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The ultimate test:

• find the bloody thing!
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A blueprint for detecting 
halo CDM 

⇒ Theoretical expectation requires knowing ρ(x) 

⇒ Accurate high resolution N-body simulations of 
halo formation from CDM initial conditions

Supersymmetric particles annihilate and lead to production of 
γ-rays which may be observable by GLAST/FERMI

Intensity of annihilation radiation at x depends on:
  ∫ ρ2(x) ‹σv› dV  

cross-sectionhalo density at x
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z = 0.1

24003 run

A galactic dark matter halo

Springel, Wang, Volgensberger, Ludlow, 
Jenkins, Helmi, Navarro, Frenk & White ‘08

1.1 billion particles 
inside rvir
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The subhalo mass 
function is shallower 

than M2

The mass function 
of substructures
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Virgo consortium 
Springel et al 08

Msub [Mo]

• Most of the substructure 
mass is in the few most 
massive halos

•  The total mass in 
substructures converges 
well even for moderate 
resolution

300,000 subhalos within virialized 
region in Aq-A-1

Springel, Wang, Vogelsberger, Ludlow, Jenkins, Helmi, 
Navarro, Frenk & White ‘08
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• Most of the substructure 
mass is in the few most 
massive halos

•  The total mass in 
substructures converges 
well even for moderate 
resolution

 MASS PER LOG INTERVAL

Virgo consortium 
Springel et al 08
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The substructure circ velocity function 

We find 3 times as 
many subhalos as 

Diemand et al find for 
VL I, but VLII is close 

to our ensemble

The velocity function 
of substructures is 

close to a power law
 

CUMULATIVE NUMBER OF SUBSTRUCTURES AS A FUNCTION OF VMAX,

VLII
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Differences in the DM 
distributions of VLII and 

Aquarius are NOT significant 
for the problem at hand

 The differences in our 
conclusions about γ-ray 

radiation  stem from 
different assumptions 

about visibility of clumps 
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The subhalo number 
density profile

•  The spatial distribution of  subhalos 
(except for the few most massive 

ones) is independent of mass

•  Most subhalos are at large radii -- 
subhalos are more effectively 

destroyed near the centre

• Most subhalos have completed only 
a few orbits; dynamical friction 

unimportant below a subhalo mass 
threshold

•  Subhalos are far from the Sun

Sun
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Enclosed no. fraction 
of substructures of 

different mass 
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How lumpy is the MW halo?

Mass fraction in subhalos as a fn of cutoff mass in CDM PS

The Milky Way halo is expected to be quite smooth!

Earth
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r < 100 kpc

r < 400 kpc

Substructure mass fraction within Rsun < 0.1% 
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A blueprint for detecting 
halo CDM 

 For a smooth halo:

€ 

L∝V
4
max

rmax

Supersymmetric particles annihilate and lead to production of 
γ-rays which may be observable by GLAST/Fermi

Intensity of annihilation radiation at x depends on:
 L∝ ∫ ρ2(x) ‹σv› dV  

cross-sectionhalo density at x

For NFW:
50% of L from 0.1rmax 
95% of L from rmax 

Converges for ρ(r) with slope shallower than -1.5
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Convergence in the size and 
maximum circular velocity for

individual subhalos cross-matched 
between simulation pairs.

Biggest simulation gives convergent 
results for

                  Vmax > 1.5 km/s
                   rmax >  165 pc

Much smaller than the halos 
inferred for even the faintest dwarf 

galaxies

More on substructure 
convergence

rmax, 2400[kpc/h]
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A blueprint for detecting 
halo CDM 

Springel, White, Frenk, Navarro, Jenkins, 
Vogelsberger, Wang, Ludlow, Helmi

 Nature - Nov/08
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A blueprint for detecting 
halo CDM 

To calculate L need 
contribution from 4 

components:

1.  Smooth emission from main halo

2.  Smooth emission from resolved subhalos

3.  Emission from unresolved subhalos in main halo

4.  Emission from substructure of subhalos

Main halo

subhalo
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main halo Lum

main halo Mass

 subhalos 
(smooth) Lum

 > 105M⊙

 > 108M⊙

Mass and annihilation radiation 
profiles of a MW halo
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There are 
substructures 

embedded 
within other 
structures.  

We detect 4 
generations 
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Substructures within substructures

There are 
substructures 

embedded 
within other 
structures.  

We detect 4 
generations 

The hierarchy 
clearly is 
NOT self-

similar and is 
heavily 

dependent on 
the degree of 
tidal stripping 
of the subhalo
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Substructures within substructures

N
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 No of (sub-)substructures 

Sub-subhalos

Self-similar expectation

Self-similar expectation assumes 
subhalos are scaled down copies 

of main halo (corrected for 
resolution)

Springel et al ‘08

x
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Substructures within 
substructures
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Cumulative number of (sub-) 
subhalos within subhalos

M
ain halo

 substructure mass fraction in 
subhalos is much lower than 

in the main halo
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A blueprint for detecting 
halo CDM 

x
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halo CDM 

x

Tidal radius
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Substructures within substructures

Sub-substructure abundance in 
subhalos is NOT, in general, a scaled-
down version of that in the main halo

Main halo

subhalo

• substructure abundance reduced by tidal truncation

• sub-subs continue to loose mass through tides

• sub-subs not replenished by infall of fresh halos

because:

⇒ Distribution of sub-substructure is NOT self-similar
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A blueprint for detecting 
halo CDM 

x

Tidal radius

• Assume all material beyond rt is 
removed

• Scale from main halo (within 
scaled rt)

• Correct for luminosity below 
(scaled) mass limit 

Emission from substructure of subhalos
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S/N for detecting 
subhalos in units of 

that for detecting the 
main halo.         

    30 highest S/N 
objects, assuming 

use of optimal filters 

sub-subhalos main subhalos 

known
satellites

LMC

 Highest S/N subhalos have 1% of S/N of main halo
 Highest S/N subhalos have 10 times S/N of known satellites
 Substructure of subhalos has no influence on detectability

A blueprint for detecting halo CDM 

(S/N)/(S/N)main halo

S/N=F/(θ2
h+θ2

psf)1/2
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Aquarius simulation:  N200 = 1.1 x 109

Milky Way halo seen in DM 
annihilation radiation

Springel et al ‘08
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A galactic CDM halo

 5 Myths about the galactic halo & annihilation 
signal from the Milky Way

• Halo DM is mostly in small (e.g. Earth mass) clumps

• Subhalo γ-ray emission boosted by sub-substructure

• Small (Earth mass) clumps dominate observable γ-ray signal

• Dwarf spheroidals/subhalos are best targets for detecting signal

•  Halo DM is self-similar distribution of nested subhalos (fractal) 
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Conclusions: ΛCDM on small scales

•  Predictions for galactic dark matter in ΛCDM well established

• N-body simulations of ΛCDM predict:

– many small substructures, with convergent mass fraction 

– the distribution of DM is not fractal nor is it dominated by 
Earth-mass objects 

• γ-ray annihilation may be detectable by FERMI which should:

– First detect smooth halo (if background can be subtracted)

– Then (perhaps) detect dark subhalos with no stars

– Sub-substructure boost irrelevant for detection

→ Confirm fundamental prediction of CDM model
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The inner halo is remarkably smooth

Galactic dark matter halos
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The inner halo is remarkably smooth

Galactic dark matter halos

Is the subhalo distribution a fractal?


