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How to search for the first
stars?

= Stellar ages (for old stars) are much too
Imprecise (—Gyr errors)
=>
= Search for the most metal poor stars

= When and where did first stars form?
= Theoretical expectations:



Theory: high-density peaks
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Simulations: Diemand et al 2005
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Measuring binding energy

= Measuring energy (and angular
momentum) for stars requires accurate
distances (goes as distance”™2) and
nearby stars so proper motions can be
used

= Local halo sample (Kepley et al 2007,
Morrison et al 2008) of well-studied
‘reqgular’ halo stars as control sample



Our local halo sample

= Start with Beers et al 2000
compilation

= No kinematic selection bias

= Good proper motions, so all 6 phase
space coordinates available — can
measure energy, angular momentum

Sample described in Kepley et al 2007



New, improved, local sample

= 250 stars: [Fe/H] -1.0 to -4.0
= Consistent metallicity system (thanks to

Bruce and Barb TwaroqQ)

= Median distance 1 kpc

= Well-quantified, small, distance errors
(median 7%)

= Full treatment of errors — good error
bars (accurate metallicities important
for red giant distances)



Energy and angular momentum
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| ocal halo
sample:

Distribution of energy
and angular
momentum not
smooth:

Small # of progenitors

populate inner halo
(Helmi et al 03, de Lucia
and Helmi 08)
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Mihos javalab

Dynamical friction

As a massive satellite moves through the

halo, It creates a wake which slows It
down

Energy, angular momentum can be
transferred to dark halo



Number of progenitors

Small number of
clumps => few
progenitors dominate
iInner halo, confirming
theoretical predictions

Dynamical friction with
nalo drags massive
nalos into inner galaxy

-irst stars will be hiding

among these later
arrivals Helmi et al 2003




Disrupting Omega Centauri
progenitor forms

“plume” (Dinescu 2002)
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Omega Cen
progenitor was one of
major building blocks
of Inner halo




Dynamical friction on
Omega Cen’s massive
progenitor causes loss
of E and Lz

Plots from Bekki and Freeman
2004
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EMP stars (not C enhanced)

= From high-dispersion, high S/N analyses
of stars found by Slettebak and Brundage,

HK (Beers et al) and HES (Christlieb et al)
surveys using objective prisms

= Bessell and Norris (1984), McWilliam et al
(1999), Cayrel et al (2004), Cohen et al
(2004, 2008), Lai et al (2004), Aoki et al
(2005), Bonifacio et al (2007)



Distances?

Teff, log g, [Fe/H]
from high-disp
analyses
Yale-Yonsel
Isochrones, checked
with Gratton et al
(03) analyses of
Hipparcos parallax
stars [Fe/H]<-1.5




|Isochrone Mv

Best distances
come from stars
away from turnoff
and subgiant
branch

Limit to stars with
distances < 5 kpc
(proper motion
errors + distance
errors)




Red giants + Low metallieily
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No clump with high binding
energy!

= To first order, EMP stars are distributed
the same as the control sample

= Perhaps a slight preference for less tightly
bound orbits ... but errors are larger too



Maybe It Isnt surprising...

0.0071%

Salvadori et al 2007: pink are “second stars”



Where Is the Omega Cen plume
INn the EMP stars?




Where Is the Omega Cen plume??
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Is it possible that the

Omega Cen

progenitor lacked

stars with [Fe/H]<-3, | Fomer

like the more °of e
luminous dSph P osf s et

galaxies studied by
Helmi et al (2006)?

Statistical tests of
significance of the
missing plume
needed.....




Summary

= Extremely metal poor stars are not
necessarily the first stars

= We see hints that Omega Cen’s progenitor
galaxy may not contain any EMP stars, like
the more luminous dSphs
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