the relatively
constant overall growth rate (Fig. 5) is consistent with

P(S) = νhS−1/2, [7]

which yields

dn
dt

= 1
τ

(
νhS1/2 − n

)
. [8]

In that case, cells having fewer edges, which are generally smaller
to begin with, initially grow less rapidly, leading to higher turgor
pressures and an convex curvature of the walls, while cells hav-
ing more edges exhibit concave walls (Fig. 7). The angles between
walls progressively become closer to 120 degrees (Figs. 7B and 8),
with the deviation decreasing from 24.2◦ at t = 0 to 9.6◦ at
t = 2. Thus, this form of turgor regulation allows to reproduce
the observed convergence to a froth-like geometry.
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Wall yielding is described by Maxwell’s model, i.e., the rate of
irreversible deformation is proportional to the elastic strain; if l0
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where uniform wall thickness h, elastic modulus µ, and viscosity
ν are assumed. Note that this viscoelastic model is fundamentally
different from those used for animal tissues, in which growth is
driven solely by cell division (see, e.g., ref. 13). At each time step,
the state of the system is determined by minimizing its mechanical
energy, which comprises its elastic energy and pressure potential
energy, e.g., if turgor is uniform,
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where Si is the area of cell i, then the rest lengths are updated
according to Eq. 2. Until it is stopped, cell division occurs when
the area of a cell exceeds a given threshold, through the insertion
of a new wall. The location of the division plane is chosen so as
to minimize the length of the new wall while dividing the cell into
2 daughter cells of approximately equal size (18). The unit length
is such that the threshold area for cell division is one, so that the
average cell size in the proliferating tissue is of order one. The
tension in each wall is of order PS1/2. Measuring stress in units
such that µh = 1, the strains are also of order PS1/2, which is
assumed small with respect to one so that the strains remain small
(e.g., P = 0.02). The timescale is chosen such that the strain rate
in the proliferation regime is close to one. More specifically, we
set νh = P.

In support of the proposed modeling approach, we first note that
it reproduces the detailed structure of the angle distribution in a
proliferating tissue. As in the measured histograms three peaks
can be distinguished (compare Fig. 4 A and Fig. 8A), which result
from the coexistence of new vertices with older ones in which the
angles have relaxed to 120◦.

We first consider the situation where turgor is uniform and con-
stant. In this case, there are no pressure differences and the walls
remain straight. After divisions are stopped, the tension in the
walls and the strain rate increase rapidly, as S1/2, and the evolu-
tion of the tissue is catastrophic, reaching an infinite size in a finite
time. Until this happens, all cells do not grow at the same rate: cells
having more edges grow more rapidly, and the differences in cell
sizes also increase without limit (Fig. 6). The angle standard devia-
tion does decrease over time, yet only slightly, from 26.0◦ at t = 0
to 17.0◦ at t = 1 (during the same time, cell areas increase by
over a hundredfold). Indeed, as stated earlier, the angles cannot
converge without the walls becoming curved.

The above outcome of the model suggests that turgor is not
uniform and constant. This may seem incompatible with the exis-
tence of plasmodesmata, which allow the diffusion of water and
solutes between cells; possible explanations would be that plas-
modesmata are closed or partially closed, or that diffusion is too
slow to allow turgor equilibration. From the curvatures observed
in experiments and Laplace’s law Eq. 1, we may infer that turgor is
negatively correlated with cell area. For simplicity, we will assume
in what follows that turgor depends directly on cell size, discussing
later a more realistic, indirect mechanism for such a correlation.

Fig. 6. Simulation of growth with uniform turgor pressure—all cell walls
remain straight. (A) Normal growth of a 2D cellular structure giving the initial
state at t = 0 when cell divisions become inhibited (dimensions of simulation
box ≈4.2 × 3.7). (B) The 2D cellular structure resulting from the same simula-
tion at time t = 1 after the inhibition of cell divisions (dimensions ≈86 × 75);
cells with <6 sides tend to vanish relatively. (C) Cell area versus time; dot-
ted lines correspond to individual cells having different numbers of sides, the
solid line to an average over all cells.

More specifically, a cell of size S tends to adjust its pressure to
P(S), through changing the concentration of a solute. Assuming
uniform water potential,

Pi = ni

Si
, [4]

where ni is the quantity of solute in cell i (in units such that the
constant of proportionality is one). The pressure is equal to its
target value if n = P(S)S. To account for a finite response time,
we assume that the quantity of solute evolves according to

dn
dt

= P(S)S − n
τ

[5]

We have used the numerical value τ = 0.1 (turgor regulation is
faster than growth), which is consistent with the above-mentioned
orders of magnitude found in experiments. However, turgor regu-
lation is slower than water redistribution, so the quantity of solute
ni in each cell can be considered constant in determining the state
of equilibrium of the system, which is done by minimizing the
energy

E =
∑

walls
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−
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instead of Eq. 3. Regarding the target pressure P(S), the relatively
constant overall growth rate (Fig. 5) is consistent with

P(S) = νhS−1/2, [7]

which yields

dn
dt

= 1
τ

(
νhS1/2 − n

)
. [8]

In that case, cells having fewer edges, which are generally smaller
to begin with, initially grow less rapidly, leading to higher turgor
pressures and an convex curvature of the walls, while cells hav-
ing more edges exhibit concave walls (Fig. 7). The angles between
walls progressively become closer to 120 degrees (Figs. 7B and 8),
with the deviation decreasing from 24.2◦ at t = 0 to 9.6◦ at
t = 2. Thus, this form of turgor regulation allows to reproduce
the observed convergence to a froth-like geometry.
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κi related to Ti and to the pressure difference δP between the cells
on either side of the wall by an equation similar to Laplace’s law:
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Wall yielding is described by Maxwell’s model, i.e., the rate of
irreversible deformation is proportional to the elastic strain; if l0
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where uniform wall thickness h, elastic modulus µ, and viscosity
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different from those used for animal tissues, in which growth is
driven solely by cell division (see, e.g., ref. 13). At each time step,
the state of the system is determined by minimizing its mechanical
energy, which comprises its elastic energy and pressure potential
energy, e.g., if turgor is uniform,

E =
∑

walls

µhl0
i

2

(
li
l0
i

− 1
)2

−
∑

cells

PSi, [3]

where Si is the area of cell i, then the rest lengths are updated
according to Eq. 2. Until it is stopped, cell division occurs when
the area of a cell exceeds a given threshold, through the insertion
of a new wall. The location of the division plane is chosen so as
to minimize the length of the new wall while dividing the cell into
2 daughter cells of approximately equal size (18). The unit length
is such that the threshold area for cell division is one, so that the
average cell size in the proliferating tissue is of order one. The
tension in each wall is of order PS1/2. Measuring stress in units
such that µh = 1, the strains are also of order PS1/2, which is
assumed small with respect to one so that the strains remain small
(e.g., P = 0.02). The timescale is chosen such that the strain rate
in the proliferation regime is close to one. More specifically, we
set νh = P.

In support of the proposed modeling approach, we first note that
it reproduces the detailed structure of the angle distribution in a
proliferating tissue. As in the measured histograms three peaks
can be distinguished (compare Fig. 4 A and Fig. 8A), which result
from the coexistence of new vertices with older ones in which the
angles have relaxed to 120◦.

We first consider the situation where turgor is uniform and con-
stant. In this case, there are no pressure differences and the walls
remain straight. After divisions are stopped, the tension in the
walls and the strain rate increase rapidly, as S1/2, and the evolu-
tion of the tissue is catastrophic, reaching an infinite size in a finite
time. Until this happens, all cells do not grow at the same rate: cells
having more edges grow more rapidly, and the differences in cell
sizes also increase without limit (Fig. 6). The angle standard devia-
tion does decrease over time, yet only slightly, from 26.0◦ at t = 0
to 17.0◦ at t = 1 (during the same time, cell areas increase by
over a hundredfold). Indeed, as stated earlier, the angles cannot
converge without the walls becoming curved.

The above outcome of the model suggests that turgor is not
uniform and constant. This may seem incompatible with the exis-
tence of plasmodesmata, which allow the diffusion of water and
solutes between cells; possible explanations would be that plas-
modesmata are closed or partially closed, or that diffusion is too
slow to allow turgor equilibration. From the curvatures observed
in experiments and Laplace’s law Eq. 1, we may infer that turgor is
negatively correlated with cell area. For simplicity, we will assume
in what follows that turgor depends directly on cell size, discussing
later a more realistic, indirect mechanism for such a correlation.

Fig. 6. Simulation of growth with uniform turgor pressure—all cell walls
remain straight. (A) Normal growth of a 2D cellular structure giving the initial
state at t = 0 when cell divisions become inhibited (dimensions of simulation
box ≈4.2 × 3.7). (B) The 2D cellular structure resulting from the same simula-
tion at time t = 1 after the inhibition of cell divisions (dimensions ≈86 × 75);
cells with <6 sides tend to vanish relatively. (C) Cell area versus time; dot-
ted lines correspond to individual cells having different numbers of sides, the
solid line to an average over all cells.

More specifically, a cell of size S tends to adjust its pressure to
P(S), through changing the concentration of a solute. Assuming
uniform water potential,

Pi = ni

Si
, [4]

where ni is the quantity of solute in cell i (in units such that the
constant of proportionality is one). The pressure is equal to its
target value if n = P(S)S. To account for a finite response time,
we assume that the quantity of solute evolves according to

dn
dt

= P(S)S − n
τ

[5]

We have used the numerical value τ = 0.1 (turgor regulation is
faster than growth), which is consistent with the above-mentioned
orders of magnitude found in experiments. However, turgor regu-
lation is slower than water redistribution, so the quantity of solute
ni in each cell can be considered constant in determining the state
of equilibrium of the system, which is done by minimizing the
energy

E =
∑
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instead of Eq. 3. Regarding the target pressure P(S), the relatively
constant overall growth rate (Fig. 5) is consistent with

P(S) = νhS−1/2, [7]

which yields

dn
dt

= 1
τ

(
νhS1/2 − n

)
. [8]

In that case, cells having fewer edges, which are generally smaller
to begin with, initially grow less rapidly, leading to higher turgor
pressures and an convex curvature of the walls, while cells hav-
ing more edges exhibit concave walls (Fig. 7). The angles between
walls progressively become closer to 120 degrees (Figs. 7B and 8),
with the deviation decreasing from 24.2◦ at t = 0 to 9.6◦ at
t = 2. Thus, this form of turgor regulation allows to reproduce
the observed convergence to a froth-like geometry.
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Growth homogeneity in Arabidopsis

•A continuum mechanical model of the shoot apex
‣Much stiffer epidermis
‣Turgor

•Prediction of mechanical stress patterns
‣Link with growth?
‣with cellulose/microtubules?

Pattern of mechanical stress at the shoot apex



Mechanical feedback

Alignment in the
direction of maximal force



Mechanical feedback

Rather orthogonal Rather parallel Unstable
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Growth homogeneity in Arabidopsis

Alignment in the direction of maximal stress
‣Long term re-enforcement in that direction 
‣Reduction of growth heterogeneity?
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Growth homogeneity in Arabidopsis
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Generalization (anisotropy) of a model used for animal epithelia
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Methods: plant growth simulation

Karen Alim

November 28, 2010

To simulate the growth of cells in the shoot apical meristem we consider only a single cell
layer which we take to be two dimensional. Cell boundaries are modeled to be straight lines
connecting vertices of three-fold cell-cell junctions. We assume that every single configura-
tion of plant cells represents a force balance state, where all forces embodied by an energy
functional are balanced at each single vertex of the cell tissue. For the energy functional each
single cell i is represented by its perimeter P and a form matrix M , defined as the second
moment of area, that is compared to a reference form matrix M (0).

E =
N�

i=1

αPi + β
�
Tr

�
Mi −M (0)

i

��2
+ δ

�
Det

�
Mi −M (0)

i

��2

The energy functional ensures a minimal perimeter given that the cell tries to match both
eigenvalues of its form matrix, hence its spatial extend in space, to the reference form matrix
as imposed by the trace and determinant term. After every growth step the minimization of
this energy functional is performed to obtain a force balance state.
Cell grow as their reference form increases. In addition to a basal growth rate γ0, a feedback

upon the deviatoric stress D acting on a cell is incorporated.

d

dt
M (0)

i = γ0M
(0)
i − γ1

M (0)
i Di +DiM

(0)
i

2
. (1)

To respect plasticity of plant cells the eigenvalues of the updated form matrix according to
Eq. (1) versus the previous one are cut off to zero if negative values are encountered.
The displayed data is obtained by having an initial set of about 120 cells grow with different

feedback strength in independent runs to average over more than 100.000 cells. If not stated
otherwise simulation parameters were chosen as α = 0.02, β = 7.0, δ = 1.0, γ0 = 0.01(1± r),
where r ∈ [0, 0.85] denotes a uniform random variable that induces a basal noise during
growth.

1



Growth homogeneity in Arabidopsis

Optimum of growth 
homeostasis?
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Growth homogeneity in Arabidopsis

GFP-MBD atktn1 GFP-MBD

atktn1 = Katanin mutant



Growth homogeneity in Arabidopsis

Weaker response to mechanical forces in atktn1



Growth heterogeneity in Arabidopsis

Heterogeneous growth Homogeneous growth
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E-.,';<.'/#*+3-**#.';#<;.3-'*-#

C310+,#,-+-31C-;-<+(

WT



Growth heterogeneity

The shape of the SAM is altered in atktn1

WT atktn1



Growth heterogeneity

WT atktn1

Organs of comparable rank

Over-reaction to forces => organ emergence

Consequences on architecture?



Conclusions

•Morphogenesis in walled cells
‣Regulation of cell wall and turgor
‣Links with cell identity?

•Mechanical feedbacks
‣Stabilising and destabilising!

•Questions:
‣Role of variability
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