Hidden Order versus Antiferromagnetism in URu₂Si₂

Elena Hassinger

SPSMS, CEA Grenoble

Mystery of URu₂Si₂

huge entropy loss ~0.2Rln2 No ordered moment found with neutrons

Hidden Order

Outline

Dai Aoki samples
Frédéric Bourdarot neutrons
Georg Knebel
Tatsuma Matsuda
Stéphane Raymond
Louis-Pierre Regnault
Valentin Taufour
Alain Villaume
Jacques Flouquet

- 1. Introduction
- 2. Pressure measurements
- 3. New neutron results
- 4. Fermi surface study
- 5. Conclusion

URu₂Si₂ - macroscopic view

Heavy Fermion system

Maple et al. PRL (1986)

- Large anomalies in macroscopic quantities at 17.5 K
- Sommerfeld coefficient γ changes from 180 mJ/molK² above T_o to 60 mJ/molK² below T_o
- change in Hall constant (factor of 10)
- Strong anisotropy (Ising)
- Exponential behavior below $T_0 => \text{gap (110 K from specific heat)}$
- Anisotropic superconductivity at T_c = 1.2K
- compensated metal, low carrier density

Palstra et al. PRL (1985)

Neutron scattering - microscopic view

Body centered tetragonal Space group: I4/mmm

- Very small ordered moment: $m \approx 0.04 \mu_B/U$
- Moment is too small to explain entropy loss

There must be a hidden order parameter!

Ordered moment sample dependent: extrinsic, due to defects
But independent of sample two strong excitations

Dispersion Relation and Excitations

URu₂Si₂ under Pressure

McElfresh et al. PRB (1987)

- *T_o* increases slowly then faster
- under pressure AF phase with large moment $m \approx 0.33 \mu_B / U$
- Ordering vector Q_{AF} = (0 0 1) Brillouin zone changes

NMR: not moment but volume increases In HO locally AF droplets near defects

Matsuda et al. JPCondMat (2003)

URu₂Si₂ under Pressure

Moment increases abruptly for

$$P > P_x \approx 0.5 \text{ GPa}$$

Do these lines touch?

Thermal expansion

Phase diagram

- Strong signal at T_x
- Phase diagram depends on sample and pressure conditions

Questions:

Change of entropy at T_x and T_N Change of signature of transition

Approach:

Comparison of AF phase with HO phase to learn more about the HO state itself

Resistivity and Specific Heat under Pressure

- Resistivity anomaly basically does not change with P
- clear reconstruction of Fermi surface similar in HO and AF state maybe due to bandfolding when BZ is changed, same BZ in HO and AF
- broad anomaly in resistivity and specific heat at T_x
- Transition lines seem to touch

Superconducting Transition under Pressure

- *P* = 0: Transition temperature different in resistivity and specific heat
- In resistivity transition is observed above P_x
- above P_x SC is not bulk (surviving HO component in AF phase)

Excitations in different phases

Villaume et al. PRB (2008)

- Excitation at Q₀ exists only in the HO phase
- Peak at Q₁ persists in the AF phase
 i.e. at high pressure and gap shifts
- ullet We conclude that Q_0 is also the significant wave vector of the HO, excitation is « smoking gun » of the order parameter
- confirms the assumption that same BZ in HO as in AF

Excitations in different phases

$$\Delta_{\rm G}$$
 from resistivity below ${\it T_0}$
$$\rho = \rho_0 + AT^2 + Bexp(-\frac{\Delta_{\rm G}}{T})$$

- Q_0 = (1 0 0) significant wave vector in both phases: excitation in HO phase, elastic signal in AF phase
- Superconductivity disappears also in AF phase: possible link to excitation at Q_0 ?

Excitations in superconducting phase

New theories

Band structure calculations (Elgazzar et al. Nature Materials 2009):

- symmetry breaking from AF fluctuations
- can lead to nesting at Q₁
- *T* dependence of intensity of Q₀ should be order parameter-like

DMFT (Haule and Kotliar):

Hexadecapole

Group symmetry (Harima et al. to be published):

- staggered quadrupolar order Q_{xy}
- group 136, leaves Ru unchanged for NMR

Both multipole of even order: no time reversal symmetry breaking in HO

Incommensurate CDW (Balatsky)

Temperature Dependence of Excitations

 Q_1 = (1.4 0 0) $E_1 \approx 4.8 \text{ meV}$ for $T > T_0$ inelastic but strongly damped

Excitations

Polarized neutron scattering in HO

Broholm et al. PRB (1990)

Temperature dependence of excitation at Q₀

Signal far above T_0 is the same as from polarized neutrons at 1.5 K \Rightarrow High energy continuum assumed temperature independent new analysis of spectra at different temperatures: Below T_0 oscillator (taking into account resolution) above T_0 quasielastic signal

Temperature dependence

• Gap E_0 has very strong T dependence At low T: very sharp $E_0/\gamma/2 \sim 35$ At T_0 strong damping (width becomes rapidly larger than E_0)

- Temperature dependence of width follows exponential behavior with characteristic energy of 7.7 meV close to Δ_{G}
- no divergence of χ at T_0 confirms HO is not AF
- intensity follows OP-like (BCS-like behavior)

Determination of phase diagram (T,P,H)

Thermal expansion measurement with strain gauge along a For each fixed pressure, behavior of T_0 , T_N or T_x in field is determined

- Transition HO-AF at T_x clearly visible
- near P_c transition splits in field

- At high pressure entrance into HO phase in field
- suppression of magnetic moment
- significant resonance at $Q_0 = (1 \ 0 \ 0)$ reappears

Aoki et al. JPSJ 053701 (2009)

T² resistivity?

Magnetoresistance under pressure

Clear Shubnikov-de Haas oscillations At low pressures in HO kink in magnetoresistance at \sim 9 Tesla Confirms P_x between 0.85 and 1.32 GPa

FFT spectra

FFT amplitude

- No big change in SdH frequencies between HO and AF for H||c
- splitting for β branch in AF
- \bullet large signal just above β branch with most important change under pressure

Angular dependence of high quality sample

Yamagami *et al.* Physica B 2000 Ohkuni *et al.* Phil. Mag. B 1999

RRR=175= R(300K)/R(2K)
New frequencies with heavy mass
New γ of 30 mJ/molK² (50% of specific heat)
Test for theory

Conclusion

Indirect experimental evidence for order with Q = (001) in HO

- reconstruction of the Fermi surface at T_0 and T_N as seen in resistivity anomaly independent of pressure
- significant wave vector the same: $Q_0 = (1\ 0\ 0)$ (in HO significant excitation, in AF static ordering vector)
- intensity of this excitation has OP-like temperature dependence
- no big changes in the FS in quantum oscillations with pressure
- new heavy bands observed