The Dark Matter Annihilation Signal from Galactic Substructure

Michael Kuhlen

Institute for Advanced Study Princeton, NJ

P. Madau
J. Diemand
UC Santa Cruz

M. Zemp U. of Michigan

B. Moore J. Stadel D. Potter Univ. Zurich

Fermi
Gamma-ray Space Telescope

Recap: The Via Lactea II Subhalo Population

Subhalos have a "cuspy" inner density profile down to our resolution limit...

...and have a steeply rising V_{max} function. A single power law down to ~3 km/s.

Einasto: $\ln \frac{\rho(r)}{\rho_s} = -\frac{2}{\alpha} \left[(r/r_s)^{\alpha} - 1 \right]$ GNFW: $\rho(r) = \frac{\rho_s}{(r/r_s)^{\gamma} (r/r_s + 1)^{3-\gamma}}$

$$N(>V_{\text{max}}) = 0.036 \left(\frac{V_{\text{max}}}{V_{\text{max,host}}}\right)^{-3}$$

The Subhalo Population – Tidal Mass Loss

- > Tidal mass loss is stronger for more massive halos (higher V_{max} @ z=1).
- > Halos with V_{max} =10 km/s retain about 40% of their mass from z=1 to today.
- > 97% of all z=1 subhalos still have an identifiable remnant at z=0.

- Subhalos are more concentrated in the inner regions.
- This due to both tidal stripping and an earlier formation time.
- > $c(r=8kpc) \approx 3 \times c(field)$

The Subhalo Population – Spatial Distribution

The subhalo radial distribution is anti-biased with respect to the DM density: fewer subhalos in the center.

(cf. Ghigna et al. 2000; de Lucia et al. 2004)

Depends on selection:

- strongest for M(z=0)-selected,
- weaker for Vmax(z=0)-selected,
- disappears down to ~30 kpc for peak(Vmax)-selected.

(cf. Nagai & Kravtsov 2005; Faltenbacher & Diemand 2006)

Gamma rays from WIMP annihilations

DM (WIMP) annihilation signal

Many different DM candidates: axions, WIMPs (neutralino, Kaluza-Klein, ...), etc.

In the following: DM = lightest SUSY particle (neutralino)

 γ 's from neutralino annihilation:

- a) $\chi\chi \rightarrow \chi\gamma$
- b) $\chi\chi \rightarrow \chi Z^0$
- c) $\chi \chi \rightarrow \{WW, Z^0Z^0, b\overline{b}, t\overline{t}, u\overline{u}\}$
- a)+b) spectral line, lower $<\sigma$ v>
- c) photon continuum from π^0 decay, higher $<\sigma$ v>, more ambiguous signal

Gamma rays from WIMP annihilations

Cross section $\langle \sigma v \rangle$ and particle mass very uncertain!

Many different DM candidates: axions, WIMPs (neutralino, Kaluza-Klein, ...), etc.

In the following: DM = lightest SUSY particle (neutralino)

 γ 's from neutralino annihilation:

- a) $\chi\chi \rightarrow \chi\chi$
- b) $\chi\chi \rightarrow \chi Z^0$
- c) $\chi \chi \rightarrow \{WW, Z^0Z^0, b\overline{b}, t\overline{t}, u\overline{u}\}$
- a)+b) spectral line, lower $<\sigma v>$
- c) photon continuum from π^0 decay, higher $<\sigma v>$, more ambiguous signal

CLAST

Quantity	LAT (Minimim Spec.)	EGRET
Energy Range	20 MeV - 300 GeV	20 MeV - 30 GeV
Peak Effective Area ¹	> 8000 cm ²	1500 cm ²
Field of View	> 2 sr	0.5 sr
Angular Resolution ²	< 3.5° (100 MeV) < 0.15° (>10 GeV)	5.8° (100 MeV)
Energy Resolution ³	< 10%	10%
Deadtime per Event	< 100 μs	100 ms
Source Location Determination ⁴	< 0.5'	15'
Point Source Sensitivity ⁵	< 6 x 10 ⁻⁹ cm ⁻² s ⁻¹	$\sim 10^{-7} \ {\rm cm^{-2} \ s^{-1}}$

- Possible local DM annihilation sources:
 - Galactic Center (Berezinsky et al. 1994, Calcaneo-Roldan & Moore 2000, Hooper & Dingus 2004)
 - Dwarf galaxies (Bergstrom & Hooper 2004, Colafrancesco et al. 2007)
 - Nearby subhalo (Bi 2006, Pieri et al. 2005)
 - Coma cluster (Colafrancesco et al. 2006)
- Cosmic Gamma Ray Background (Bergstrom et al. 1999, 2001, Ullio et al. 2002)

LAT

Gamma-ray Space Telescope

Astro physics

Detector properties

$$N_{\gamma} = \left[\int_{\text{line of sight}}^{2} \frac{dl(\psi)}{2M_{\chi}^{2}} \right] \frac{\langle \sigma v \rangle}{2M_{\chi}^{2}} \left[\int_{E_{th}}^{M_{\chi}} \left(\frac{dN_{\gamma}}{dE} \right)_{\text{SUSY}}^{A_{\text{eff}}}(E) dE \right] \frac{\Delta\Omega}{4\pi} \tau_{\text{exp}}$$

Particle physics

Simulated Dark Matter Annihilation Map

Can We Make Quantitative Predictions?

$$N_{\gamma} = \left[\int_{ ext{line of sight}}^{2} rac{dl(\psi)}{M_{\chi}^{2}}
ight] rac{\langle \sigma v
angle}{M_{\chi}^{2}} \left[\int_{E_{th}}^{M_{\chi}} \left(rac{dN_{\gamma}}{dE}
ight)_{ ext{SUSY}}^{A_{ ext{eff}}(E)} dE
ight] rac{\Delta \Omega}{4\pi} \; au_{ ext{exp}}$$

1) Assume a DM particle: mass and cross section, consistent with relic abundance ($\Omega_{\rm m}$ from WMAP).

Can We Make Quantitative Predictions?

$$N_{\gamma} = \left[\int_{\text{line of sight}}^{2} \frac{dl(\psi)}{dl(\psi)} \right] \frac{\langle \sigma v \rangle}{M_{\chi}^{2}} \left[\int_{E_{th}}^{M_{\chi}} \left(\frac{dN_{\gamma}}{dE} \right)_{\text{SUSY}}^{A_{\text{eff}}}(E) dE \right] \frac{\Delta \Omega}{4\pi} \tau_{\text{exp}}$$

- 1) Assume a DM particle: mass and cross section, consistent with relic abundance ($\Omega_{\rm m}$ from WMAP).
- 2) Use expected Fermi/LAT detector sensitivity:
 - A_{eff}(E)
 - angular resolution (~9 arcmin)
 - effective exposure time (~2 years)

Can We Make Quantitative Predictions?

$$N_{\gamma} = \left[\int_{ ext{line of sight}}^{2} rac{dl(\psi)}{M_{\chi}^{2}}
ight] rac{\langle \sigma v
angle}{M_{\chi}^{2}} \left[\int_{E_{th}}^{M_{\chi}} \left(rac{dN_{\gamma}}{dE}
ight)_{ ext{SUSY}}^{A_{ ext{eff}}(E) dE}
ight] rac{\Delta \Omega}{4\pi} \; au_{ ext{exp}}$$

- 1) Assume a DM particle: mass and cross section, consistent with relic abundance ($\Omega_{\rm m}$ from WMAP).
- 2) Use expected Fermi/LAT detector sensitivity:
 - A_{eff}(E)
 - angular resolution (~9 arcmin)
 - effective exposure time (~2 years)
- 3) Consider both astrophysical and DM annihilation backgrounds.

Backgrounds: Extragalactic GR Background

Backgrounds: Galactic GR Background

Galactic Center: GR Point Sources

Backgrounds: Smooth Host Halo DM Annihilation

Backgrounds: Unresolved Subhalos DM Annihilation

Pieri et al. (2008), Kuhlen et al. (2008)

The Subhalo Signal

The Subhalo Signal

Predictions for the Gamma Ray Large Area Space Telescope

Predictions for the Gamma Ray Large Area Space Telescope

Substructure in the dark halo

 annihilation radiation from WIMP dark matter may be observable by GLAST/Fermi

Kuhlen et al. (2008)

Kuhlen

- strongest signal from the sub-halos
- detectable sub-halos resolved by Fermi
- * most prominent sub-halo typically has d ~ 20-40 kpc and M ~ 10^7 - 10^9 M $_{\odot}$

Springel et al. (2008)

Frenk

- strongest signal from the smooth main halo
- detectable sub-halos unresolved by Fermi
- * most prominent sub-halo typically has d ~ 3-30 kpc and M ~ 10^6 - 10^7 M $_{\odot}$

Substructure in the dark halo

 annihilation radiation from WIMP dark matter may be observable by GLAST/Fermi

Kuhlen et al. (2008)

Kuhlen

- strongest signal from the sub-halos
- detectable sub-halos resolved by Fermi
- * most prominent sub-halo typically has d ~ 20-40 kpc and M ~ 10^7 - 10^9 M $_{\odot}$

Springel et al. (2008)

Frenk

- strongest signal from the smooth main halo
- detectable sub-halos unresolved by Fermi
- most prominent sub-halo typically has d \sim 3-30 kpc and M \sim 10 $^{\circ}$ -10 7 M $_{\odot}$

Diffuse host signal vs. individual subhalos?

Substructure in the dark halo

 annihilation radiation from WIMP dark matter may be observable by GLAST/Fermi

Kuhlen et al. (2008)

Kuhlen

- strongest signal from the sub-halos
- detectable sub-halos resolved by Fermi
- * most prominent sub-halo typically has d ~ 20-40 kpc and M ~ 10^7 - 10^9 M $_{\odot}$

Springel et al. (2008)

Frenk

- strongest signal from the smooth main halo
- detectable sub-halos unresolved by Fermi
- * most prominent sub-halo typically has d ~ 3-30 kpc and M ~ 10^6 - 10^7 M $_{\odot}$

Indirect Detection: Conclusions

- ► Indirect detection is a promising way to test a central prediction of ΛCDM: abundant small scale structure.
- > The observability of such a signal is very uncertain and depends on the nature, mass, and cross section of the dark matter particle.
- For reasonable values of the DM particle physics parameters (M_x =50-500 GeV, $<\sigma$ v>=1-10×10⁻²⁶ cm³ s⁻¹) GLAST/Fermi may detect a handful of subhalos.
- > Detectable subhalos have V_{max} ranging from >~20 km/s down to ~5 km/s.
- ➤ Most detectable subhalos would be resolved, are more likely to be found away from the Galactic center, and have typical distances of 20-30 kpc.