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Mystery of URu2Si2

Maple et al. PRL (1986)

huge entropy loss ~0.2Rln2
No ordered moment found with neutrons

Hidden Order
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• Large anomalies in macroscopic quantities at 17.5 K
• Sommerfeld coefficient γ changes from 180 mJ/molK2

above T0 to 60 mJ/molK2 below T0

• change in Hall constant (factor of 10)
• Strong anisotropy (Ising)
• Exponential behavior below T0 => gap (110 K from
specific heat)
• Anisotropic superconductivity at Tc = 1.2K
• compensated metal, low carrier density

URu2Si2 - macroscopic view
Heavy Fermion system

Palstra et al. PRB (1986)

T0

Maple et al. PRL (1986)

Palstra et al. PRL (1985)

T0

Schoenes et al. PRB (1987)



Neutron scattering - microscopic view

Body centered tetragonal
Space group: I4/mmm

c

• Very small ordered moment: m ≈ 0.04 μB /U
• Moment is too small to explain entropy loss

There must be a hidden order parameter!

Broholm et al. PRL (1987)

Amitsuka et al. JMMM (2006)

Ordered moment sample dependent: 
extrinsic, due to defects
But independent of sample two strong
excitations
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Dispersion Relation and Excitations
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Bourdarot et al. arXiv:cond-mat/0312206 (2003)
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2 well-defined sharp peaks (robust)
Q0= (1 0 0) E0≈ 1.6 meV
Commensurate Q0 equivalent to QAF= (0 0 1)

Q1= (1.4 0 0)   E1 ≈ 4.8 meV
Incommensurate

• longitudinal excitations:
no magnons
• only low E microscopic signature of HO



URu2Si2 under Pressure
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Amitsuka et al. PRL (1999)

• T0 increases slowly then faster
• under pressure AF phase with large 
moment  m ≈ 0.33 μB /U
• Ordering vector QAF = (0 0 1) 
Brillouin zone changes

McElfresh et al. PRB (1987)

Pc ≈ 1.3 GPa

Matsuda et al. JPCondMat (2003)

NMR: not moment but volume 
increases
In HO locally AF droplets near
defects



URu2Si2 under Pressure

HO AF

Q0 =(1 0 0) 1.18 GPa
0.82 GPa
0.64 GPa
0.45 GPa
0      GPa

Bourdarot et al. arXiv:cond-mat/0312206 (2003)

m ≈ 0.33 μB /U

Moment increases abruptly for

P > Px ≈ 0.5 GPa

0                0.5                1 
P (GPa)

Do these lines touch?

Tx

Tx



Thermal expansion

Motoyama et al. PRL (2003)• Strong signal at Tx
• Phase diagram depends on sample and pressure conditions

Questions:
Change of entropy at Tx and TN
Change of signature of transition

Phase diagram

Approach:
Comparison of AF phase with HO phase 
to learn more about the HO state itself
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Resistivity and Specific Heat under Pressure
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• Resistivity anomaly basically does not
change with P
• clear reconstruction of Fermi surface 
similar in HO and AF state maybe due 
to bandfolding when BZ is changed, 
same BZ in HO and AF
• broad anomaly in resistivity and
specific heat at Tx

• Transition lines seem to touch
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Hassinger et al. PRB (2008)
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Superconducting Transition under Pressure

• P = 0: Transition temperature different in resistivity
and specific heat
• In resistivity transition is observed above Px

• above Px SC is not bulk (surviving HO component 
in AF phase)

Cac measurement

Hassinger et al. PRB (2008)



Excitations in different phases

Villaume et al. PRB (2008)

Q0 = (1 0 0) Q1 = (1.4 0 0)

• Excitation at Q0 exists only in the HO phase
• Peak at Q1 persists in the AF phase
i.e. at high pressure and gap shifts
• We conclude that Q0 is also the significant wave vector
of the HO, excitation is « smoking gun » of the order
parameter
• confirms the assumption that same BZ in HO as in AF



• Q0 = (1 0 0) significant wave vector in both phases: excitation in 
HO phase, elastic signal in AF phase
• Superconductivity disappears also in AF phase: possible link to
excitation at Q0? 

Excitations in different phases
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ΔG from resistivity below T0
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HO AF



Excitations in superconducting phase
Small shift of excitation at Q0
in superconducting phase

T<Tsc

T>Tsc

T<Tsc

T>Tsc

Comparison to UPd2Al3 (strong coupling between
local and itinerant electrons)
In URu2Si2 no quasielastic signal =>
no peak appears
but shift of magnetic excitation

UPd2Al3

Sato et al. Nature (2001)

weak coupling



New theories

Band structure calculations (Elgazzar et al. Nature Materials 2009): 
• symmetry breaking from AF fluctuations 
• can lead to nesting at Q1
• T dependence of intensity of Q0 should be order parameter-like

DMFT (Haule and Kotliar):
• Hexadecapole

Group symmetry (Harima et al. to be published):
• staggered quadrupolar order Qxy
• group 136, leaves Ru unchanged for NMR

Incommensurate CDW (Balatsky)

Both multipole of even order:
no time reversal symmetry 
breaking in HO



Q0= (1 0 0)
for T >T0 quasielastic

Q1= (1.4 0 0)   E1 ≈ 4.8 meV
for T >T0 inelastic but strongly damped

Temperature Dependence of Excitations

Broholm et al. PRL (1987)Mason et al. J. P. Cond Mat (1995)



Excitations

Higher intensity for excitation at Q1 = (1.4 0 0) 

Gapping of excitations at Q1 and equivalent
points can account for entropy jump

Reciprocal space

T = 1.5 K

Wiebe et al. Nature Physics (2007)



Polarized neutron scattering in HO

• Broad purely magnetic high energy signal 
(continuum)
• Both excitations and broad signal purely
longitudinal
• Continuum quasielastic with characteristic
energy Г=7.8 meV much higher than kBT0
• Sommerfeld term γ=96 mJ/(molK2)

Broholm et al. PRB (1990)

Bourdarot et al. to be published (2010)

URu2Si2
Q = (1 0 0)
T = 1.5 K

URu2Si2
Q = (1.4 0 0)

T = 1.5 K



Temperature dependence of excitation at Q0

Signal far above T0 is the same as from polarized neutrons at 1.5 K
⇒ High energy continuum assumed temperature independent
new analysis of spectra at different temperatures:
Below T0 oscillator (taking into account resolution) 
above T0 quasielastic signal



Temperature dependence
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• Gap E0 has very strong T dependence
At low T: very sharp E0/γ/2 ~ 35
At T0 strong damping (width becomes rapidly 
larger than E0)
• Temperature dependence of width follows 
exponential behavior with characteristic energy 
of 7.7 meV close to ΔG

• no divergence of χ at T0 confirms HO is not AF
• intensity follows OP-like (BCS-like behavior)
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Determination of phase diagram (T,P,H)

• Transition HO-AF at Tx clearly visible
• near Pc transition splits in field

TN

Thermal expansion measurement with strain gauge along a
For each fixed pressure, behavior of T0, TN or Tx in field is determined

Aoki et al. JPSJ 053701 (2009)

• At high pressure entrance into HO phase in field
• suppression of magnetic moment
• significant resonance at Q0 = (1 0 0) reappears



T2 resistivity?

In this measurement Px seems
to be between 0.85 GPa and
1.32 GPa
T2 behavior only in AF phase
=> Extra scattering due to HO 
parameter

J||a J||c

Zhu et al. PRB (2009)

J||a

RRR > 500 made by Dai Aoki



Magnetoresistance under pressure

Clear Shubnikov-de Haas oscillations
At low pressures in HO kink in magnetoresistance at ~ 9 Tesla
Confirms Px between 0.85 and 1.32 GPa

Best crystal ambient pressure

H||c
J||a



FFT spectra

γ

β

α

• No big change in SdH frequencies
between HO and AF for H||c
• splitting for β branch in AF
• large signal just above β branch with most
important change under pressure

Nakashima et al. JPCondMat (2003)

Px

Px

γ β α

4-13T



Angular dependence of high quality sample

RRR=175= R(300K)/R(2K)
New frequencies with heavy mass
New γ of 30 mJ/molK2  (50% of specific heat)
Test for theory

Yamagami et al. Physica B 2000
Ohkuni et al. Phil. Mag. B 1999

T=25 mK

γ

β

αnew

H||c



Conclusion

• reconstruction of the Fermi surface at T0 and TN as 
seen in resistivity anomaly independent of pressure

• significant wave vector the same: Q0 = (1 0 0)
(in HO significant excitation, in AF static ordering
vector)

• intensity of this excitation has OP-like temperature
dependence

• no big changes in the FS in quantum oscillations 
with pressure

• new heavy bands observed

Indirect experimental evidence for order with Q = (001) in HO
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