Hidden Order versus Antiferromagnetism in URu₂Si₂ Elena Hassinger SPSMS, CEA Grenoble ## Mystery of URu₂Si₂ huge entropy loss ~0.2Rln2 No ordered moment found with neutrons Hidden Order #### Outline Dai Aoki samples Frédéric Bourdarot neutrons Georg Knebel Tatsuma Matsuda Stéphane Raymond Louis-Pierre Regnault Valentin Taufour Alain Villaume Jacques Flouquet - 1. Introduction - 2. Pressure measurements - 3. New neutron results - 4. Fermi surface study - 5. Conclusion ### URu₂Si₂ - macroscopic view #### Heavy Fermion system Maple et al. PRL (1986) - Large anomalies in macroscopic quantities at 17.5 K - Sommerfeld coefficient γ changes from 180 mJ/molK² above T_o to 60 mJ/molK² below T_o - change in Hall constant (factor of 10) - Strong anisotropy (Ising) - Exponential behavior below $T_0 => \text{gap (110 K from specific heat)}$ - Anisotropic superconductivity at T_c = 1.2K - compensated metal, low carrier density Palstra et al. PRL (1985) ## Neutron scattering - microscopic view Body centered tetragonal Space group: I4/mmm - Very small ordered moment: $m \approx 0.04 \mu_B/U$ - Moment is too small to explain entropy loss There must be a hidden order parameter! Ordered moment sample dependent: extrinsic, due to defects But independent of sample two strong excitations #### Dispersion Relation and Excitations ### URu₂Si₂ under Pressure McElfresh et al. PRB (1987) - *T_o* increases slowly then faster - under pressure AF phase with large moment $m \approx 0.33 \mu_B / U$ - Ordering vector Q_{AF} = (0 0 1) Brillouin zone changes NMR: not moment but volume increases In HO locally AF droplets near defects Matsuda et al. JPCondMat (2003) ## URu₂Si₂ under Pressure Moment increases abruptly for $$P > P_x \approx 0.5 \text{ GPa}$$ Do these lines touch? ### Thermal expansion #### Phase diagram - Strong signal at T_x - Phase diagram depends on sample and pressure conditions #### Questions: Change of entropy at T_x and T_N Change of signature of transition #### Approach: Comparison of AF phase with HO phase to learn more about the HO state itself #### Resistivity and Specific Heat under Pressure - Resistivity anomaly basically does not change with P - clear reconstruction of Fermi surface similar in HO and AF state maybe due to bandfolding when BZ is changed, same BZ in HO and AF - broad anomaly in resistivity and specific heat at T_x - Transition lines seem to touch #### Superconducting Transition under Pressure - *P* = 0: Transition temperature different in resistivity and specific heat - In resistivity transition is observed above P_x - above P_x SC is not bulk (surviving HO component in AF phase) #### Excitations in different phases Villaume et al. PRB (2008) - Excitation at Q₀ exists only in the HO phase - Peak at Q₁ persists in the AF phase i.e. at high pressure and gap shifts - ullet We conclude that Q_0 is also the significant wave vector of the HO, excitation is « smoking gun » of the order parameter - confirms the assumption that same BZ in HO as in AF #### Excitations in different phases $$\Delta_{\rm G}$$ from resistivity below ${\it T_0}$ $$\rho = \rho_0 + AT^2 + Bexp(-\frac{\Delta_{\rm G}}{T})$$ - Q_0 = (1 0 0) significant wave vector in both phases: excitation in HO phase, elastic signal in AF phase - Superconductivity disappears also in AF phase: possible link to excitation at Q_0 ? #### Excitations in superconducting phase #### New theories Band structure calculations (Elgazzar et al. Nature Materials 2009): - symmetry breaking from AF fluctuations - can lead to nesting at Q₁ - *T* dependence of intensity of Q₀ should be order parameter-like #### DMFT (Haule and Kotliar): Hexadecapole Group symmetry (Harima et al. to be published): - staggered quadrupolar order Q_{xy} - group 136, leaves Ru unchanged for NMR Both multipole of even order: no time reversal symmetry breaking in HO Incommensurate CDW (Balatsky) #### Temperature Dependence of Excitations Q_1 = (1.4 0 0) $E_1 \approx 4.8 \text{ meV}$ for $T > T_0$ inelastic but strongly damped #### **Excitations** #### Polarized neutron scattering in HO Broholm et al. PRB (1990) ### Temperature dependence of excitation at Q₀ Signal far above T_0 is the same as from polarized neutrons at 1.5 K \Rightarrow High energy continuum assumed temperature independent new analysis of spectra at different temperatures: Below T_0 oscillator (taking into account resolution) above T_0 quasielastic signal #### Temperature dependence • Gap E_0 has very strong T dependence At low T: very sharp $E_0/\gamma/2 \sim 35$ At T_0 strong damping (width becomes rapidly larger than E_0) - Temperature dependence of width follows exponential behavior with characteristic energy of 7.7 meV close to Δ_{G} - no divergence of χ at T_0 confirms HO is not AF - intensity follows OP-like (BCS-like behavior) ## Determination of phase diagram (T,P,H) Thermal expansion measurement with strain gauge along a For each fixed pressure, behavior of T_0 , T_N or T_x in field is determined - Transition HO-AF at T_x clearly visible - near P_c transition splits in field - At high pressure entrance into HO phase in field - suppression of magnetic moment - significant resonance at $Q_0 = (1 \ 0 \ 0)$ reappears Aoki et al. JPSJ 053701 (2009) ## T² resistivity? #### Magnetoresistance under pressure Clear Shubnikov-de Haas oscillations At low pressures in HO kink in magnetoresistance at \sim 9 Tesla Confirms P_x between 0.85 and 1.32 GPa #### FFT spectra FFT amplitude - No big change in SdH frequencies between HO and AF for H||c - splitting for β branch in AF - \bullet large signal just above β branch with most important change under pressure #### Angular dependence of high quality sample Yamagami *et al.* Physica B 2000 Ohkuni *et al.* Phil. Mag. B 1999 RRR=175= R(300K)/R(2K) New frequencies with heavy mass New γ of 30 mJ/molK² (50% of specific heat) Test for theory #### Conclusion Indirect experimental evidence for order with Q = (001) in HO - reconstruction of the Fermi surface at T_0 and T_N as seen in resistivity anomaly independent of pressure - significant wave vector the same: $Q_0 = (1\ 0\ 0)$ (in HO significant excitation, in AF static ordering vector) - intensity of this excitation has OP-like temperature dependence - no big changes in the FS in quantum oscillations with pressure - new heavy bands observed