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The ultimate test:



Testing the cold dark matter theory

The ultimate test:

find the bloody thing!
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Supersymmetric particles annihilate and lead to production of
y-rays which may be observable by GLAST/FERMI

Intensity of annihilation radiation at x depends on:
| p2(x) cov» dV

halo density at x _T T_ cross-section

—> Theoretical expectation requires knowing p(x)

— Accurate high resolution N-body simulations of
halo formation from CDM initial conditions

Institute for Computational Cosmology
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The mass function
of substructures

The subhalo mass
function is shallower
than M~

* Most of the substructure
mass is in the few most
massive halos

* The total mass in
substructures converges
well even for moderate
resolution

Virgo consortium
Springel et al 08
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to our ensemble

Differences in the DM
distributions of VLIl and
Aquarius are NOT significant
for the problem at hand

The differences in our
conclusions about y-ray

radiation stem from
different assumptions

about visibility of clumps

The velocity function?~
of substructures is
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The subhalo number
density profile

» The spatial distribution of subhalos
(except for the few most massive
ones) is independent of mass

e Most subhalos are at large radii --
subhalos are more effectively
destroyed near the centre

* Most subhalos have completed only
a few orbits; dynamical friction
unimportant below a subhalo mass
threshold

Subhalos are far from the Sun

-

- Enclosed no. fraction

-

of substructures of
different mass
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Supersymmetric particles annihilate and lead to production of
y-rays which may be observable by GLAST/Fermi

Intensity of annihilation radiation at x depends on:
Lec | p2(x) covs dV

halo density at x _T T_ cross-section

Converges for p(r) with slope shallower than -1.5
95% of Lfromr,_,
50% of L from 0.1r, .,

V4
For a smooth halo: L oc——

For NFW: {
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More on substructure

o
(N

convergence

o

Convergence in the size and
maximum circular velocity for
iIndividual subhalos cross-matched
between simulation pairs.
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Biggest simulation gives convergent
results for

o
o

V... > 1.5km/s
> 165 pc

o

rma

o

Much smaller than the halos
inferred for even the faintest dwarf
galaxies

Virgo Consortium 2008 *1 Tinax, 2a00lkPC/h] 109
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Springel, White, Frenk, Navarro, Jenkins,
Vogelsberger, Wang, Ludlow, Helmi

Nature - Nov/08
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Main halo

To calculate L need @
contribution from 4 ‘\ |
supnaio

components: - i

Smooth emission from main halo
Smooth emission from resolved subhalos
Emission from unresolved subhalos in main halo

Emission from substructure of subhalos

Institute for Computational Cosmology
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To calculate L need contribution from 4 components:

. Smooth emission from main halo
. Smooth emission from resolved subhalos
Emission from unresolved subhalos in main halo

Emission from substructure of subhalos

Institute for Computational Cosmology




There are
substructures
embedded
within other
structures.
We detect 4
generations




Substructures within substructures

There are
substructures
embedded
within other
structures.
We detect 4
generations

The hierarchy
clearly is
NOT self-
similar and is
heavily
dependent on
the degree of
tidal stripping
of the subhalo




U @| Substructures within substructures

1ver31ty of Durham

10000
No of (sub-)substructures

Self-similar expe?;toét' n,

Self-similar expectation assumes

ubhalos are scaled down copies

Of main halo (CorreCted for 111 I‘L..] | | L1 111 I| | | | | l| | | |
resolution) e 10° 10"
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Substructures within
substructures

Cumulative number of (sub-)
subhalos within subhalos

substructure mass fraction in
subhalos is much lower than
In the main halo
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A blueprint for detecting
halo CDM
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U B€CQ | Substructures within substructures

niversity of Durham

Main halo

Sub-substructure abundance in \

subhalos is NOT, in general, a scaled- subhalo

down version of that in the main halo

because:

* substructure abundance reduced by tidal truncation
* sub-subs continue to loose mass through tides

* sub-subs not replenished by infall of fresh halos

—> Distribution of sub-substructure is NOT self-similar

Institute for Computational Cosmology




1JBCE | A blueprint for detecting
University of Durham h a I O C D M

Emission from substructure of subhalos

» Assume all material beyond r, is
removed

* Scale from main halo (within
scaled r)

* Correct for luminosity below | |
(scaled) mass limit Tidal radius

O
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8 . .

S/N=F/(62h+62psf)1/2 _sub\-sgbhalos . main-subhalos

6 I -

SIN for detecting | : :

subhalos inunits of 5, T b

that for detectingthe S L own | .

main halo. 5  satellites i

— . . LMC -

30 highest S/N I J : [ : i

objects, assuming ol . “.__I_._f T -
use of Optlmal filters 1 0—5 1 0—4 1 0-3 1 0—2 1 0—1 1 OO

(S/N)/(S/N)main hato

* Highest S/N subhalos have 1% of S/N of main halo
* Highest S/N subhalos have 10 times S/N of known satellites
e Substructure of subhalos has no influence on detectability




HCe | Milky Way halo seen in DM
S annihilation radiation

Aquarius simulation: N,,,=1.1 x 10°

Springel et al ‘08 — s 15 105 (M




@ ™D A galactic CDM halo

University of Durham

5 Myths about the galactic halo & annihilation
signal from the Milky Way

* Halo DM is mostly in small (e.g. Earth mass) clumps

* Halo DM is self-similar distribution of nested subhalos (fractal)

 Small (Earth mass) clumps dominate observable y-ray signal

* Dwarf spheroidals/subhalos are best targets for detecting signal

e Subhalo y-ray emission boosted by sub-substructure

Institute for Computational Cosmology




@@@ A galactic CDM halo

University of Durham

5 Myths about the galactic halo & annihilation
signal from the Milky Way

* Halo DIV is mostly irrsmall(e.g—t=arrmass) clumps

——

* Halo DM is self-similar distribution of nested subhalos (fractal)

 Small (Earth mass) clumps dominate observable y-ray signal

* Dwarf spheroidals/subhalos are best targets for detecting signal

e Subhalo y-ray emission boosted by sub-substructure
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HICE A galactic CDM halo

5 Myths about the galactic halo & annihilation
signal from the Milky Way

* Halo DIV is mostly irrsmall(e.g—t=arrmass) clumps

[—

——

* Halo DM is self-simifar-distribusi &d subhalos (fractal)

_——

 Small (Earth mass) clumps dominate observable y-ray signal

* Dwarf spheroidals/subhalos are best targets for detecting signal

e Subhalo y-ray emission boosted by sub-substructure
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HICEe A galactic CDM halo
University of Durham

5 Myths about the galactic halo & annihilation
signal from the Milky Way

* Halo DIVl is mostly irrsmallle.g=artrmass) clumps

[—

—

* Halo DM is self-simifar-distribusi &d subhalos (fractal)

——

» Small (Earth mass) cllimps-dessirateobservable y-ray sﬁgnal

—

* Dwarf spheroidals/subhalos are best targets for detecting signal

e Subhalo y-ray emission boosted by sub-substructure
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HICEe A galactic CDM halo
University of Durham

5 Myths about the galactic halo & annihilation
signal from the Milky Way

* Halo DIVl is mostly imsmall(e.g=artrmmass) clumps

[—

—

* Halo DM is self-simifar-distribusi &d subhalos (fractal)

——

» Small (Earth mass) cllimps-dessirateobservable y-ray sﬁgnal

—

* Dwarf sphermeesHargetstr‘cretectiﬁg signal

—

e Subhalo y-ray emission boosted by sub-substructure
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HICEe A galactic CDM halo

Ve

5 Myths about the galactic halo & annihilation
signal from the Milky Way

* Halo DIVl is mostly imsmall(e.g=artrmmass) clumps

[—

—

* Halo DM is self-simifar-distribusi subhalos (fractal)

——

» Small (Earth mass) cllimps-dessirateobservable y-ray sﬁgnal

—

* Dwarf sphermeesHargmwctiﬁg signal

——

—

e Subhalo y-ray emiSsionkaasiad-by-sub=subsiructure

—
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QH@?@Z Conclusions: ACDM on small scales

niversity of Durham

» Predictions for galactic dark matter in ACDM well established

* N-body simulations of ACDM predict:

— many small substructures, with convergent mass fraction

— the distribution of DM is not fractal nor is it dominated by
Earth-mass objects

e y-ray annihilation may be detectable by FERMI which should:
— First detect smooth halo (if background can be subtracted)

— Then (perhaps) detect dark subhalos with no stars

— Sub-substructure boost irrelevant for detection

— Confirm fundamental prediction of CDM model






B N Galactic dark matter halos

Is the subhalo distribution a fractal?



